mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Rewrite Python built-in class `super()` calls. Only non-semantic changes should be applied. - #94587 - #94588 - #94592 Also, methods with only a `super()` call are removed: ```diff class MyModule(nn.Module): - def __init__(self): - super().__init__() - def forward(self, ...): ... ``` Some cases that change the semantics should be kept unchanged. E.g.:f152a79be9/caffe2/python/net_printer.py (L184-L190)f152a79be9/test/test_jit_fuser_te.py (L2628-L2635)Pull Request resolved: https://github.com/pytorch/pytorch/pull/94587 Approved by: https://github.com/ezyang
45 lines
1.4 KiB
Python
45 lines
1.4 KiB
Python
## @package add_bias
|
|
# Module caffe2.python.layers.add_bias
|
|
|
|
|
|
|
|
|
|
|
|
from caffe2.python import schema
|
|
from caffe2.python.layers.layers import ModelLayer
|
|
import math
|
|
|
|
|
|
class AddBias(ModelLayer):
|
|
|
|
def __init__(self, model, input_record, bias_init=None,
|
|
bias_optim=None, name='add_bias'):
|
|
super().__init__(model, name, input_record)
|
|
assert isinstance(input_record, schema.Scalar), "Incorrect input type"
|
|
assert len(input_record.field_type().shape) > 0, (
|
|
"AddBias expects limited dimensions of the input tensor")
|
|
|
|
input_dims = input_record.field_type().shape[0]
|
|
assert input_dims > 0, (
|
|
"AddBias expects input dimensions > 0, got {}".format(input_dims))
|
|
|
|
scale = math.sqrt(1.0 / input_dims)
|
|
bias_init = bias_init if bias_init else (
|
|
'UniformFill', {'min': -scale, 'max': scale})
|
|
|
|
self.b = self.create_param(
|
|
param_name='b',
|
|
shape=[input_dims, ],
|
|
initializer=bias_init,
|
|
optimizer=bias_optim,
|
|
)
|
|
|
|
self.output_schema = schema.Scalar(
|
|
(input_record.field_type().base, (input_dims, )),
|
|
self.get_next_blob_reference('output')
|
|
)
|
|
|
|
def add_ops(self, net):
|
|
net.Add(self.input_record.field_blobs() + [self.b],
|
|
self.output_schema.field_blobs(), broadcast=1)
|