pytorch/aten/src/ATen/native/AdaptiveAveragePooling.cpp

152 lines
5.1 KiB
C++

#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/native/AdaptivePooling.h>
#include <ATen/native/xnnpack/Engine.h>
#include <c10/util/irange.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/_adaptive_avg_pool2d.h>
#include <ATen/ops/_adaptive_avg_pool2d_backward_native.h>
#include <ATen/ops/_adaptive_avg_pool2d_native.h>
#include <ATen/ops/adaptive_avg_pool2d_native.h>
#include <ATen/ops/empty.h>
#include <ATen/ops/mkldnn_adaptive_avg_pool2d.h>
#endif
namespace at::native {
namespace {
void adaptive_avg_pool2d_out_cpu_template(
at::Tensor& output,
at::Tensor const& input,
IntArrayRef output_size)
{
TORCH_CHECK(output_size.size() == 2, "adaptive_avg_pool2d: output_size must be 2");
int64_t ndim = input.dim();
TORCH_CHECK((ndim == 3 || ndim == 4),
"adaptive_avg_pool2d(): Expected 3D or 4D tensor, but got ", input.sizes());
for (const auto i : {-2, -1}) {
TORCH_CHECK(input.size(i) > 0,
"adaptive_avg_pool2d(): Expected input to have non-zero size for non-batch dimensions, "
"but input has sizes ", input.sizes(), " with dimension ", i + ndim, " being "
"empty");
}
TORCH_CHECK(input.dtype() == output.dtype(),
"expected dtype ", input.dtype(), " for `output` but got dtype ", output.dtype());
int64_t channels = input.size(-3);
int64_t output_height = output_size[0];
int64_t output_width = output_size[1];
if (ndim == 3) {
output.resize_({channels, output_height, output_width});
} else {
int64_t nbatch = input.size(0);
output.resize_({nbatch, channels, output_height, output_width}, input.suggest_memory_format());
}
if (output.numel() == 0) {
return;
}
adaptive_avg_pool2d_kernel(kCPU, output, input, output_size);
}
Tensor& adaptive_avg_pool2d_backward_out_cpu_template(
Tensor& grad_input,
const Tensor& grad_output,
const Tensor& input)
{
adaptive_pool_empty_output_check(grad_output, "adaptive_avg_pool2d_backward");
int64_t ndim = grad_output.dim();
TORCH_CHECK(input.dim() == ndim,
__func__, ": Expected dimensions ", input.dim(), " for `grad_output` but got dimensions ", ndim);
TORCH_CHECK((ndim == 3 || ndim == 4),
__func__, ": Expected 3D or 4D tensor, but got ", input.sizes());
TORCH_CHECK(input.dtype() == grad_output.dtype(),
__func__, ": Expected dtype ", input.dtype(), " for `grad_output` but got dtype ", grad_output.dtype());
TORCH_CHECK(input.dtype() == grad_input.dtype(),
__func__, ": Expected dtype ", input.dtype(), " for `grad_input` but got dtype ", grad_input.dtype());
grad_input.resize_(input.sizes(), input.suggest_memory_format());
grad_input.zero_();
adaptive_avg_pool2d_backward_kernel(kCPU, grad_input, grad_output);
return grad_input;
}
} // namespace
Tensor& adaptive_avg_pool2d_out_cpu(const Tensor& input,
IntArrayRef output_size,
Tensor& output)
{
adaptive_avg_pool2d_out_cpu_template(
output, input, output_size);
return output;
}
Tensor adaptive_avg_pool2d_cpu(
at::Tensor const& input,
IntArrayRef output_size)
{
auto output = at::empty({0}, input.options());
adaptive_avg_pool2d_out_cpu_template(
output, input, output_size);
return output;
}
Tensor adaptive_avg_pool2d_symint(at::Tensor const& input, SymIntArrayRef output_size) {
TORCH_CHECK(output_size.size() == 2, "adaptive_avg_pool2d: output_size must be 2");
TORCH_CHECK(
(output_size[0] >= 0 && output_size[1] >= 0),
"adaptive_avg_pool2d: elements of output_size must be greater than or equal to 0 ",
"but received {", output_size[0], ", ", output_size[1], "}");
if (input.is_mkldnn()) {
return at::mkldnn_adaptive_avg_pool2d(input, C10_AS_INTARRAYREF_SLOW(output_size));
}
if (!input.is_quantized() && output_size[0] == 1 && output_size[1] == 1) {
// in this case, adaptive pooling is just computing mean over hw
// dimensions, which can be done more efficiently
#if defined(C10_MOBILE) && defined(USE_XNNPACK)
if (xnnpack::use_global_average_pool(input)) {
return xnnpack::global_average_pool(input);
}
#endif
Tensor out = input.mean({-1, -2}, /* keepdim = */ true);
if (input.suggest_memory_format() == at::MemoryFormat::ChannelsLast) {
// assert ndim == 4, since ndim = 3 doesn't give channels_last
const auto n = input.sym_size(0);
const auto c = input.sym_size(1);
out.as_strided__symint({n, c, 1, 1}, {c, 1, c, c});
}
return out;
} else {
return _adaptive_avg_pool2d_symint(input, output_size);
}
}
Tensor adaptive_avg_pool2d_backward_cpu(
const Tensor& grad_output,
const Tensor& input)
{
auto grad_input = at::empty({0}, input.options());
adaptive_avg_pool2d_backward_out_cpu_template(
grad_input, grad_output, input);
return grad_input;
}
DEFINE_DISPATCH(adaptive_avg_pool2d_kernel);
DEFINE_DISPATCH(adaptive_avg_pool2d_backward_kernel);
} // namespace at::native