pytorch/torch/csrc/jit/python/python_ir.h
Nikita Shulga 4cb534f92e Make PyTorch code-base clang-tidy compliant (#56892)
Summary:
This is an automatic change generated by the following script:
```
#!/usr/bin/env python3
from subprocess import check_output, check_call
import os

def get_compiled_files_list():
    import json
    with open("build/compile_commands.json") as f:
        data = json.load(f)
    files = [os.path.relpath(node['file']) for node in data]
    for idx, fname in enumerate(files):
        if fname.startswith('build/') and fname.endswith('.DEFAULT.cpp'):
            files[idx] = fname[len('build/'):-len('.DEFAULT.cpp')]
    return files

def run_clang_tidy(fname):
    check_call(["python3", "tools/clang_tidy.py", "-c", "build", "-x", fname,"-s"])
    changes = check_output(["git", "ls-files", "-m"])
    if len(changes) == 0:
        return
    check_call(["git", "commit","--all", "-m", f"NOLINT stubs for {fname}"])

def main():
    git_files = check_output(["git", "ls-files"]).decode("ascii").split("\n")
    compiled_files = get_compiled_files_list()
    for idx, fname in enumerate(git_files):
        if fname not in compiled_files:
            continue
        if fname.startswith("caffe2/contrib/aten/"):
            continue
        print(f"[{idx}/{len(git_files)}] Processing {fname}")
        run_clang_tidy(fname)

if __name__ == "__main__":
    main()
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/56892

Reviewed By: H-Huang

Differential Revision: D27991944

Pulled By: malfet

fbshipit-source-id: 5415e1eb2c1b34319a4f03024bfaa087007d7179
2021-04-28 14:10:25 -07:00

54 lines
1.7 KiB
C++

#pragma once
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/utils/object_ptr.h>
namespace torch {
namespace jit {
void initPythonIRBindings(PyObject* module);
// execute a Python function, used for Ops we can't optimize but that we want to
// optimize around
struct ConcretePythonOp : public PythonOp {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
static Symbol Kind;
ConcretePythonOp(Graph* graph) : PythonOp(graph, ::c10::prim::PythonOp) {}
ConcretePythonOp* init(
THPObjectPtr&& pyobj,
const std::string& cconv,
pyobj_list&& scalar_args) {
this->pyobj = std::move(pyobj);
this->scalar_args = std::move(scalar_args);
this->cconv = cconv;
return this;
}
// The Python object which contains the implementation of this function.
// This is either a class (non-legacy) or an object (legacy). See
// TraceInterpreterState for execution semantics.
THPObjectPtr pyobj;
// The calling convention for the Python function.
// 'c' -- constant argument
// 'd' -- dynamic argument
std::string cconv;
// Scalar arguments to the Python function. Not necessarily passed to
// the function in this order; see cconv for the correct order.
std::vector<THPObjectPtr> scalar_args;
std::string name() const override;
void cloneFrom(Node* other_) override;
Node* allocNewInstance(Graph* g) override {
return new ConcretePythonOp(g);
}
// recover the autograd.Function instance, if this PythonOp's function
// was originally SomeFunction.apply
// used in ONNX for discovering symbolics
c10::optional<THPObjectPtr> autogradFunction() const override;
void writeScalars(std::ostream& out) const override;
void lint_python() const override;
};
} // namespace jit
} // namespace torch