pytorch/caffe2/python/serialized_test/serialized_test_util.py
Igor Sugak b2b5f1377b [caffe2] replace numpy.object with object (#111494)
Reviewed By: florazzz

Differential Revision: D50380126

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111494
Approved by: https://github.com/Skylion007
2023-10-19 04:37:00 +00:00

299 lines
9.6 KiB
Python

import inspect
import os
import shutil
import sys
import tempfile
import threading
from contextlib import contextmanager
from zipfile import ZipFile
import argparse
import hypothesis as hy
import numpy as np
import caffe2.python.hypothesis_test_util as hu
from caffe2.proto import caffe2_pb2
from caffe2.python import gradient_checker
from caffe2.python.serialized_test import coverage
operator_test_type = 'operator_test'
TOP_DIR = os.path.dirname(os.path.realpath(__file__))
DATA_SUFFIX = 'data'
DATA_DIR = os.path.join(TOP_DIR, DATA_SUFFIX)
_output_context = threading.local()
def given(*given_args, **given_kwargs):
def wrapper(f):
hyp_func = hy.seed(0)(hy.settings(max_examples=1)(hy.given(*given_args, **given_kwargs)(f)))
fixed_seed_func = hy.seed(0)(hy.settings(max_examples=1)(hy.given(
*given_args, **given_kwargs)(f)))
def func(self, *args, **kwargs):
self.should_serialize = True
fixed_seed_func(self, *args, **kwargs)
self.should_serialize = False
hyp_func(self, *args, **kwargs)
return func
return wrapper
def _getGradientOrNone(op_proto):
try:
grad_ops, _ = gradient_checker.getGradientForOp(op_proto)
return grad_ops
except Exception:
return []
# necessary to support converting jagged lists into numpy arrays
def _transformList(l):
ret = np.empty(len(l), dtype=object)
for (i, arr) in enumerate(l):
ret[i] = arr
return ret
def _prepare_dir(path):
if os.path.exists(path):
shutil.rmtree(path)
os.makedirs(path)
class SerializedTestCase(hu.HypothesisTestCase):
should_serialize = False
def get_output_dir(self):
output_dir_arg = getattr(_output_context, 'output_dir', DATA_DIR)
output_dir = os.path.join(
output_dir_arg, operator_test_type)
if os.path.exists(output_dir):
return output_dir
# fall back to pwd
cwd = os.getcwd()
serialized_util_module_components = __name__.split('.')
serialized_util_module_components.pop()
serialized_dir = '/'.join(serialized_util_module_components)
output_dir_fallback = os.path.join(cwd, serialized_dir, DATA_SUFFIX)
output_dir = os.path.join(
output_dir_fallback,
operator_test_type)
return output_dir
def get_output_filename(self):
class_path = inspect.getfile(self.__class__)
file_name_components = os.path.basename(class_path).split('.')
test_file = file_name_components[0]
function_name_components = self.id().split('.')
test_function = function_name_components[-1]
return test_file + '.' + test_function
def serialize_test(self, inputs, outputs, grad_ops, op, device_option):
output_dir = self.get_output_dir()
test_name = self.get_output_filename()
full_dir = os.path.join(output_dir, test_name)
_prepare_dir(full_dir)
inputs = _transformList(inputs)
outputs = _transformList(outputs)
device_type = int(device_option.device_type)
op_path = os.path.join(full_dir, 'op.pb')
grad_paths = []
inout_path = os.path.join(full_dir, 'inout')
with open(op_path, 'wb') as f:
f.write(op.SerializeToString())
for (i, grad) in enumerate(grad_ops):
grad_path = os.path.join(full_dir, 'grad_{}.pb'.format(i))
grad_paths.append(grad_path)
with open(grad_path, 'wb') as f:
f.write(grad.SerializeToString())
np.savez_compressed(
inout_path,
inputs=inputs,
outputs=outputs,
device_type=device_type)
with ZipFile(os.path.join(output_dir, test_name + '.zip'), 'w') as z:
z.write(op_path, 'op.pb')
z.write(inout_path + '.npz', 'inout.npz')
for path in grad_paths:
z.write(path, os.path.basename(path))
shutil.rmtree(full_dir)
def compare_test(self, inputs, outputs, grad_ops, atol=1e-7, rtol=1e-7):
def parse_proto(x):
proto = caffe2_pb2.OperatorDef()
proto.ParseFromString(x)
return proto
source_dir = self.get_output_dir()
test_name = self.get_output_filename()
temp_dir = tempfile.mkdtemp()
with ZipFile(os.path.join(source_dir, test_name + '.zip')) as z:
z.extractall(temp_dir)
op_path = os.path.join(temp_dir, 'op.pb')
inout_path = os.path.join(temp_dir, 'inout.npz')
# load serialized input and output
loaded = np.load(inout_path, encoding='bytes', allow_pickle=True)
loaded_inputs = loaded['inputs'].tolist()
inputs_equal = True
for (x, y) in zip(inputs, loaded_inputs):
if not np.array_equal(x, y):
inputs_equal = False
loaded_outputs = loaded['outputs'].tolist()
# if inputs are not the same, run serialized input through serialized op
if not inputs_equal:
# load operator
with open(op_path, 'rb') as f:
loaded_op = f.read()
op_proto = parse_proto(loaded_op)
device_type = loaded['device_type']
device_option = caffe2_pb2.DeviceOption(
device_type=int(device_type))
outputs = hu.runOpOnInput(device_option, op_proto, loaded_inputs)
grad_ops = _getGradientOrNone(op_proto)
# assert outputs are equal
for (x, y) in zip(outputs, loaded_outputs):
np.testing.assert_allclose(x, y, atol=atol, rtol=rtol)
# assert gradient op is equal
for i in range(len(grad_ops)):
grad_path = os.path.join(temp_dir, 'grad_{}.pb'.format(i))
with open(grad_path, 'rb') as f:
loaded_grad = f.read()
grad_proto = parse_proto(loaded_grad)
self._assertSameOps(grad_proto, grad_ops[i])
shutil.rmtree(temp_dir)
def _assertSameOps(self, op1, op2):
op1_ = caffe2_pb2.OperatorDef()
op1_.CopyFrom(op1)
op1_.arg.sort(key=lambda arg: arg.name)
op2_ = caffe2_pb2.OperatorDef()
op2_.CopyFrom(op2)
op2_.arg.sort(key=lambda arg: arg.name)
self.assertEqual(op1_, op2_)
def assertSerializedOperatorChecks(
self,
inputs,
outputs,
gradient_operator,
op,
device_option,
atol=1e-7,
rtol=1e-7,
):
if self.should_serialize:
if getattr(_output_context, 'should_generate_output', False):
self.serialize_test(
inputs, outputs, gradient_operator, op, device_option)
if not getattr(_output_context, 'disable_gen_coverage', False):
coverage.gen_serialized_test_coverage(
self.get_output_dir(), TOP_DIR)
else:
self.compare_test(
inputs, outputs, gradient_operator, atol, rtol)
def assertReferenceChecks(
self,
device_option,
op,
inputs,
reference,
input_device_options=None,
threshold=1e-4,
output_to_grad=None,
grad_reference=None,
atol=None,
outputs_to_check=None,
ensure_outputs_are_inferred=False,
):
outs = super().assertReferenceChecks(
device_option,
op,
inputs,
reference,
input_device_options,
threshold,
output_to_grad,
grad_reference,
atol,
outputs_to_check,
ensure_outputs_are_inferred,
)
if not getattr(_output_context, 'disable_serialized_check', False):
grad_ops = _getGradientOrNone(op)
rtol = threshold
if atol is None:
atol = threshold
self.assertSerializedOperatorChecks(
inputs,
outs,
grad_ops,
op,
device_option,
atol,
rtol,
)
@contextmanager
def set_disable_serialized_check(self, val: bool):
orig = getattr(_output_context, 'disable_serialized_check', False)
try:
# pyre-fixme[16]: `local` has no attribute `disable_serialized_check`.
_output_context.disable_serialized_check = val
yield
finally:
_output_context.disable_serialized_check = orig
def testWithArgs():
parser = argparse.ArgumentParser()
parser.add_argument(
'-G', '--generate-serialized', action='store_true', dest='generate',
help='generate output files (default=false, compares to current files)')
parser.add_argument(
'-O', '--output', default=DATA_DIR,
help='output directory (default: %(default)s)')
parser.add_argument(
'-D', '--disable-serialized_check', action='store_true', dest='disable',
help='disable checking serialized tests')
parser.add_argument(
'-C', '--disable-gen-coverage', action='store_true',
dest='disable_coverage',
help='disable generating coverage markdown file')
parser.add_argument('unittest_args', nargs='*')
args = parser.parse_args()
sys.argv[1:] = args.unittest_args
_output_context.__setattr__('should_generate_output', args.generate)
_output_context.__setattr__('output_dir', args.output)
_output_context.__setattr__('disable_serialized_check', args.disable)
_output_context.__setattr__('disable_gen_coverage', args.disable_coverage)
import unittest
unittest.main()