mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Rewrite Python built-in class `super()` calls. Only non-semantic changes should be applied. - #94587 - #94588 - #94592 Also, methods with only a `super()` call are removed: ```diff class MyModule(nn.Module): - def __init__(self): - super().__init__() - def forward(self, ...): ... ``` Some cases that change the semantics should be kept unchanged. E.g.:f152a79be9/caffe2/python/net_printer.py (L184-L190)f152a79be9/test/test_jit_fuser_te.py (L2628-L2635)Pull Request resolved: https://github.com/pytorch/pytorch/pull/94587 Approved by: https://github.com/ezyang
333 lines
11 KiB
Python
333 lines
11 KiB
Python
## @package batch_lr_loss
|
|
# Module caffe2.python.layers.batch_lr_loss
|
|
|
|
|
|
|
|
|
|
|
|
from caffe2.python import core, schema
|
|
from caffe2.python.layers.layers import (
|
|
ModelLayer,
|
|
)
|
|
from caffe2.python.layers.tags import (
|
|
Tags
|
|
)
|
|
import numpy as np
|
|
|
|
|
|
class BatchLRLoss(ModelLayer):
|
|
def __init__(
|
|
self,
|
|
model,
|
|
input_record,
|
|
name='batch_lr_loss',
|
|
average_loss=True,
|
|
jsd_weight=0.0,
|
|
pos_label_target=1.0,
|
|
neg_label_target=0.0,
|
|
homotopy_weighting=False,
|
|
log_D_trick=False,
|
|
unjoined_lr_loss=False,
|
|
uncertainty_penalty=1.0,
|
|
focal_gamma=0.0,
|
|
stop_grad_in_focal_factor=False,
|
|
task_gamma=1.0,
|
|
task_gamma_lb=0.1,
|
|
**kwargs
|
|
):
|
|
super().__init__(model, name, input_record, **kwargs)
|
|
|
|
self.average_loss = average_loss
|
|
|
|
assert (schema.is_schema_subset(
|
|
schema.Struct(
|
|
('label', schema.Scalar()),
|
|
('logit', schema.Scalar())
|
|
),
|
|
input_record
|
|
))
|
|
|
|
self.jsd_fuse = False
|
|
assert jsd_weight >= 0 and jsd_weight <= 1
|
|
if jsd_weight > 0 or homotopy_weighting:
|
|
assert 'prediction' in input_record
|
|
self.init_weight(jsd_weight, homotopy_weighting)
|
|
self.jsd_fuse = True
|
|
self.homotopy_weighting = homotopy_weighting
|
|
|
|
assert pos_label_target <= 1 and pos_label_target >= 0
|
|
assert neg_label_target <= 1 and neg_label_target >= 0
|
|
assert pos_label_target >= neg_label_target
|
|
self.pos_label_target = pos_label_target
|
|
self.neg_label_target = neg_label_target
|
|
|
|
assert not (log_D_trick and unjoined_lr_loss)
|
|
self.log_D_trick = log_D_trick
|
|
self.unjoined_lr_loss = unjoined_lr_loss
|
|
assert uncertainty_penalty >= 0
|
|
self.uncertainty_penalty = uncertainty_penalty
|
|
|
|
self.tags.update([Tags.EXCLUDE_FROM_PREDICTION])
|
|
|
|
self.output_schema = schema.Scalar(
|
|
np.float32,
|
|
self.get_next_blob_reference('output')
|
|
)
|
|
|
|
self.focal_gamma = focal_gamma
|
|
self.stop_grad_in_focal_factor = stop_grad_in_focal_factor
|
|
|
|
self.apply_exp_decay = False
|
|
if task_gamma < 1.0:
|
|
self.apply_exp_decay = True
|
|
self.task_gamma_cur = self.create_param(
|
|
param_name=('%s_task_gamma_cur' % self.name),
|
|
shape=[1],
|
|
initializer=(
|
|
'ConstantFill', {
|
|
'value': 1.0,
|
|
'dtype': core.DataType.FLOAT
|
|
}
|
|
),
|
|
optimizer=self.model.NoOptim,
|
|
)
|
|
|
|
self.task_gamma = self.create_param(
|
|
param_name=('%s_task_gamma' % self.name),
|
|
shape=[1],
|
|
initializer=(
|
|
'ConstantFill', {
|
|
'value': task_gamma,
|
|
'dtype': core.DataType.FLOAT
|
|
}
|
|
),
|
|
optimizer=self.model.NoOptim,
|
|
)
|
|
|
|
self.task_gamma_lb = self.create_param(
|
|
param_name=('%s_task_gamma_lb' % self.name),
|
|
shape=[1],
|
|
initializer=(
|
|
'ConstantFill', {
|
|
'value': task_gamma_lb,
|
|
'dtype': core.DataType.FLOAT
|
|
}
|
|
),
|
|
optimizer=self.model.NoOptim,
|
|
)
|
|
|
|
def init_weight(self, jsd_weight, homotopy_weighting):
|
|
if homotopy_weighting:
|
|
self.mutex = self.create_param(
|
|
param_name=('%s_mutex' % self.name),
|
|
shape=None,
|
|
initializer=('CreateMutex', ),
|
|
optimizer=self.model.NoOptim,
|
|
)
|
|
self.counter = self.create_param(
|
|
param_name=('%s_counter' % self.name),
|
|
shape=[1],
|
|
initializer=(
|
|
'ConstantFill', {
|
|
'value': 0,
|
|
'dtype': core.DataType.INT64
|
|
}
|
|
),
|
|
optimizer=self.model.NoOptim,
|
|
)
|
|
self.xent_weight = self.create_param(
|
|
param_name=('%s_xent_weight' % self.name),
|
|
shape=[1],
|
|
initializer=(
|
|
'ConstantFill', {
|
|
'value': 1.,
|
|
'dtype': core.DataType.FLOAT
|
|
}
|
|
),
|
|
optimizer=self.model.NoOptim,
|
|
)
|
|
self.jsd_weight = self.create_param(
|
|
param_name=('%s_jsd_weight' % self.name),
|
|
shape=[1],
|
|
initializer=(
|
|
'ConstantFill', {
|
|
'value': 0.,
|
|
'dtype': core.DataType.FLOAT
|
|
}
|
|
),
|
|
optimizer=self.model.NoOptim,
|
|
)
|
|
else:
|
|
self.jsd_weight = self.model.add_global_constant(
|
|
'%s_jsd_weight' % self.name, jsd_weight
|
|
)
|
|
self.xent_weight = self.model.add_global_constant(
|
|
'%s_xent_weight' % self.name, 1. - jsd_weight
|
|
)
|
|
|
|
def update_weight(self, net):
|
|
net.AtomicIter([self.mutex, self.counter], [self.counter])
|
|
# iter = 0: lr = 1;
|
|
# iter = 1e6; lr = 0.5^0.1 = 0.93
|
|
# iter = 1e9; lr = 1e-3^0.1 = 0.50
|
|
net.LearningRate([self.counter], [self.xent_weight], base_lr=1.0,
|
|
policy='inv', gamma=1e-6, power=0.1,)
|
|
net.Sub(
|
|
[self.model.global_constants['ONE'], self.xent_weight],
|
|
[self.jsd_weight]
|
|
)
|
|
return self.xent_weight, self.jsd_weight
|
|
|
|
def add_ops(self, net):
|
|
# numerically stable log-softmax with crossentropy
|
|
label = self.input_record.label()
|
|
# mandatory cast to float32
|
|
# self.input_record.label.field_type().base is np.float32 but
|
|
# label type is actually int
|
|
label = net.Cast(
|
|
label,
|
|
net.NextScopedBlob('label_float32'),
|
|
to=core.DataType.FLOAT)
|
|
label = net.ExpandDims(label, net.NextScopedBlob('expanded_label'),
|
|
dims=[1])
|
|
if self.pos_label_target != 1.0 or self.neg_label_target != 0.0:
|
|
label = net.StumpFunc(
|
|
label,
|
|
net.NextScopedBlob('smoothed_label'),
|
|
threshold=0.5,
|
|
low_value=self.neg_label_target,
|
|
high_value=self.pos_label_target,
|
|
)
|
|
xent = net.SigmoidCrossEntropyWithLogits(
|
|
[self.input_record.logit(), label],
|
|
net.NextScopedBlob('cross_entropy'),
|
|
log_D_trick=self.log_D_trick,
|
|
unjoined_lr_loss=self.unjoined_lr_loss
|
|
)
|
|
|
|
if self.focal_gamma != 0:
|
|
label = net.StopGradient(
|
|
[label],
|
|
[net.NextScopedBlob('label_stop_gradient')],
|
|
)
|
|
|
|
prediction = self.input_record.prediction()
|
|
# focal loss = (y(1-p) + p(1-y))^gamma * original LR loss
|
|
# y(1-p) + p(1-y) = y + p - 2 * yp
|
|
y_plus_p = net.Add(
|
|
[prediction, label],
|
|
net.NextScopedBlob("y_plus_p"),
|
|
)
|
|
yp = net.Mul([prediction, label], net.NextScopedBlob("yp"))
|
|
two_yp = net.Scale(yp, net.NextScopedBlob("two_yp"), scale=2.0)
|
|
y_plus_p_sub_two_yp = net.Sub(
|
|
[y_plus_p, two_yp], net.NextScopedBlob("y_plus_p_sub_two_yp")
|
|
)
|
|
focal_factor = net.Pow(
|
|
y_plus_p_sub_two_yp,
|
|
net.NextScopedBlob("y_plus_p_sub_two_yp_power"),
|
|
exponent=float(self.focal_gamma),
|
|
)
|
|
if self.stop_grad_in_focal_factor is True:
|
|
focal_factor = net.StopGradient(
|
|
[focal_factor],
|
|
[net.NextScopedBlob("focal_factor_stop_gradient")],
|
|
)
|
|
xent = net.Mul(
|
|
[xent, focal_factor], net.NextScopedBlob("focallossxent")
|
|
)
|
|
|
|
if self.apply_exp_decay:
|
|
net.Mul(
|
|
[self.task_gamma_cur, self.task_gamma],
|
|
self.task_gamma_cur
|
|
)
|
|
|
|
task_gamma_multiplier = net.Max(
|
|
[self.task_gamma_cur, self.task_gamma_lb],
|
|
net.NextScopedBlob("task_gamma_cur_multiplier")
|
|
)
|
|
|
|
xent = net.Mul(
|
|
[xent, task_gamma_multiplier], net.NextScopedBlob("expdecayxent")
|
|
)
|
|
|
|
# fuse with JSD
|
|
if self.jsd_fuse:
|
|
jsd = net.BernoulliJSD(
|
|
[self.input_record.prediction(), label],
|
|
net.NextScopedBlob('jsd'),
|
|
)
|
|
if self.homotopy_weighting:
|
|
self.update_weight(net)
|
|
loss = net.WeightedSum(
|
|
[xent, self.xent_weight, jsd, self.jsd_weight],
|
|
net.NextScopedBlob('loss'),
|
|
)
|
|
else:
|
|
loss = xent
|
|
|
|
if 'log_variance' in self.input_record.fields:
|
|
# mean (0.5 * exp(-s) * loss + 0.5 * penalty * s)
|
|
log_variance_blob = self.input_record.log_variance()
|
|
|
|
log_variance_blob = net.ExpandDims(
|
|
log_variance_blob, net.NextScopedBlob('expanded_log_variance'),
|
|
dims=[1]
|
|
)
|
|
|
|
neg_log_variance_blob = net.Negative(
|
|
[log_variance_blob],
|
|
net.NextScopedBlob('neg_log_variance')
|
|
)
|
|
|
|
# enforce less than 88 to avoid OverflowError
|
|
neg_log_variance_blob = net.Clip(
|
|
[neg_log_variance_blob],
|
|
net.NextScopedBlob('clipped_neg_log_variance'),
|
|
max=88.0
|
|
)
|
|
|
|
exp_neg_log_variance_blob = net.Exp(
|
|
[neg_log_variance_blob],
|
|
net.NextScopedBlob('exp_neg_log_variance')
|
|
)
|
|
|
|
exp_neg_log_variance_loss_blob = net.Mul(
|
|
[exp_neg_log_variance_blob, loss],
|
|
net.NextScopedBlob('exp_neg_log_variance_loss')
|
|
)
|
|
|
|
penalized_uncertainty = net.Scale(
|
|
log_variance_blob, net.NextScopedBlob("penalized_unceratinty"),
|
|
scale=float(self.uncertainty_penalty)
|
|
)
|
|
|
|
loss_2x = net.Add(
|
|
[exp_neg_log_variance_loss_blob, penalized_uncertainty],
|
|
net.NextScopedBlob('loss')
|
|
)
|
|
loss = net.Scale(loss_2x, net.NextScopedBlob("loss"), scale=0.5)
|
|
|
|
if 'weight' in self.input_record.fields:
|
|
weight_blob = self.input_record.weight()
|
|
if self.input_record.weight.field_type().base != np.float32:
|
|
weight_blob = net.Cast(
|
|
weight_blob,
|
|
weight_blob + '_float32',
|
|
to=core.DataType.FLOAT
|
|
)
|
|
weight_blob = net.StopGradient(
|
|
[weight_blob],
|
|
[net.NextScopedBlob('weight_stop_gradient')],
|
|
)
|
|
loss = net.Mul(
|
|
[loss, weight_blob],
|
|
net.NextScopedBlob('weighted_cross_entropy'),
|
|
)
|
|
|
|
if self.average_loss:
|
|
net.AveragedLoss(loss, self.output_schema.field_blobs())
|
|
else:
|
|
net.ReduceFrontSum(loss, self.output_schema.field_blobs())
|