mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
This PR adds the Cpp template infrastructure and the initial FP32 gemm template. See RFC https://github.com/pytorch/pytorch/issues/125683 for more background info. 1. Cpp template infrastructure Similar template abstractions as the CUTLASS template, i.e., `CppTemplate`, `CppTemplateKernel`, `CppTemplateBuffer`. The MicroGemm micro-kernel abstraction that can be used by Cpp GEMM templates. 2. Initial FP32 gemm template This involves a GEMM template implementation `CppPackedGemmTemplate` that supports GEMM with constant weight (`B`) requiring `N` to be a multiple of register blocking while allows the static or dynamic sizes for the `M` (batch dim) of `A`. The `B` matrix would be prepacked. This is a typical setting for inference workloads. The template handles the thread decomposition (via `thread_blocking`) and cache blocking (via `cache_blocking`). Then it invokes `CppMicroGemm` which handles register blocking, instruction selection, and other CPU architecture-specific optimizations. A `CppMicroGemmFP32Vec` micro-kernel implementation is provided for fp32 matmuls implemented with ATen vec abstraction. 3. Correctness and performance The changes have been validated with fp32 inference on the three benchmark suites (torchbench, huggingface and timm_models) with both static shape and dynamic shapes. Since it is an initial implementation, we are still working on further performance improves with follow-up PRs including the optimizations in kernels as well as fusions. The perf gains are only observed from a selective number of models compared to the ATen kernels which are implemented with MKL. The perf gains are more obvious with dynamic shapes since MKL only supports packed gemm for static shapes. Below are details. Static shapes | Benchmark | torchbench | huggingface | timm_models | |------------|-------------|--------------|--------------| | Multi-threaded (baseline) | 1.47x | 1.36x | 1.91x | | Multi-threaded (max-autotune) | 1.47x | 1.36x | 1.92x | | Single-threaded (baseline) | 1.56x | 1.19x | 1.51x | | Single-threaded (max-autotune) | 1.56x | 1.19x | 1.52x | Key models being sped up: drq: 1.14x soft_act: 1.12 cait_m36_384: 1.18x Dynamic shapes | Benchmark | torchbench | huggingface | timm_models | | --- | --- | --- | --- | | Multi-threaded (baseline) | 1.43x | 1.28x | 1.85x | | Multi-threaded (max-autotune) | 1.47x | 1.28x | 1.85x | | Single-threaded (baseline) | 1.55x | 1.20x | 1.51x | | Single-threaded (max-autotune) | 1.56x | 1.19x | 1.53x | Key models being sped up: BERT_pytorch: 1.22x pyhpc_turbulent: 1.13x soft_actor_critic: 1.77x BlenderbotForCausalLM: 1.09x cait_m36_384: 1.17x Pull Request resolved: https://github.com/pytorch/pytorch/pull/124021 Approved by: https://github.com/jansel
1547 lines
47 KiB
Python
1547 lines
47 KiB
Python
from __future__ import annotations
|
|
|
|
import collections
|
|
import contextlib
|
|
import dataclasses
|
|
import enum
|
|
import functools
|
|
import inspect
|
|
import io
|
|
import itertools
|
|
import logging
|
|
import math
|
|
import operator
|
|
import os
|
|
import platform
|
|
import shutil
|
|
import sys
|
|
import tempfile
|
|
import textwrap
|
|
import time
|
|
import unittest
|
|
from datetime import datetime
|
|
from io import StringIO
|
|
from typing import (
|
|
Any,
|
|
Callable,
|
|
Dict,
|
|
Generic,
|
|
Iterable,
|
|
List,
|
|
NamedTuple,
|
|
Optional,
|
|
Protocol,
|
|
Set,
|
|
TypeVar,
|
|
Union,
|
|
ValuesView,
|
|
)
|
|
from unittest import mock
|
|
|
|
import sympy
|
|
from typing_extensions import Concatenate, ParamSpec
|
|
|
|
import torch
|
|
from torch._dynamo.device_interface import get_interface_for_device
|
|
from torch._dynamo.utils import detect_fake_mode
|
|
from torch.autograd import DeviceType
|
|
from torch.autograd.profiler_util import EventList
|
|
from torch.fx.passes.shape_prop import ShapeProp
|
|
from torch.utils._sympy.functions import CeilDiv, CleanDiv, FloorDiv, ModularIndexing
|
|
from torch.utils._sympy.symbol import make_symbol, SymT
|
|
from torch.utils._sympy.value_ranges import bound_sympy, ValueRanges
|
|
from . import config
|
|
from .runtime.runtime_utils import ceildiv as runtime_ceildiv
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
_T = TypeVar("_T")
|
|
VarRanges = Dict[sympy.Expr, sympy.Expr]
|
|
|
|
ALIGNMENT = 16
|
|
|
|
|
|
def do_bench_using_profiling(fn: Callable[[], Any], warmup=25, rep=100) -> float:
|
|
"""
|
|
Returns benchmark results by examining torch profiler events.
|
|
This could be more accurate as it doesn't count CPU side overhead.
|
|
However, this also requires manually excluding irrelevant event, e.g.
|
|
vectorized_elementwise_kernel which is used to fill L2 cache,
|
|
various CUDA events, etc, so could also be fragile.
|
|
"""
|
|
|
|
fn()
|
|
torch.cuda.synchronize()
|
|
cache = torch.empty(int(256e6 // 4), dtype=torch.int, device="cuda")
|
|
|
|
# Estimate the runtime of the function
|
|
start_event = torch.cuda.Event(enable_timing=True)
|
|
end_event = torch.cuda.Event(enable_timing=True)
|
|
start_event.record()
|
|
for _ in range(5):
|
|
cache.zero_()
|
|
fn()
|
|
end_event.record()
|
|
torch.cuda.synchronize()
|
|
estimate_ms = start_event.elapsed_time(end_event) / 5
|
|
|
|
# compute number of warmup and repeat
|
|
n_warmup = max(1, int(warmup / estimate_ms))
|
|
n_repeat = max(1, int(rep / estimate_ms))
|
|
|
|
# Warm-up
|
|
for _ in range(n_warmup):
|
|
fn()
|
|
|
|
with torch.profiler.profile(
|
|
activities=[
|
|
torch.profiler.ProfilerActivity.CUDA,
|
|
]
|
|
) as p:
|
|
# Benchmark
|
|
for i in range(n_repeat):
|
|
# we clear the L2 cache before each run
|
|
cache.zero_()
|
|
# record time of `fn`
|
|
fn()
|
|
# Record clocks
|
|
torch.cuda.synchronize()
|
|
|
|
log.debug("raw events")
|
|
log.debug(p.key_averages().table(sort_by="self_cuda_time_total", row_limit=-1))
|
|
|
|
filtered_events = EventList(
|
|
[
|
|
event
|
|
for event in p.events()
|
|
if event.device_type == DeviceType.CUDA and event.name != "Context Sync"
|
|
]
|
|
)
|
|
if len(filtered_events) % n_repeat != 0:
|
|
raise RuntimeError(
|
|
"Failed to divide all profiling events into #repeat groups. "
|
|
"#CUDA events: %d, #repeats: %s",
|
|
len(filtered_events),
|
|
n_repeat,
|
|
)
|
|
num_event_per_group = len(filtered_events) / n_repeat
|
|
actual_events = EventList(
|
|
[
|
|
event
|
|
for i, event in enumerate(filtered_events)
|
|
if i % num_event_per_group != 0
|
|
]
|
|
)
|
|
actual_events._build_tree()
|
|
actual_events = actual_events.key_averages()
|
|
|
|
log.debug("profiling time breakdown")
|
|
log.debug(actual_events.table(row_limit=-1))
|
|
|
|
res = sum(event.device_time_total for event in actual_events) / 1000.0 / n_repeat
|
|
log.debug("profiling results: %s ms", res)
|
|
return res
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def has_torchvision_roi_align() -> bool:
|
|
try:
|
|
from torchvision.ops import roi_align # noqa: F401
|
|
|
|
return roi_align is not None and hasattr(
|
|
getattr(torch.ops, "torchvision", None), "roi_align"
|
|
)
|
|
except ImportError:
|
|
return False
|
|
|
|
|
|
def decode_device(device: Union[Optional[torch.device], str]) -> torch.device:
|
|
if device is None:
|
|
return torch.tensor(0.0).device # default device
|
|
if isinstance(device, str):
|
|
device = torch.device(device)
|
|
if device.type not in ("cpu", "meta") and device.index is None:
|
|
device_interface = get_interface_for_device(device.type)
|
|
return torch.device(device.type, index=device_interface.Worker.current_device())
|
|
return device
|
|
|
|
|
|
def sympy_product(it):
|
|
return functools.reduce(operator.mul, it, sympy.Integer(1))
|
|
|
|
|
|
def sympy_dot(seq1, seq2):
|
|
assert len(seq1) == len(seq2)
|
|
return sympy.expand(sum(a * b for a, b in zip(seq1, seq2)))
|
|
|
|
|
|
def unique(it: Iterable[_T]) -> ValuesView[_T]:
|
|
return {id(x): x for x in it}.values()
|
|
|
|
|
|
def ceildiv(
|
|
numer: Union[int, sympy.Expr], denom: Union[int, sympy.Expr]
|
|
) -> Union[int, sympy.Expr]:
|
|
if isinstance(numer, sympy.Expr) or isinstance(denom, sympy.Expr):
|
|
return CeilDiv(numer, denom)
|
|
# TODO: There is a bug in a call to this function, to repro:
|
|
# python benchmarks/dynamo/huggingface.py --inductor -d cuda --accuracy
|
|
# --amp --only YituTechConvBert --dynamic-shapes
|
|
assert isinstance(numer, int) and isinstance(
|
|
denom, int
|
|
), f"{numer}: {type(numer)}, {denom}: {type(denom)}"
|
|
return runtime_ceildiv(numer, denom)
|
|
|
|
|
|
def _type_of(key):
|
|
# Use the function here to get rid of dependencies on the Triton during the codegen.
|
|
# Refer to Triton implementation here:
|
|
# https://github.com/openai/triton/blob/98b5945d2aef679e00ebca8e07c35c3658ec76de/python/triton/runtime/jit.py#L238
|
|
# `None` is nullptr. Implicitly convert to *i8.
|
|
if key is None:
|
|
return "*i8"
|
|
dtype_str = str(key).split(".")[-1]
|
|
tys = {
|
|
"bool": "i1",
|
|
"float8e4nv": "fp8e4nv",
|
|
"float8e5": "fp8e5",
|
|
"float8e4b15": "fp8e4b15",
|
|
"float8e4b15x4": "fp8e4b15x4",
|
|
"float8_e4m3fn": "fp8e4nv",
|
|
"float8_e5m2": "fp8e5",
|
|
"float16": "fp16",
|
|
"bfloat16": "bf16",
|
|
"float32": "fp32",
|
|
"float64": "fp64",
|
|
"int8": "i8",
|
|
"int16": "i16",
|
|
"int32": "i32",
|
|
"int64": "i64",
|
|
"uint8": "u8",
|
|
"uint16": "u16",
|
|
"uint32": "u32",
|
|
"uint64": "u64",
|
|
}
|
|
# reinterpret can create triton type
|
|
for v in list(tys.values()):
|
|
tys[v] = v
|
|
return key if isinstance(key, str) else f"*{tys[dtype_str]}"
|
|
|
|
|
|
def convert_shape_to_inductor(
|
|
lst: Iterable[Union[int, torch.SymInt]]
|
|
) -> List[sympy.Expr]:
|
|
"""
|
|
Gets the shape and stride of a tensor. For non-symbolic tensors, this is
|
|
trivial. But for symbolic tensors, we need to map from SymIntNode into
|
|
sympy.Expr.
|
|
"""
|
|
return [
|
|
i.node.expr if isinstance(i, torch.SymInt) else sympy.Integer(i) for i in lst
|
|
]
|
|
|
|
|
|
def convert_shape_to_symint(
|
|
lst: Iterable[Union[int, sympy.Expr]]
|
|
) -> List[Union[int, torch.SymInt]]:
|
|
"""
|
|
Takes a list of shapes from Inductor and converts them into symints (or just
|
|
ints if all shapes are static).
|
|
"""
|
|
from .virtualized import V
|
|
|
|
return [
|
|
i
|
|
if isinstance(i, int)
|
|
else int(i)
|
|
if isinstance(i, sympy.Integer)
|
|
else V.graph.sizevars.shape_env.create_symintnode(i, hint=None)
|
|
for i in lst
|
|
]
|
|
|
|
|
|
def is_view(op: torch._ops.OpOverload):
|
|
"""
|
|
Does this op overload have aliasing
|
|
"""
|
|
assert isinstance(op, torch._ops.OpOverload)
|
|
return any(a.alias_info is not None for a in op._schema.arguments)
|
|
|
|
|
|
def is_pointwise_use(use):
|
|
if not use.op == "call_function":
|
|
return False
|
|
|
|
if not (
|
|
isinstance(use.target, torch._ops.OpOverload) or use.target is operator.getitem
|
|
):
|
|
return False
|
|
|
|
if use.target is operator.getitem or is_view(use.target):
|
|
return all(is_pointwise_use(u) for u in use.users)
|
|
|
|
return torch.Tag.pointwise in use.target.tags
|
|
|
|
|
|
def gen_gm_and_inputs(target, args, kwargs):
|
|
g = torch.fx.Graph()
|
|
g_args = []
|
|
a_args = []
|
|
for n, arg in enumerate(args):
|
|
if isinstance(arg, torch.Tensor):
|
|
g_args.append(g.placeholder(f"arg{n}"))
|
|
a_args.append(arg)
|
|
else:
|
|
g_args.append(arg)
|
|
assert all(not isinstance(x, torch.Tensor) for x in kwargs.values())
|
|
node = g.call_function(target, tuple(g_args), kwargs)
|
|
if (
|
|
len(target._schema.returns) == 1
|
|
and str(target._schema.returns[0].type) == "Tensor"
|
|
):
|
|
node = (node,)
|
|
g.output(node)
|
|
|
|
gm = torch.fx.GraphModule({}, g)
|
|
return gm, a_args
|
|
|
|
|
|
def synchronize(device: str = "cuda"):
|
|
if device == "cpu":
|
|
return
|
|
device_interface = get_interface_for_device(device)
|
|
if device_interface.is_available():
|
|
device_interface.synchronize()
|
|
|
|
|
|
def timed(
|
|
model: Callable[..., Any], example_inputs, times: int = 1, device: str = "cuda"
|
|
) -> float:
|
|
synchronize(device)
|
|
torch.manual_seed(1337)
|
|
t0 = time.perf_counter()
|
|
for _ in range(times):
|
|
result = model(*example_inputs)
|
|
synchronize(device)
|
|
t1 = time.perf_counter()
|
|
# GC the result after timing
|
|
assert result is not None # type: ignore[possibly-undefined]
|
|
return t1 - t0
|
|
|
|
|
|
def print_performance(
|
|
fn, args=(), times=10, repeat=10, baseline=1.0, device: str = "cuda"
|
|
):
|
|
timings = torch.tensor([timed(fn, args, times, device) for _ in range(repeat)])
|
|
took = torch.median(timings) / times
|
|
print(f"{took/baseline:.6f}")
|
|
return took
|
|
|
|
|
|
def precompute_method(obj: Any, method: str):
|
|
"""Replace obj.method() with a new method that returns a precomputed constant."""
|
|
result = getattr(obj, method)()
|
|
setattr(obj, method, lambda: result)
|
|
|
|
|
|
def precompute_methods(obj: Any, methods: List[str]):
|
|
"""Replace methods with new methods that returns a precomputed constants."""
|
|
for method in methods:
|
|
precompute_method(obj, method)
|
|
|
|
|
|
def cmp(a, b) -> int:
|
|
return int(a > b) - int(a < b)
|
|
|
|
|
|
def pad_listlike(x, size):
|
|
if len(x) == 1:
|
|
return type(x)([x[0]]) * size
|
|
else:
|
|
return x
|
|
|
|
|
|
# Used to ensure that iterating over a set is deterministic
|
|
def tuple_sorted(x):
|
|
if len(x) == 0:
|
|
return []
|
|
|
|
def sort_func(elem):
|
|
if isinstance(elem, str):
|
|
return elem
|
|
else:
|
|
# We expect `elem` to be `scheduler.BaseSchedulerNode` type here,
|
|
# but we are not able to do isinstance assert because of circular dependency
|
|
return elem.get_name()
|
|
|
|
return sorted(x, key=sort_func)
|
|
|
|
|
|
P = ParamSpec("P")
|
|
RV = TypeVar("RV", covariant=True)
|
|
|
|
|
|
class CachedMethod(Generic[P, RV], Protocol):
|
|
@staticmethod
|
|
def clear_cache(self) -> None:
|
|
...
|
|
|
|
def __call__(self, *args: P.args, **kwargs: P.kwargs) -> RV:
|
|
...
|
|
|
|
|
|
# See https://github.com/python/mypy/issues/13222#issuecomment-1193073470 to understand the type signature
|
|
def cache_on_self(fn: Callable[Concatenate[Any, P], RV]) -> CachedMethod[P, RV]:
|
|
key = f"__{fn.__name__}_cache"
|
|
|
|
@functools.wraps(fn)
|
|
def wrapper(self):
|
|
if not hasattr(self, key):
|
|
setattr(self, key, fn(self))
|
|
return getattr(self, key)
|
|
|
|
def clear_cache(self):
|
|
if hasattr(self, key):
|
|
delattr(self, key)
|
|
|
|
wrapper.clear_cache = clear_cache # type: ignore[attr-defined]
|
|
return wrapper # type: ignore[return-value]
|
|
|
|
|
|
def aggregate_origins(node_schedule):
|
|
from . import ir
|
|
|
|
if isinstance(node_schedule, list):
|
|
return functools.reduce(
|
|
operator.or_,
|
|
[
|
|
node.node.origins
|
|
for node in node_schedule
|
|
if hasattr(node, "node") and node.node
|
|
],
|
|
set(),
|
|
)
|
|
elif isinstance(node_schedule, ir.ExternKernel):
|
|
return node_schedule.origins
|
|
else:
|
|
return set()
|
|
|
|
|
|
def get_fused_kernel_name(node_schedule, descriptive_names):
|
|
all_origins = aggregate_origins(node_schedule)
|
|
if descriptive_names == "original_aten":
|
|
# Bases the kernel name off of the top-level aten operator (i.e. pre-decompositions)
|
|
sources = [
|
|
origin.meta["original_aten"]._overloadpacket.__name__
|
|
for origin in all_origins
|
|
if origin.op == "call_function"
|
|
and "original_aten" in origin.meta
|
|
and origin.meta["original_aten"] is not None
|
|
]
|
|
sources = sorted(set(sources))
|
|
elif descriptive_names == "torch":
|
|
# Bases the kernel name off of the top-level "torch" operator (i.e. post-dynamo graph)
|
|
sources = []
|
|
for origin in all_origins:
|
|
if origin.op == "call_function" and "source_fn_stack" in origin.meta:
|
|
source_fn = origin.meta["source_fn_stack"][-1]
|
|
if isinstance(source_fn[1], str):
|
|
sources.append(source_fn[1])
|
|
else:
|
|
sources.append(source_fn[1].__name__)
|
|
sources = sorted(set(sources))
|
|
elif descriptive_names == "inductor_node":
|
|
sources = [
|
|
origin.name for origin in all_origins if origin.op == "call_function"
|
|
]
|
|
else:
|
|
raise NotImplementedError
|
|
sources = sources
|
|
return "_".join(["fused"] + sources)
|
|
|
|
|
|
def get_kernel_metadata(node_schedule, wrapper):
|
|
all_origins = aggregate_origins(node_schedule)
|
|
inductor_nodes = [origin for origin in all_origins if origin.op == "call_function"]
|
|
|
|
from_node_dict = collections.defaultdict(list)
|
|
original_aten_dict = collections.defaultdict(list)
|
|
for node in inductor_nodes:
|
|
if "original_aten" in node.meta and node.meta["original_aten"] is not None:
|
|
key = str(node.meta["original_aten"]._overloadpacket)
|
|
original_aten_dict[key].append(node.name)
|
|
if "from_node" in node.meta:
|
|
key = node.meta["from_node"][0][0]
|
|
from_node_dict[key].append(node.name)
|
|
metadata = (
|
|
f"{wrapper.comment} Source Nodes: [{', '.join(sorted(from_node_dict.keys()))}], "
|
|
f"Original ATen: [{', '.join(sorted(original_aten_dict.keys()))}]"
|
|
)
|
|
# trace back to original node here
|
|
detailed_metadata = []
|
|
for original_node, nodes in sorted(from_node_dict.items()):
|
|
detailed_metadata.append(
|
|
f"{wrapper.comment} {original_node} => {', '.join(sorted(nodes))}"
|
|
)
|
|
return metadata, "\n".join(detailed_metadata)
|
|
|
|
|
|
def dominated_nodes(
|
|
initial_queue: Iterable[torch.fx.Node], skip_filter=None
|
|
) -> Set[torch.fx.Node]:
|
|
"""Returns the set of nodes whose values depend on those within initial_queue"""
|
|
initial_queue = list(initial_queue)
|
|
dominated_set = set(initial_queue)
|
|
|
|
while initial_queue:
|
|
node = initial_queue.pop()
|
|
for user in node.users:
|
|
if skip_filter and skip_filter(user):
|
|
continue
|
|
if user not in dominated_set:
|
|
dominated_set.add(user)
|
|
initial_queue.append(user)
|
|
|
|
return dominated_set
|
|
|
|
|
|
def gather_origins(args, kwargs):
|
|
import itertools
|
|
|
|
from . import ir
|
|
|
|
def is_unrealized_node(n):
|
|
if isinstance(n, ir.TensorBox):
|
|
return is_unrealized_node(n.data)
|
|
if isinstance(n, ir.StorageBox):
|
|
return is_unrealized_node(n.data)
|
|
return isinstance(n, ir.IRNode) and isinstance(n, ir.Pointwise)
|
|
|
|
kwarg_origins = [val.origins for val in kwargs.values() if is_unrealized_node(val)]
|
|
arg_origins = [arg.origins for arg in args if is_unrealized_node(arg)]
|
|
return set(itertools.chain(*arg_origins, *kwarg_origins))
|
|
|
|
|
|
def sympy_str(expr: sympy.Expr) -> str:
|
|
"""
|
|
Normal sympy str is very slow, this is a lot faster. The result are
|
|
somewhat worse, as it doesn't do as much simplification. So don't
|
|
use this for final codegen.
|
|
"""
|
|
if isinstance(expr, sympy.Symbol):
|
|
return expr.name
|
|
if isinstance(expr, sympy.Add):
|
|
return " + ".join(map(sympy_str, expr.args))
|
|
if isinstance(expr, sympy.Mul):
|
|
return " * ".join(map(sympy_str, expr.args))
|
|
|
|
if isinstance(expr, (ModularIndexing, CleanDiv, FloorDiv)):
|
|
return f"{expr.func.__name__}({', '.join(map(sympy_str, expr.args))})"
|
|
return str(expr)
|
|
|
|
|
|
def get_bounds_index_expr(index):
|
|
from .virtualized import V
|
|
|
|
# If this expression does not come from an FX node, we compute its bounds
|
|
if (
|
|
config.compute_all_bounds
|
|
and (fx_node := getattr(V.interpreter, "current_node", None))
|
|
and fx_node.target != "index_expr"
|
|
):
|
|
return bound_sympy(index)
|
|
else:
|
|
return ValueRanges.unknown()
|
|
|
|
|
|
def sympy_index_symbol_with_prefix(prefix: SymT, idx: int) -> sympy.Symbol:
|
|
"""
|
|
Used to generate an integer-nonnegative symbol.
|
|
"""
|
|
# This should never be used for creating shape/stride symbols, as those
|
|
# should all be allocated before Inductor.
|
|
assert prefix != SymT.SIZE
|
|
# NOTE: shape symbols are positive (> 0), but index variables are only
|
|
# non-negative (>= 0).
|
|
return make_symbol(prefix, idx, integer=True, nonnegative=True)
|
|
|
|
|
|
def sympy_index_symbol(name: str) -> sympy.Symbol:
|
|
"""
|
|
Used to generate an integer-nonnegative symbol.
|
|
"""
|
|
# This should never be used for creating shape/stride symbols, as those
|
|
# should all be allocated before Inductor.
|
|
assert name[0] != "s"
|
|
# NOTE: shape symbols are positive (> 0), but index variables are only
|
|
# non-negative (>= 0).
|
|
return sympy.Symbol(name, integer=True, nonnegative=True)
|
|
|
|
|
|
def sympy_subs(expr: sympy.Expr, replacements: Dict[sympy.Expr, Any]) -> sympy.Expr:
|
|
"""
|
|
When the passed replacement symbol v is a string, it is converted to a symbol with name v that
|
|
have the same replaced expression integer and nonnegative properties.
|
|
"""
|
|
|
|
def to_symbol(replaced, replacement):
|
|
assert isinstance(replaced, sympy.Expr)
|
|
if isinstance(replacement, str):
|
|
return sympy.Symbol(
|
|
replacement,
|
|
integer=replaced.is_integer, # type: ignore[attr-defined]
|
|
nonnegative=replaced.is_nonnegative, # type: ignore[attr-defined]
|
|
)
|
|
else:
|
|
return replacement
|
|
|
|
# xreplace is faster than subs, but is way more picky
|
|
return sympy.sympify(expr).xreplace(
|
|
{k: to_symbol(k, v) for k, v in replacements.items()}
|
|
)
|
|
|
|
|
|
def is_symbolic(a: Any) -> bool:
|
|
return isinstance(a, torch.SymInt) or (
|
|
isinstance(a, torch.Tensor)
|
|
and any(is_symbolic(x) for x in itertools.chain(a.size(), a.stride()))
|
|
)
|
|
|
|
|
|
def any_is_symbolic(*args: Any) -> bool:
|
|
return any(is_symbolic(a) for a in args)
|
|
|
|
|
|
def get_first_incompatible_cudagraph_node(gm):
|
|
from torch.fx.experimental.symbolic_shapes import free_unbacked_symbols
|
|
|
|
forbidden_set = {
|
|
"aten._fused_moving_avg_obs_fq_helper.default",
|
|
"aten._fused_moving_avg_obs_fq_helper_functional.default",
|
|
"aten.multinomial.default",
|
|
"fbgemm.dense_to_jagged.default",
|
|
"fbgemm.jagged_to_padded_dense.default",
|
|
"run_and_save_rng_state",
|
|
"run_with_rng_state",
|
|
"aten._local_scalar_dense",
|
|
# Technically, it's not necessary to ban this, because an
|
|
# assert_scalar with constant arguments can be validly run
|
|
# with CUDA graphs, but the operator is also pointless with
|
|
# constant arguments, so might as well ban
|
|
"aten._assert_scalar",
|
|
}
|
|
if torch.are_deterministic_algorithms_enabled():
|
|
forbidden_set.update(
|
|
{
|
|
"aten._unsafe_index_put.default",
|
|
"aten.index_put.default",
|
|
"aten.index_put_.default",
|
|
"aten.scatter.src",
|
|
"aten.scatter.reduce",
|
|
"aten.scatter.value_reduce",
|
|
"aten.scatter_add_",
|
|
"aten.scatter_add.default",
|
|
"aten.scatter_reduce.two",
|
|
"aten.scatter_reduce_.two",
|
|
"aten.scatter_reduce.two_out",
|
|
}
|
|
)
|
|
for node in gm.graph.nodes:
|
|
if str(node.target) in forbidden_set:
|
|
return node
|
|
if (val := node.meta.get("val")) is not None and free_unbacked_symbols(val):
|
|
return node
|
|
return None
|
|
|
|
|
|
def has_incompatible_cudagraph_ops(gm):
|
|
return get_first_incompatible_cudagraph_node(gm) is not None
|
|
|
|
|
|
def output_node(gm: torch.fx.GraphModule):
|
|
"""Get the output node from an FX graph"""
|
|
last_node = next(iter(reversed(gm.graph.nodes)))
|
|
assert last_node.op == "output"
|
|
return last_node
|
|
|
|
|
|
_registered_caches: List[Any] = []
|
|
|
|
|
|
def clear_on_fresh_inductor_cache(obj: Any):
|
|
"""
|
|
Use this decorator to register any caches that should be cache_clear'd
|
|
with fresh_inductor_cache().
|
|
"""
|
|
if not hasattr(obj, "cache_clear") or not callable(obj.cache_clear):
|
|
raise AttributeError(f"{obj} does not have a cache_clear method")
|
|
|
|
_registered_caches.append(obj)
|
|
return obj
|
|
|
|
|
|
def clear_inductor_caches():
|
|
"""
|
|
Clear all registered caches.
|
|
"""
|
|
for obj in _registered_caches:
|
|
obj.cache_clear()
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def fresh_inductor_cache(cache_entries=None):
|
|
"""
|
|
Contextmanager that provides a clean tmp cachedir for inductor.
|
|
|
|
Optionally, pass a dict as 'cache_entries' to get a list of filenames and sizes
|
|
generated with this cache instance.
|
|
"""
|
|
clear_inductor_caches()
|
|
|
|
inductor_cache_dir = tempfile.mkdtemp()
|
|
try:
|
|
with mock.patch.dict(
|
|
os.environ, {"TORCHINDUCTOR_CACHE_DIR": inductor_cache_dir}
|
|
):
|
|
triton_cache_dir = os.path.join(inductor_cache_dir, "triton")
|
|
with mock.patch.dict(os.environ, {"TRITON_CACHE_DIR": triton_cache_dir}):
|
|
yield
|
|
if isinstance(cache_entries, dict):
|
|
assert len(cache_entries) == 0, "expected empty cache_entries dict"
|
|
if os.path.exists(triton_cache_dir):
|
|
files = os.listdir(triton_cache_dir)
|
|
cache_entries.update(
|
|
{
|
|
f: os.path.getsize(os.path.join(triton_cache_dir, f))
|
|
for f in files
|
|
if ".lock" not in f
|
|
}
|
|
)
|
|
shutil.rmtree(inductor_cache_dir)
|
|
except Exception:
|
|
log.warning("on error, temporary cache dir kept at %s", inductor_cache_dir)
|
|
raise
|
|
|
|
|
|
def argsort(seq) -> List[int]:
|
|
# preserve original order for equal strides
|
|
getter = seq.__getitem__
|
|
a_r = range(len(seq))
|
|
return list(reversed(sorted(a_r, key=getter, reverse=True))) # noqa: C413
|
|
|
|
|
|
@functools.lru_cache(8)
|
|
def get_dtype_size(dtype):
|
|
return torch.empty((), dtype=dtype).element_size()
|
|
|
|
|
|
class LineContext(NamedTuple):
|
|
context: Any
|
|
|
|
|
|
class IndentedBuffer:
|
|
tabwidth = 4
|
|
|
|
def __init__(self, initial_indent=0):
|
|
self._lines = []
|
|
self._indent = initial_indent
|
|
|
|
def getvaluewithlinemap(self) -> tuple[str, list[tuple[int, LineContext]]]:
|
|
buf = StringIO()
|
|
p = 1
|
|
linemap = []
|
|
for line in self._lines:
|
|
if isinstance(line, DeferredLineBase):
|
|
line = line()
|
|
if line is None:
|
|
continue
|
|
elif isinstance(line, LineContext):
|
|
linemap.append((p, line.context))
|
|
continue
|
|
assert isinstance(line, str)
|
|
buf.write(line)
|
|
buf.write("\n")
|
|
p += 1 + line.count("\n")
|
|
return buf.getvalue(), linemap
|
|
|
|
def getvalue(self) -> str:
|
|
v, _ = self.getvaluewithlinemap()
|
|
return v
|
|
|
|
def getrawvalue(self) -> str:
|
|
buf = StringIO()
|
|
for line in self._lines:
|
|
if isinstance(line, DeferredLineBase):
|
|
line = line()
|
|
if line is None:
|
|
continue
|
|
elif isinstance(line, LineContext):
|
|
continue
|
|
assert isinstance(line, str)
|
|
# backslash implies line continuation
|
|
if line.endswith("\\"):
|
|
buf.write(line[:-1])
|
|
else:
|
|
buf.write(line)
|
|
buf.write("\n")
|
|
return buf.getvalue()
|
|
|
|
def clear(self):
|
|
self._lines.clear()
|
|
|
|
def __bool__(self):
|
|
return bool(self._lines)
|
|
|
|
def prefix(self):
|
|
return " " * (self._indent * self.tabwidth)
|
|
|
|
def newline(self):
|
|
self.writeline("\n")
|
|
|
|
def writeline(self, line):
|
|
if isinstance(line, LineContext):
|
|
self._lines.append(line)
|
|
elif isinstance(line, DeferredLineBase):
|
|
self._lines.append(line.with_prefix(self.prefix()))
|
|
elif line.strip():
|
|
self._lines.append(f"{self.prefix()}{line}")
|
|
else:
|
|
self._lines.append("")
|
|
|
|
def writelines(self, lines):
|
|
for line in lines:
|
|
self.writeline(line)
|
|
|
|
def indent(self, offset=1):
|
|
@contextlib.contextmanager
|
|
def ctx():
|
|
self._indent += offset
|
|
try:
|
|
yield
|
|
finally:
|
|
self._indent -= offset
|
|
|
|
return ctx()
|
|
|
|
def do_indent(self, offset=1):
|
|
self._indent += offset
|
|
|
|
def do_unindent(self, offset=1):
|
|
self._indent -= offset
|
|
|
|
def splice(self, other_code, strip=False):
|
|
if isinstance(other_code, IndentedBuffer):
|
|
dedent = float("inf")
|
|
for line in other_code._lines:
|
|
if not isinstance(line, LineContext) and line:
|
|
dedent = min(dedent, len(line) - len(line.lstrip()))
|
|
if math.isinf(dedent):
|
|
dedent = 0
|
|
for line in other_code._lines:
|
|
if isinstance(line, LineContext):
|
|
self._lines.append(line)
|
|
else:
|
|
IndentedBuffer.writeline(self, line[int(dedent) :])
|
|
else:
|
|
other_code = textwrap.dedent(other_code)
|
|
if strip:
|
|
other_code = other_code.lstrip()
|
|
if not other_code:
|
|
return
|
|
other_code = other_code.rstrip()
|
|
for line in other_code.split("\n"):
|
|
self.writeline(line)
|
|
|
|
def map(self, func: Callable[[Any], Any]) -> IndentedBuffer:
|
|
res = IndentedBuffer(initial_indent=self._indent)
|
|
res._lines = [func(line) for line in self._lines]
|
|
return res
|
|
|
|
def __repr__(self):
|
|
return f"{type(self)}({self.getvalue()})"
|
|
|
|
def __add__(self, other):
|
|
assert self._indent == other._indent
|
|
res = IndentedBuffer(initial_indent=self._indent)
|
|
res.writelines(self._lines)
|
|
res.writelines(other._lines)
|
|
return res
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def restore_stdout_stderr(initial_stdout, initial_stderr):
|
|
try:
|
|
yield
|
|
finally:
|
|
sys.stdout = initial_stdout
|
|
sys.stderr = initial_stderr
|
|
|
|
|
|
class DeferredLineBase:
|
|
"""A line that can be 'unwritten' at a later time"""
|
|
|
|
def __init__(self, line):
|
|
if not line.strip():
|
|
line = ""
|
|
self.line = line
|
|
|
|
def __call__(self) -> Optional[str]:
|
|
"""Returns either self.line or None to indicate the line has been 'unwritten'"""
|
|
raise NotImplementedError
|
|
|
|
def _new_line(self, line: str) -> DeferredLineBase:
|
|
"""Returns a new deferred line with the same condition"""
|
|
raise NotImplementedError
|
|
|
|
def with_prefix(self, prefix):
|
|
return self._new_line(f"{prefix}{self.line}")
|
|
|
|
def lstrip(self):
|
|
return self._new_line(self.line.lstrip())
|
|
|
|
def __getitem__(self, index):
|
|
return self._new_line(self.line[index])
|
|
|
|
def __bool__(self):
|
|
return bool(self.line)
|
|
|
|
def __len__(self):
|
|
return len(self.line)
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def is_big_gpu(index) -> bool:
|
|
min_sms = 68 # 3080
|
|
avail_sms = torch.cuda.get_device_properties(index).multi_processor_count
|
|
if avail_sms < min_sms:
|
|
log.warning(
|
|
"Not enough SMs to use max_autotune_gemm mode",
|
|
extra={"min_sms": min_sms, "avail_sms": avail_sms},
|
|
)
|
|
return False
|
|
return True
|
|
|
|
|
|
def use_max_autotune() -> bool:
|
|
return (
|
|
config.max_autotune or config.max_autotune_gemm or config.search_autotune_cache
|
|
)
|
|
|
|
|
|
def _use_template_for_cuda(layout, allowed_layout_dtypes: List[torch.dtype]) -> bool:
|
|
return (
|
|
use_max_autotune()
|
|
and layout.device.type == "cuda"
|
|
and layout.dtype in allowed_layout_dtypes
|
|
and is_big_gpu(layout.device.index or 0)
|
|
)
|
|
|
|
|
|
def _use_autotune_backend(backend: str) -> bool:
|
|
return backend.upper() in [
|
|
x.strip() for x in config.max_autotune_gemm_backends.upper().split(",")
|
|
]
|
|
|
|
|
|
def use_triton_template(layout, *, enable_int32=False):
|
|
layout_dtypes = [torch.float16, torch.bfloat16, torch.float32]
|
|
if enable_int32:
|
|
layout_dtypes = [torch.float16, torch.bfloat16, torch.float32, torch.int32]
|
|
return _use_template_for_cuda(layout, layout_dtypes) and _use_autotune_backend(
|
|
"TRITON"
|
|
)
|
|
|
|
|
|
def use_cutlass_template(layout, m, n, k):
|
|
from .virtualized import V
|
|
|
|
gemm_size = V.graph.sizevars.size_hint(m * n * k, fallback=-1)
|
|
if gemm_size <= 0 or gemm_size < config.cuda.cutlass_backend_min_gemm_size:
|
|
return False
|
|
from .codegen.cuda.cutlass_utils import try_import_cutlass
|
|
|
|
# Do not use cutlass template on ROCm
|
|
if torch.version.hip:
|
|
return False
|
|
|
|
layout_dtypes = [torch.float16, torch.bfloat16, torch.float32, torch.int32]
|
|
res = _use_template_for_cuda(layout, layout_dtypes) and _use_autotune_backend(
|
|
"CUTLASS"
|
|
)
|
|
|
|
if res:
|
|
if not try_import_cutlass():
|
|
log.warning(
|
|
"Failed to import CUTLASS lib. Please check whether "
|
|
"_inductor.config.cuda.cutlass_dir is set correctly. "
|
|
"Skipping CUTLASS backend for now."
|
|
)
|
|
return False
|
|
return res
|
|
|
|
|
|
def _use_template_for_cpu(layout):
|
|
return use_max_autotune() and layout.device.type == "cpu"
|
|
|
|
|
|
def use_cpp_packed_gemm_template(layout, mat1, mat2):
|
|
from . import ir
|
|
from .codegen.cpp_micro_gemm import create_micro_gemm
|
|
from .kernel.mm_common import mm_args
|
|
|
|
if not _use_template_for_cpu(layout) or not _use_autotune_backend("CPP"):
|
|
return False
|
|
|
|
if not config.cpp.weight_prepack:
|
|
return False
|
|
|
|
layout_dtypes = [torch.float32]
|
|
m, n, k, layout, mat1, mat2 = mm_args(mat1, mat2)
|
|
# TODO(jgong5): support dynamic shapes for n or k
|
|
if has_free_symbols((n, k)):
|
|
return False
|
|
if isinstance(mat2, ir.BaseView):
|
|
mat2 = mat2.unwrap_view()
|
|
micro_gemm = create_micro_gemm(
|
|
"micro_gemm", m, n, k, layout.dtype, num_threads=parallel_num_threads()
|
|
)
|
|
# TODO(jgong5): support n % n_block_size != 0
|
|
return (
|
|
layout.dtype in layout_dtypes
|
|
and micro_gemm is not None
|
|
and n % micro_gemm.register_blocking[1] == 0
|
|
and mat1.get_stride()[-1] == 1 # TODO(jgong5): support transposed input
|
|
and isinstance(mat2, ir.StorageBox)
|
|
and mat2.is_module_buffer()
|
|
)
|
|
|
|
|
|
def use_aten_gemm_kernels():
|
|
return not use_max_autotune() or _use_autotune_backend("ATEN")
|
|
|
|
|
|
class DebugDirManager:
|
|
counter = itertools.count(0)
|
|
prev_debug_name: str
|
|
|
|
def __init__(self):
|
|
self.id = next(DebugDirManager.counter)
|
|
|
|
def __enter__(self):
|
|
self.prev_debug_name = torch._dynamo.config.debug_dir_root
|
|
self.new_name = f"{self.prev_debug_name}_tmp_{self.id}"
|
|
torch._dynamo.config.debug_dir_root = self.new_name
|
|
|
|
def __exit__(self, *args):
|
|
shutil.rmtree(self.new_name)
|
|
torch._dynamo.config.debug_dir_root = self.prev_debug_name
|
|
|
|
|
|
def run_and_get_code(fn, *args, **kwargs):
|
|
from .graph import GraphLowering
|
|
|
|
compile_to_module = GraphLowering.compile_to_module
|
|
source_codes: List[str] = []
|
|
|
|
def patched_compile_to_module(self):
|
|
mod = compile_to_module(self)
|
|
with open(mod.__file__) as f:
|
|
source_codes.append(f.read())
|
|
return mod
|
|
|
|
# If FX code caching is enabled, a hit prevents getting the code.
|
|
with config.patch({"fx_graph_cache": False}):
|
|
with mock.patch.object(
|
|
GraphLowering, "compile_to_module", patched_compile_to_module
|
|
):
|
|
torch._dynamo.reset()
|
|
result = fn(*args, **kwargs)
|
|
return result, source_codes
|
|
|
|
|
|
def get_code(fn, *args, **kwargs):
|
|
"""Get the inductor-generated code, but skip any actual compilation or running."""
|
|
from .graph import GraphLowering
|
|
|
|
source_codes: List[str] = []
|
|
|
|
def patched_compile_to_module(self: GraphLowering):
|
|
class DummyModule:
|
|
"""This is empty to replace the generated triton module"""
|
|
|
|
def __init__(self):
|
|
pass
|
|
|
|
def call(self, *args, **kwargs):
|
|
# Don't do anything when called
|
|
pass
|
|
|
|
code, _ = (
|
|
self.codegen_with_cpp_wrapper() if self.cpp_wrapper else self.codegen()
|
|
)
|
|
# Skip all the actual compiling.
|
|
|
|
source_codes.append(code)
|
|
return DummyModule()
|
|
|
|
# If FX code caching is enabled, a hit prevents getting the code.
|
|
with config.patch({"fx_graph_cache": False}):
|
|
with mock.patch.object(
|
|
GraphLowering, "compile_to_module", patched_compile_to_module
|
|
):
|
|
torch._dynamo.reset()
|
|
# Note the return here is None
|
|
_ = fn(*args, **kwargs)
|
|
|
|
return source_codes
|
|
|
|
|
|
def get_triton_code(fn, *args, **kwargs):
|
|
source_codes = get_code(fn, *args, **kwargs)
|
|
# Can have two outputs if backwards was eagerly compiled
|
|
assert (
|
|
1 <= len(source_codes) <= 2
|
|
), f"expected one or two code outputs got {len(source_codes)}"
|
|
return source_codes[0]
|
|
|
|
|
|
def run_and_get_triton_code(fn, *args, **kwargs):
|
|
_, source_codes = run_and_get_code(fn, *args, **kwargs)
|
|
# Can have two outputs if backwards was eagerly compiled
|
|
assert (
|
|
1 <= len(source_codes) <= 2
|
|
), f"expected one or two code outputs got {len(source_codes)}"
|
|
return source_codes[0]
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def override_lowering(aten_op, override_fn):
|
|
"""
|
|
Override the lowering of aten_op with override_fn.
|
|
The first argument of override_fn is the original lowering fn.
|
|
"""
|
|
from torch._inductor import lowering
|
|
|
|
orig_fn = lowering.lowerings[aten_op]
|
|
try:
|
|
lowering.lowerings[aten_op] = functools.partial(override_fn, orig_fn)
|
|
yield
|
|
finally:
|
|
lowering.lowerings[aten_op] = orig_fn
|
|
|
|
|
|
def add_scheduler_init_hook(pre_fn, post_fn=None):
|
|
"""
|
|
Add hook functions to be called at the beginning and end of Scheduler.__init__.
|
|
Used for unit tests.
|
|
"""
|
|
from torch._inductor.scheduler import Scheduler
|
|
|
|
orig_fn = Scheduler.__init__
|
|
|
|
def wrapper(scheduler, nodes):
|
|
pre_fn(scheduler, nodes)
|
|
out = orig_fn(scheduler, nodes)
|
|
if post_fn:
|
|
post_fn(scheduler, nodes)
|
|
return out
|
|
|
|
return unittest.mock.patch.object(Scheduler, "__init__", wrapper)
|
|
|
|
|
|
def developer_warning(msg):
|
|
"""
|
|
Warnings that will be actionable for PyTorch developers, but not
|
|
end users. Allows us to easily disable them in stable releases but
|
|
keep them on for nightly builds.
|
|
"""
|
|
if config.developer_warnings:
|
|
log.warning(msg)
|
|
else:
|
|
log.info(msg)
|
|
|
|
|
|
def get_benchmark_name():
|
|
"""
|
|
An experimental API used only when config.benchmark_kernel is true.
|
|
|
|
The benchmark name is only available at codegen time. So we can not
|
|
directly call it in benchmark_all_kernels which is run after codegen.
|
|
|
|
The function assumes the argument after --only is the benchmark name.
|
|
It works for torchbench.py/hugginface.py/timm_models.py. But for ad-hoc
|
|
scripts, this function may return None.
|
|
|
|
There are 2 flavors of --only argument we need handle:
|
|
1. --only model_name
|
|
2. --only=model_name
|
|
"""
|
|
try:
|
|
idx = sys.argv.index("--only")
|
|
if (
|
|
idx + 1 < len(sys.argv)
|
|
and len(sys.argv[idx + 1]) > 0
|
|
and sys.argv[idx + 1][0] != "-"
|
|
):
|
|
return sys.argv[idx + 1]
|
|
except ValueError:
|
|
pass
|
|
|
|
for arg in sys.argv:
|
|
if arg.startswith("--only="):
|
|
return arg[len("--only=") :]
|
|
|
|
|
|
def is_ones(items):
|
|
return all(x == 1 for x in items)
|
|
|
|
|
|
def is_zeros(items):
|
|
return all(x == 0 for x in items)
|
|
|
|
|
|
def is_cpu_device(inputs):
|
|
return all(
|
|
item.device == torch.device("cpu")
|
|
for item in inputs
|
|
if isinstance(item, torch.Tensor)
|
|
)
|
|
|
|
|
|
def get_sympy_Expr_dtype(val: sympy.Expr) -> torch.dtype:
|
|
assert isinstance(
|
|
val, sympy.Expr
|
|
), "only support sympy.Expr as input to get_sympy_Expr_dtype"
|
|
if val.is_integer: # type: ignore[attr-defined]
|
|
return torch.int64
|
|
else:
|
|
return torch.float64
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def maybe_profile(should_profile, *args, **kwargs):
|
|
if should_profile:
|
|
with torch.profiler.profile(*args, **kwargs) as p:
|
|
yield p
|
|
else:
|
|
yield
|
|
|
|
|
|
def parallel_num_threads():
|
|
threads = config.cpp.threads
|
|
if threads < 1:
|
|
threads = torch.get_num_threads()
|
|
return threads
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def get_device_tflops(dtype):
|
|
from triton.testing import get_max_simd_tflops, get_max_tensorcore_tflops
|
|
|
|
assert dtype in (torch.float16, torch.bfloat16, torch.float32)
|
|
|
|
if inspect.signature(get_max_simd_tflops).parameters.get("clock_rate"):
|
|
# Triton API change in https://github.com/openai/triton/pull/2293
|
|
from torch._utils_internal import max_clock_rate
|
|
|
|
sm_clock = max_clock_rate()
|
|
if dtype in (torch.float16, torch.bfloat16):
|
|
return get_max_tensorcore_tflops(dtype, sm_clock)
|
|
|
|
if torch.backends.cuda.matmul.allow_tf32:
|
|
return get_max_tensorcore_tflops(torch.float32, sm_clock)
|
|
else:
|
|
return get_max_simd_tflops(torch.float32, sm_clock)
|
|
else:
|
|
if dtype in (torch.float16, torch.bfloat16):
|
|
return get_max_tensorcore_tflops(dtype)
|
|
|
|
if torch.backends.cuda.matmul.allow_tf32:
|
|
return get_max_tensorcore_tflops(torch.float32)
|
|
else:
|
|
return get_max_simd_tflops(torch.float32)
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def get_gpu_dram_gbps():
|
|
from triton.testing import get_dram_gbps
|
|
|
|
return get_dram_gbps()
|
|
|
|
|
|
def get_gpu_shared_memory():
|
|
from triton.runtime import driver
|
|
|
|
return driver.active.utils.get_device_properties(0).get("max_shared_mem", 0)
|
|
|
|
|
|
def is_welford_reduction(reduction_type):
|
|
return reduction_type.startswith("welford")
|
|
|
|
|
|
def reduction_num_outputs(reduction_type):
|
|
return 3 if is_welford_reduction(reduction_type) else 1
|
|
|
|
|
|
def is_linux() -> bool:
|
|
return platform.system() == "Linux"
|
|
|
|
|
|
def has_free_symbols(itr: Iterable[Any]):
|
|
return any(isinstance(x, sympy.Expr) and not x.is_number for x in itr)
|
|
|
|
|
|
def is_dynamic(*args):
|
|
from . import ir
|
|
|
|
for t in args:
|
|
if isinstance(t, ir.TensorBox):
|
|
if has_free_symbols(t.data.get_size()) or (
|
|
hasattr(t.data, "get_stride") and has_free_symbols(t.data.get_stride())
|
|
):
|
|
return True
|
|
elif isinstance(t, (ir.StorageBox, ir.BaseView, ir.ComputedBuffer)):
|
|
assert hasattr(t, "get_size") and hasattr(t, "get_stride")
|
|
if has_free_symbols(t.get_size()) or has_free_symbols(t.get_stride()):
|
|
return True
|
|
elif not isinstance(t, ir.IRNode):
|
|
continue
|
|
else:
|
|
raise TypeError(f"unexpected type for is_dynamic {type(t)}")
|
|
|
|
return False
|
|
|
|
|
|
# Placeholder strings used in triton codegen.
|
|
class Placeholder(enum.Enum):
|
|
# The placeholder for the actual name of a triton kernel.
|
|
# e.g. for "def triton_" it would be "triton_"
|
|
KERNEL_NAME = "KERNEL_NAME"
|
|
|
|
# The descriptive name of the triton kernel; when unique_kernel_names = False, this
|
|
# placeholder will be replaced with a string with more information.
|
|
DESCRIPTIVE_NAME = "DESCRIPTIVE_NAME"
|
|
|
|
|
|
def pass_execution_and_save(func, gm, inp, msg):
|
|
from .pattern_matcher import stable_topological_sort
|
|
|
|
with tempfile.NamedTemporaryFile(
|
|
mode="w",
|
|
encoding="utf-8",
|
|
delete=False,
|
|
) as f:
|
|
before_io = io.StringIO()
|
|
after_io = io.StringIO()
|
|
ShapeProp(gm=gm, fake_mode=detect_fake_mode(inp)).propagate(*inp)
|
|
print(f"Before:\n{gm.graph}", file=f)
|
|
print(gm.graph, file=before_io)
|
|
start_time = datetime.now()
|
|
func(gm.graph)
|
|
time_elapsed = datetime.now() - start_time
|
|
# recompile graph
|
|
stable_topological_sort(gm.graph)
|
|
gm.graph.lint()
|
|
gm.recompile()
|
|
|
|
print(f"After:\n{gm.graph}", file=f)
|
|
print(gm.graph, file=after_io)
|
|
t = before_io.getvalue() == after_io.getvalue()
|
|
log.info(
|
|
"%s, save before/after graph to %s, graph before/after are the same = %s, time elapsed = %s",
|
|
msg,
|
|
f.name,
|
|
t,
|
|
time_elapsed,
|
|
)
|
|
|
|
|
|
def is_collective(node):
|
|
from . import ir
|
|
|
|
return type(node) == ir._CollectiveKernel
|
|
|
|
|
|
def is_wait(node):
|
|
from . import ir
|
|
|
|
return type(node) == ir._WaitKernel
|
|
|
|
|
|
def num_fw_fixed_arguments(dynamo_gm_num_inputs: int, aot_fw_gm_num_inputs: int):
|
|
"Computes the number of inputs to the aot fw graph which have fixed addresses (params and buffers)"
|
|
num_rng_seed_offset_inputs = (
|
|
2 if torch._functorch.config.functionalize_rng_ops else 0
|
|
)
|
|
return aot_fw_gm_num_inputs - dynamo_gm_num_inputs - num_rng_seed_offset_inputs
|
|
|
|
|
|
def count_tangents(fx_g: torch.fx.GraphModule):
|
|
"""
|
|
Infers which inputs are static for a backwards graph
|
|
"""
|
|
|
|
def is_saved_tensor(x):
|
|
return (
|
|
"tangents" not in x.name
|
|
and "bwd_seed" not in x.name
|
|
and "bwd_base_offset" not in x.name
|
|
)
|
|
|
|
arg_count = 0
|
|
static_arg_idxs = []
|
|
for n in fx_g.graph.nodes:
|
|
if n.op == "placeholder":
|
|
if is_saved_tensor(n):
|
|
static_arg_idxs.append(arg_count)
|
|
arg_count += 1
|
|
|
|
assert static_arg_idxs == list(range(len(static_arg_idxs)))
|
|
return len(static_arg_idxs)
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class BoxedBool:
|
|
value: bool
|
|
|
|
def __bool__(self):
|
|
return self.value
|
|
|
|
@staticmethod
|
|
def disable(obj):
|
|
if isinstance(obj, BoxedBool):
|
|
obj.value = False
|
|
return obj
|
|
return False
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def collect_defined_kernels(kernel_list):
|
|
from .codegen.wrapper import WrapperCodeGen
|
|
|
|
orig_define_kernel = WrapperCodeGen.define_kernel
|
|
|
|
def new_define_kernel(wrapper, name, kernel_code, metadata, *args, **kwargs):
|
|
nonlocal kernel_list
|
|
kernel_list.append(kernel_code)
|
|
return orig_define_kernel(wrapper, name, kernel_code, metadata, *args, **kwargs)
|
|
|
|
with unittest.mock.patch.object(WrapperCodeGen, "define_kernel", new_define_kernel):
|
|
yield
|
|
|
|
|
|
def get_cloned_parameter_buffer_name(name: str):
|
|
return name + "__original__"
|
|
|
|
|
|
def is_gpu(device: str):
|
|
return device in ["cuda", "xpu"]
|
|
|
|
|
|
def device_need_guard(device: str):
|
|
assert isinstance(device, str)
|
|
return is_gpu(device)
|
|
|
|
|
|
def needs_fallback_due_to_atomic_add_limitations(dtype):
|
|
# tl.atomic_add does NOT support the following types
|
|
return dtype in {torch.int64, torch.bool, torch.bfloat16}
|
|
|
|
|
|
def use_scatter_fallback(
|
|
op_overload: torch._ops.OpOverload,
|
|
reduction_type,
|
|
self_dtype,
|
|
src_dtype,
|
|
src_device_type,
|
|
src_is_tensor,
|
|
):
|
|
reduce_ty = (
|
|
"add" if op_overload.overloadpacket == torch.ops.aten.scatter_ else "sum"
|
|
)
|
|
|
|
return (
|
|
reduction_type not in {None, reduce_ty}
|
|
or (
|
|
src_is_tensor
|
|
and is_gpu(src_device_type)
|
|
and needs_fallback_due_to_atomic_add_limitations(src_dtype)
|
|
)
|
|
or (
|
|
op_overload.overloadpacket == torch.ops.aten.scatter_reduce_
|
|
and reduction_type == "sum"
|
|
and src_is_tensor
|
|
and src_device_type == "cpu"
|
|
and config.cpp.fallback_scatter_reduce_sum
|
|
and (config.cpp.dynamic_threads or parallel_num_threads() != 1)
|
|
)
|
|
or (reduction_type == reduce_ty and self_dtype in {torch.bool, torch.int64})
|
|
or torch.are_deterministic_algorithms_enabled()
|
|
)
|
|
|
|
|
|
def dump_node_schedule(node_schedule):
|
|
"""
|
|
An API that can be used in pdb to dump a node_schedule.
|
|
Right mainly dump the read/write dependencies but can add more as needed.
|
|
"""
|
|
from torch._inductor.codegen.triton import DisableReduction, EnableReduction
|
|
from torch._inductor.scheduler import SchedulerNode
|
|
|
|
print(f"Node schedule with {len(node_schedule)} nodes")
|
|
for idx, node in enumerate(node_schedule):
|
|
print(f" {idx:3}:")
|
|
if node is EnableReduction:
|
|
print("enable reduction")
|
|
elif node is DisableReduction:
|
|
print("disable reduction")
|
|
elif isinstance(node, SchedulerNode):
|
|
is_red = node.is_reduction()
|
|
print(f"{'red' if is_red else 'pw'} scheduler node")
|
|
if is_red:
|
|
print(f"original reduction hint {node.node.data.reduction_hint}") # type: ignore[attr-defined]
|
|
print("ReadDep:")
|
|
for dep in node.read_writes.reads:
|
|
print(dep)
|
|
print("WriteDep:")
|
|
for dep in node.read_writes.writes:
|
|
print(dep)
|
|
else:
|
|
raise RuntimeError(f"Unrecognized node type: {type(node)}")
|
|
|
|
|
|
def tensor_is_aligned(tensor: torch.Tensor):
|
|
# See Note: [Input Alignment handling in Inductor]
|
|
# Right now, we don't try to guard on the alignment of the storage offset.
|
|
# When this comment was written, non-symbolic storage_offsets are not guarded on
|
|
# but symbolic storage_offsets are. For consistency, we suppress guard creation
|
|
# upon performing this check: that ensures that we don't add recompiles when we
|
|
# add this logic.
|
|
return (tensor.storage_offset() * get_dtype_size(tensor.dtype)) % ALIGNMENT == 0
|
|
|
|
|
|
def should_assume_input_aligned(example_input: torch.Tensor):
|
|
# See Note: [Input Alignment handling in Inductor]
|
|
|
|
# right now, we only care about alignment for cuda tensors.
|
|
if example_input.device.type != "cuda":
|
|
return False
|
|
return config.assume_aligned_inputs or tensor_is_aligned(example_input)
|
|
|
|
|
|
def maybe_get_suppress_shape_guards_ctx():
|
|
# Try to get TracingContext.try_get().fake_mode.shape_env.suppress_guards()
|
|
# If it's not available, return a nullcontext.
|
|
|
|
# If we're dealing with cudagraphs, we might not have a tracing_context
|
|
tracing_context = torch._guards.TracingContext.try_get()
|
|
if not tracing_context:
|
|
return contextlib.nullcontext()
|
|
|
|
# In standalone inductor compile mode, we might not have a shape_env attached to the fake mode
|
|
shape_env = tracing_context.fake_mode.shape_env
|
|
if not shape_env:
|
|
return contextlib.nullcontext()
|
|
|
|
return shape_env.suppress_guards()
|