pytorch/test/cpp/api
Zhirui Dai 3411d54811 fix loading optimizer options from archive (#125215)
This PR makes libtorch behave the same as PyTorch when loading optimizer state from archive. With PyTorch, options of parameter groups are loaded from the archive, which is missing currently in libtorch.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125215
Approved by: https://github.com/janeyx99
2024-05-06 23:58:40 +00:00
..
any.cpp
autograd.cpp Fix error message of autograd (#123154) 2024-04-03 19:07:21 +00:00
CMakeLists.txt Rename singleton int to nested int (#119661) 2024-02-16 19:21:17 +00:00
dataloader.cpp Fix typo under test directory (#111304) 2023-10-16 23:06:06 +00:00
dispatch.cpp
enum.cpp [2/N] Move c10::variant to std::variant (#109723) 2023-09-24 02:47:43 +00:00
expanding-array.cpp
fft.cpp
functional.cpp Add torch check for dtype within bilinear (#118900) 2024-02-03 00:02:00 +00:00
grad_mode.cpp
inference_mode.cpp
init_baseline.h
init_baseline.py UFMT formatting on test/autograd test/ao test/cpp test/backends (#123369) 2024-04-05 18:51:38 +00:00
init.cpp
integration.cpp
jit.cpp
memory.cpp [Reland] Move torch::make_unique to std::make_unique (#109780) 2023-09-21 18:30:21 +00:00
meta_tensor.cpp
misc.cpp
module.cpp
moduledict.cpp
modulelist.cpp
modules.cpp [CI] Update clang-format (#116002) 2023-12-18 14:58:46 +00:00
namespace.cpp
nested_int.cpp Rename singleton int to nested int (#119661) 2024-02-16 19:21:17 +00:00
nested.cpp
nn_utils.cpp
operations.cpp
optim_baseline.h
optim_baseline.py UFMT formatting on test/autograd test/ao test/cpp test/backends (#123369) 2024-04-05 18:51:38 +00:00
optim.cpp include scheduler_on_plateau in optim.h (#121722) 2024-03-27 19:45:25 +00:00
ordered_dict.cpp
parallel_benchmark.cpp
parallel.cpp
parameterdict.cpp
parameterlist.cpp
README.md Rewrite C++ API tests in gtest (#11953) 2018-09-21 21:28:16 -07:00
rnn.cpp Fixed crash when calling pad_packed_tensor when packed with cuda tensors and ensure_sorted=false due to indexing with tensors on different devices (#115028) 2023-12-07 18:09:18 +00:00
sequential.cpp
serialize.cpp fix loading optimizer options from archive (#125215) 2024-05-06 23:58:40 +00:00
special.cpp
static.cpp
support.cpp
support.h [BE] Add missing override to remove build warning spam (#107191) 2023-08-15 17:32:34 +00:00
tensor_cuda.cpp
tensor_flatten.cpp Fix typo under test directory (#111304) 2023-10-16 23:06:06 +00:00
tensor_indexing.cpp
tensor_options_cuda.cpp
tensor_options.cpp
tensor.cpp Extend TensorImpl with BackendMeta (#97429) 2023-04-04 23:47:03 +00:00
torch_include.cpp
transformer.cpp

C++ Frontend Tests

In this folder live the tests for PyTorch's C++ Frontend. They use the GoogleTest test framework.

CUDA Tests

To make a test runnable only on platforms with CUDA, you should suffix your test with _CUDA, e.g.

TEST(MyTestSuite, MyTestCase_CUDA) { }

To make it runnable only on platforms with at least two CUDA machines, suffix it with _MultiCUDA instead of _CUDA, e.g.

TEST(MyTestSuite, MyTestCase_MultiCUDA) { }

There is logic in main.cpp that detects the availability and number of CUDA devices and supplies the appropriate negative filters to GoogleTest.

Integration Tests

Integration tests use the MNIST dataset. You must download it by running the following command from the PyTorch root folder:

$ python tools/download_mnist.py -d test/cpp/api/mnist

The required paths will be referenced as test/cpp/api/mnist/... in the test code, so you must run the integration tests from the PyTorch root folder.