pytorch/test/test_proxy_tensor.py
Edward Z. Yang 4c8cfb57aa Convert SymInt tracing to mode based tracing (#83380)
We're on our way to deleting ProxyTensor entirely (see https://github.com/pytorch/pytorch/pull/83330 ), but before we can do that, we have to delete ProxySymInt first. Here's the plan.

Changes in torch.fx.experimental.symbolic_shapes

* The general idea is to do mode based tracing. This means we need a mode that can interpose on all SymInt operations. There are a few ways to do this, but I've done it the easy way: (1) I have a separate mode for SymInt operations specifically called SymDispatchMode, and (2) this mode operates on PySymInt (and not the basic SymInt which is user visible). I elided Int from the name because if we add SymFloats I want to use the same mode to handle those as well, and I used Dispatch rather than Function because this is the "inner" dispatch operating PySymInt and not SymInt (this is not a perfect analogy, but SymFunctionMode definitely seemed wrong as you still must go through the C++ binding.) The mode is entirely implemented in Python for ease of implementation. We could have implemented this more symmetrically to TorchFunctionMode in C++, but I leave that as later work; this API is unlikely to get used by others (unlike TorchFunctionMode). One downside to not doing the mode in C++ is that we still have to do the hop via a preexisting PySymInt to wrap; this is currently not a big deal as conversion to SymInts only really happens when there is already another SymInt floating around. SymDispatchMode is pared down from TorchDispatchMode; there is no ancestor tracking since I don't expect people to be mixing up SymDispatchModes.
*  I made some improvements for tracing. When I invoke the SymDispatchMode handler, I would like constants to show up as constants, so they can be directly inlined into the FX graph (rather than going through a wrapping process first, and then the wrapped SymInt being used in the operation). To do this, I directly track if a PySymInt is a constant at construction time. Only wrapped PySymInts are constants.
* For convenience, PySymInts now support all magic methods that regular SymInts do. This is so that redispatch inside the SymDispatchMode can be written the idiomatic way `func(*args, **kwargs)` where func is an operator. The original names are retained for direct C++ calls.

Changes in torch.fx.experimental.proxy_tensor

* OK, so we got a new SymDispatchMode, so we define a ProxySymDispatchMode and activate it when we start tracing. This mode is currently unconditionally activated although technically we only need to activate it when doing symbolic tracing (it doesn't matter either way as there are no SymInts if you are not doing symbolic tracing).
* We delete ProxySymInt. To do this, we must now record the proxy for the SymInt some other way. Based on discussion with Chillee, it is more intuitive to him if the proxies are still recorded on the SymInt in some way. So we store them in the `__dict__` of the PySymInt, indexed by Tracer. An improvement is to make this a weak map, so that we remove all of these entries when the tracer dies. In an original version of this PR, I keyed on the mode itself, but tracer is better as it is accessible from both modes (and as you will see, we will need to fetch the map from both the ProxySymDispatchMode as well as the ProxyTorchDispatchMode.) The implementation of SymDispatchMode now simply retrieves the proxies, performs the underlying operation as well as the FX graph recording, and then records the output proxy to the PySymInt. Note that FX tracing does not work with proxies and SymInts, so we manually call `call_function` to ensure that the correct operations get recorded to the graph. This means conventional FX retracing with proxies only will not work with these graphs, but there wasn't really any reason to do this (as opposed to `make_fx` retracing) anyway. Constants are detected and converted directly into Python integers.
* SymInts can show up as arguments to tensor operations, so they must be accounted for in ProxyTorchDispatchMode as well. This is done by searching for SymInt arguments and converting them into proxies before the proxy call. This can be done more efficiently in a single `tree_map` but I'm lazy. The helper `unwrap_symint_proxy` conveniently implements the unwrapping in one place given a tracer; unfortunately it cannot be shared with SymDispatchMode as SymDispatchMode gets PySymInts, but ProxyTensorMode gets SymInts. Similarly, tensors that are returned from tensor operations can have SymInts in their shapes, which need fresh proxies allocated. To avoid leaking internal details of SymInt shape computation to the tensor operation graph, these SymInts are always given proxies derived from `x.size(dim)` call on their return tensor. We also need to do this for strides and numel but have not done so yet. Furthermore, we must avoid tracing internal SymInt calls while we run meta operations on the true operation; this is achieved by also disabling SymInt tracing on the inside of tensor tracing. This is analogous to how tensor tracing is disabled inside the implementation of tracing mode, but unfortunately we are unable to use the same mechanism (this would have been easier if the two modes could be combined somehow, and I am amenable to suggestions to try harder to achieve this.)
* Because there are no more ProxySymInts, we no longer need to do anything to unwrap SymInt. Furthermore, we do not need to reallocate ProxySymInts on class creation.
* If a bare SymInt without a Proxy is encountered, it is assumed that this must be a constant. `create_arg` handles this case. Non-constant free SymInts result in an assert error.
* The initial input handling in `dispatch_trace` involves traversing all of the input tensors, traversing over their shapes, and assigning proxies for the SymInts in shapes in the same way we handle proxies for the output tensors.

The preexisting testing is inadequate but will be better after I rebase past https://github.com/pytorch/pytorch/pull/82209

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83380
Approved by: https://github.com/samdow
2022-08-16 14:32:27 +00:00

1185 lines
68 KiB
Python

# Owner(s): ["module: ProxyTensor"]
from torch.testing._internal.common_utils import TestCase, run_tests
import torch
import unittest
import warnings
import torch.nn.utils._stateless as stateless
from collections.abc import Iterable
from torch.testing._internal.common_device_type import instantiate_device_type_tests
from torch.testing._internal.common_methods_invocations import DecorateInfo
from torch.testing._internal.common_methods_invocations import op_db, wrapper_set_seed
from torch._subclasses.fake_tensor import DynamicOutputShapeException
from torch._decomp import decomposition_table
from torch.testing._internal.common_device_type import ops
from torch._C import _disabled_torch_function_impl
from torch.fx.experimental.proxy_tensor import make_fx, DecompositionInterpreter, get_isolated_graphmodule
from torch.utils._pytree import tree_map
from torch import nn
import re
import types
import functools
aten = torch.ops.aten
try:
import sympy # noqa: F401
HAS_SYMPY = True
except ImportError:
HAS_SYMPY = False
skipIfNoSympy = unittest.skipIf(not HAS_SYMPY, "no sympy")
def process_failures():
"""
Takes file containing failures like
FAILED test/test_proxy_tensor.py::TestProxyTensorOpInfoCPU::test_make_fx_symbolic_exhaustive___getitem___cpu_float32 - RuntimeError: aten.size.default - couldn't find symbolic meta function/decomposition # noqa: B950
and processes them into a list of opinfo xfails
"""
f = open('pytest_failures')
failures = f.readlines()
failures = [i.strip() for i in failures]
def process_failure_string(s, matcher):
out = re.search(matcher, s)
return out.groups()
SYMBOLIC_TRACE_MATCH = r'exhaustive_(.*)_cpu.*: (.*)'
failures = [process_failure_string(s, SYMBOLIC_TRACE_MATCH) for s in failures]
def create_normalized_name(op):
if op.variant_test_name == '':
s = op.name
else:
s = f"{op.name}.{op.variant_test_name}"
return s.replace('.', '_')
remap_opinfo = {create_normalized_name(op): (op.name, op.variant_test_name) for op in op_db}
print("symbolic_tensor_failures = {")
for failure, reason in failures:
print(f" xfail{remap_opinfo[failure]}, # {reason}")
print("}")
def copy_func(f):
"""Based on http://stackoverflow.com/a/6528148/190597 (Glenn Maynard)"""
g = types.FunctionType(f.__code__, f.__globals__, name=f.__name__,
argdefs=f.__defaults__,
closure=f.__closure__)
g = functools.update_wrapper(g, f)
g.__kwdefaults__ = f.__kwdefaults__
return g
# Copied from functorch
def xfail(op_name, variant_name='', *, device_type=None, dtypes=None):
return (op_name, variant_name, device_type, dtypes, True)
def skip(op_name, variant_name='', *, device_type=None, dtypes=None):
return (op_name, variant_name, device_type, dtypes, False)
def skipOps(test_case_name, base_test_name, to_skip):
all_opinfos = op_db
for xfail in to_skip:
op_name, variant_name, device_type, dtypes, expected_failure = xfail
matching_opinfos = [o for o in all_opinfos
if o.name == op_name and o.variant_test_name == variant_name]
assert len(matching_opinfos) >= 1, f"Couldn't find OpInfo for {xfail}"
for opinfo in matching_opinfos:
decorators = list(opinfo.decorators)
if expected_failure:
decorator = DecorateInfo(unittest.expectedFailure,
test_case_name, base_test_name,
device_type=device_type, dtypes=dtypes)
decorators.append(decorator)
else:
decorator = DecorateInfo(unittest.skip("Skipped!"),
test_case_name, base_test_name,
device_type=device_type, dtypes=dtypes)
decorators.append(decorator)
opinfo.decorators = tuple(decorators)
# This decorator doesn't modify fn in any way
def wrapped(fn):
return fn
return wrapped
USE_TORCHVISION = False
try:
import torchvision
USE_TORCHVISION = True
except ImportError:
warnings.warn("Couldn't import torchvision. Some of our tests use it, try "
"to install it with commands from pytorch.org, post-fixed with "
"`--no-deps` to avoid overwriting the pytorch installation",
UserWarning)
def _create_new_input(x):
if not isinstance(x, torch.Tensor):
return x
if x.dtype != torch.float:
return x + 1
if x.is_leaf:
return torch.rand_like(x, requires_grad=x.requires_grad)
else:
return torch.rand_like(x)
"""
Delays a cos being executed on the unwraptensor until its used. Simulates a CommTensor used
"""
class UnwrapTensor(torch.Tensor):
@staticmethod
def __new__(cls, tensor: torch.Tensor):
r = torch.Tensor._make_wrapper_subclass(
cls,
tensor.size(),
dtype=tensor.dtype,
device=tensor.device,
layout=tensor.layout,
requires_grad=tensor.requires_grad,
)
r._tensor = tensor
return r
def __repr__(self):
# TODO: consider all_gather the local tensors for better debugging
return f"UnwrapTensor({self._tensor})"
__torch_function__ = _disabled_torch_function_impl
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
def unwrap(e):
ret = e
if isinstance(e, UnwrapTensor):
ret = e._tensor.cos()
return ret
args = tree_map(unwrap, args)
kwargs = tree_map(unwrap, kwargs)
return func(*args, **kwargs)
class TestGenericProxyTensor(TestCase):
# WARNING: if any of your inputs are index tensors, DO NOT use this
# function
def _test(self, f, inps):
fx_f = make_fx(f, tracing_mode=self.tracing_mode)(*inps)
new_inps = tree_map(_create_new_input, inps)
self.assertEqual(fx_f(*new_inps), f(*new_inps))
def test_make_fx_simple(self):
def f(x):
return torch.sin(x)
self._test(f, (torch.randn(3),))
def test_scalar_device(self, device='cpu'):
def f(a, b):
return a + b
self._test(f, [torch.randn(3, device=device), torch.tensor(5)])
def test_isolated_graphmodule(self):
def is_any_sum(gm):
return any(node.target == torch.ops.aten.sum.default for node in gm.graph.nodes)
def is_any_digamma(gm):
return any(node.target == torch.ops.aten.digamma.default for node in gm.graph.nodes)
def is_any_sigmoid(gm):
return any(node.target == torch.ops.aten.sigmoid.default for node in gm.graph.nodes)
def inner(x):
return torch.sum(x)
def f(x):
gm = get_isolated_graphmodule(inner, (x,), {})
self.assertTrue(is_any_sum(gm))
return x + torch.randn(x.shape)
# get_isolated_graphmodule uses make_fx internally that shouldn't be traced
# by the outer make_fx call
traced = make_fx(f)(torch.randn(3))
self.assertFalse(is_any_sum(traced))
# When factory functions are used, they should not be traced
# by the outer make_fx call
def inner_with_factory():
val = torch.tensor(float(1))
val.add_(2)
return torch.full((10, 10), val).sum()
def f1(x):
gm = get_isolated_graphmodule(inner_with_factory, (), {})
self.assertTrue(is_any_sum(gm))
return torch.sigmoid(x)
def f2(x):
gm = get_isolated_graphmodule(f1, (x,), {})
self.assertFalse(is_any_sum(gm))
self.assertTrue(is_any_sigmoid(gm))
return torch.digamma(x)
traced = make_fx(f2)(torch.randn(3))
self.assertFalse(is_any_sum(traced))
self.assertFalse(is_any_sigmoid(traced))
self.assertTrue(is_any_digamma(traced))
# Verify nested make_fx calls don't make factory functions to be leaked
# into the outer graph
def f2(x):
gm = make_fx(f1)(x)
self.assertFalse(is_any_sum(gm))
self.assertTrue(is_any_sigmoid(gm))
return torch.digamma(x)
traced = make_fx(f2)(torch.randn(3))
self.assertFalse(is_any_sum(traced))
self.assertTrue(is_any_sigmoid(traced))
self.assertTrue(is_any_digamma(traced))
# Verify interaction with non-ProxyTensor modes
from torch.testing._internal.logging_tensor import LoggingTensorMode
def f1_logging(x):
with LoggingTensorMode():
gm = get_isolated_graphmodule(inner_with_factory, (), {})
self.assertTrue(is_any_sum(gm))
return torch.sigmoid(x)
def f2_logging(x):
with LoggingTensorMode(), LoggingTensorMode():
gm = get_isolated_graphmodule(f1_logging, (x,), {})
self.assertFalse(is_any_sum(gm))
self.assertTrue(is_any_sigmoid(gm))
return torch.digamma(x)
traced = make_fx(f2_logging)(torch.randn(3))
self.assertFalse(is_any_sum(traced))
self.assertFalse(is_any_sigmoid(traced))
self.assertTrue(is_any_digamma(traced))
# Verify interaction with another tensor subclass
# This case currently doesn't work and should raise an error
# See: https://github.com/pytorch/pytorch/pull/81764#issuecomment-1200472068
from torch.testing._internal.logging_tensor import LoggingTensor
def f1_logging_tensor(x):
gm = get_isolated_graphmodule(inner_with_factory, (), {})
self.assertTrue(is_any_sum(gm))
return torch.sigmoid(x)
def f2_logging_tensor(x):
x = LoggingTensor(x)
gm = get_isolated_graphmodule(f1_logging_tensor, (x,), {})
self.assertFalse(is_any_sum(gm))
self.assertTrue(is_any_sigmoid(gm))
return torch.digamma(x)
with self.assertRaisesRegex(AssertionError, "ProxyTensor is wrapped with another Tensor subclass"):
traced = make_fx(f2_logging_tensor)(torch.randn(3))
self.assertFalse(is_any_sum(traced))
self.assertFalse(is_any_sigmoid(traced)) # this fails, sigmoid is traced with LoggingTensor
self.assertTrue(is_any_digamma(traced))
def test_proxy_tensor_mode_with_decomp_table_preserves_proxy(self):
def f(x):
y = x.new_zeros(x.size())
y.copy_(x)
return y
def _new_zeros_decomp(inp, size, dtype=None, layout=None, device=None, pin_memory=None):
return torch.zeros(size, dtype=inp.dtype, device=inp.device)
factory_func_decomp = {torch.ops.aten.new_zeros.default: _new_zeros_decomp}
# When new_zeros() decomposes into torch.zero(), we expect ProxyTensorMode
# to still be (re-entrantly) enabled, so that the `torch.zero()` call
# returns a ProxyTensor.
out = make_fx(f, decomposition_table=factory_func_decomp)(torch.ones(2))
self.assertExpectedInline(out.code, """\
def forward(self, x_1):
zeros = torch.ops.aten.zeros.default([2], dtype = torch.float32, device = device(type='cpu'), pin_memory = False)
copy__default = torch.ops.aten.copy_.default(zeros, x_1); zeros = x_1 = None
return copy__default
""")
def test_make_fx_reentrant_dispatch(self):
def f(x):
return torch.ops.aten.norm.Scalar(x, 2.0)
def norm_decomp(x, p=2.0):
if p != 2.0:
raise RuntimeError("can't handle with p != 2")
return torch.sqrt(torch.sum(torch.square(x)))
decomp = {torch.ops.aten.norm.Scalar: norm_decomp}
traced = make_fx(f, decomposition_table=decomp, tracing_mode=self.tracing_mode)(torch.rand(3))
for n in traced.graph.nodes:
self.assertTrue("square" not in str(n.target))
self.assertTrue("norm" not in str(n.target))
@unittest.skipIf(not USE_TORCHVISION, "test requires torchvision")
def test_resnet18_backward_trace(self):
mod = torchvision.models.resnet18()
# An old version of this test called the module directly. This works
# for tracing_mode == "real", but for fake tensors, we also have to
# ensure that the parameters and buffers get wrapped in fake tensors
# because free fake tensors are not supported. Fortunately stateless
# does precisely this for us.
def f(x, params, buffers):
for p in params.values():
p.grad = None
loss = stateless.functional_call(mod, {**params, **buffers}, (x,)).sum()
# I could have done this with the functional API, but there is
# plenty of exercising this; I want to show mutating API still
# works
loss.backward()
return [p.grad for p in params.values()]
inp = torch.randn(3, 3, 250, 250)
self._test(f, [inp, dict(mod.named_parameters()), dict(mod.named_buffers())])
def test_varargs(self):
def f(*args):
return sum(args)
self._test(f, [torch.randn(2), torch.randn(2)])
def test_proxy_tensor(self):
def f_grad(x):
val = x.cos().cos().sum()
return torch.autograd.grad(val, x)
def f_backward(x):
val = x.cos().cos().sum()
val.backward()
return x.grad
for f in [f_grad, f_backward]:
self._test(f, [torch.randn(3, requires_grad=True)])
def test_inplace_metadata(self):
def f(x):
x = x.clone()
x.unsqueeze_(-1)
assert x.shape[-1] == 1
return x
self._test(f, [torch.randn(5)])
def test_mode_tracing_factory_function(self):
def f(x):
return x + torch.randn(x.shape)
# default behavior should trace factory functions
traced = make_fx(f, tracing_mode=self.tracing_mode)(torch.randn(3))
self.assertTrue(
any(
node.target == aten.randn.default
for node in traced.graph.nodes
)
)
def test_make_fx_overloads(self):
def f(x):
return x.cos() + torch.randn(x.shape)
traced = make_fx(f, tracing_mode=self.tracing_mode)(torch.randn(3))
self.assertTrue(all([isinstance(node.target, torch._ops.OpOverload)
for node in traced.graph.nodes if node.op == 'call_function']))
def test_tensor_constants(self):
def f():
val = torch.tensor(float('inf'))
return torch.full((100, 100), val)
self._test(f, [])
def test_allclose(self):
def f(a, b):
return torch.allclose(a, b)
self.assertRaisesRegex(
RuntimeError, "data-dependent",
lambda: make_fx(f, tracing_mode=self.tracing_mode)(
torch.zeros(3), torch.zeros(3)
)
)
def test_constant_proxy_tensor_mut(self):
def f():
val = torch.tensor(float(1))
val.add_(2)
return torch.full((100, 100), val)
g = make_fx(f, tracing_mode=self.tracing_mode)()
self.assertEqual(g(), f())
# In case we mutated shared state in the g graph!
self.assertEqual(g(), f())
def test_constant_unbind(self):
def f():
val = torch.tensor([2])
r, = torch.unbind(val, 0)
return r.item()
g = make_fx(f, tracing_mode=self.tracing_mode)()
self.assertEqual(g(), f())
def test_decomposition_interpreter(self):
def fn(x):
return torch.nn.functional.silu(x)
x = torch.rand((4, 4))
fx_module = make_fx(fn, tracing_mode=self.tracing_mode, decomposition_table=None)(x)
found_silu = False
for n in fx_module.graph.nodes:
if n.target == torch.ops.aten.silu or n.target == torch.ops.aten.silu.default:
found_silu = True
self.assertTrue(found_silu)
new_graph = torch.fx.Graph()
silu_decomp_table = {torch.ops.aten.silu.default: decomposition_table[torch.ops.aten.silu.default]}
DecompositionInterpreter(
fx_module,
new_graph=new_graph,
decomposition_table=silu_decomp_table,
).run(x)
decomposed_module = torch.fx.GraphModule(fx_module, new_graph)
for n in decomposed_module.graph.nodes:
self.assertTrue(n.target != torch.ops.aten.silu)
self.assertTrue(n.target != torch.ops.aten.silu.default)
self.assertEqual(fx_module(x), decomposed_module(x))
def test_make_fx_model_fwd_bwd(self):
class Foo(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(5, 5)
def forward(self, x):
return self.linear(x).relu()
model = Foo()
def f(x, params):
out = stateless.functional_call(model, params, x).sum()
out.backward()
return list(params.values())
input = torch.randn(3, 5, requires_grad=True)
params = dict(model.named_parameters())
fx_f = make_fx(f, tracing_mode=self.tracing_mode)(input, params)
# fx may change the order of parameters in list, so using set() to compare
self.assertTrue(
torch.allclose(fx_f(input, params)[0], f(input, params)[0])
or
torch.allclose(fx_f(input, params)[0], f(input, params)[1])
)
self.assertTrue(
torch.allclose(fx_f(input, params)[1], f(input, params)[0])
or
torch.allclose(fx_f(input, params)[1], f(input, params)[1])
)
def test_make_fx_model_fwd_bwd_wgtupdate(self):
class Foo(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(5, 5)
def forward(self, x):
return self.linear(x).relu()
model = Foo()
def f(args, params, buffers):
if not isinstance(args, Iterable):
args = [args]
params_and_buffers = {**params, **buffers}
out = stateless.functional_call(model, params_and_buffers, args)
out.sum().backward()
return [p - 1e-4 * p.grad for p in params.values()]
input = torch.randn(3, 5, requires_grad=True)
params = dict(model.named_parameters())
buffers = dict(model.named_buffers())
fx_f = make_fx(f, tracing_mode=self.tracing_mode)(input, params, buffers)
# fx may change the order of parameters in list, so using set() to compare
# also there is a numerical difference in results so changing atol from 1e-08 to 1e-03
self.assertTrue(
torch.allclose(fx_f(input, params, buffers)[0], f(input, params, buffers)[0], atol=1e-03)
or
torch.allclose(fx_f(input, params, buffers)[0], f(input, params, buffers)[1], atol=1e-03)
)
self.assertTrue(
torch.allclose(fx_f(input, params, buffers)[1], f(input, params, buffers)[0], atol=1e-03)
or
torch.allclose(fx_f(input, params, buffers)[1], f(input, params, buffers)[1], atol=1e-03)
)
def test_trace_subclasses(self):
def f(x):
x = UnwrapTensor(x)
y = x * 2
return y
inp = [torch.randn(5)]
self._test(f, [torch.randn(5)])
class TestGenericProxyTensorReal(TestGenericProxyTensor):
tracing_mode = "real"
class TestGenericProxyTensorFake(TestGenericProxyTensor):
tracing_mode = "fake"
def xfail_inherited_tests(tests):
"""
Given a list of test names which are defined by a superclass of the
class this decorates, mark them as expected failure. This is useful
if you are doing poor man's parameterized tests by subclassing a generic
test class.
"""
def deco(cls):
for t in tests:
# NB: expectedFailure operates by mutating the method in question,
# which is why you have to copy the function first
setattr(cls, t, unittest.expectedFailure(copy_func(getattr(cls, t))))
return cls
return deco
@skipIfNoSympy
@xfail_inherited_tests([
"test_inplace_metadata",
"test_mode_tracing_factory_function",
"test_make_fx_overloads",
"test_make_fx_model_fwd_bwd_wgtupdate",
"test_make_fx_model_fwd_bwd",
"test_proxy_tensor",
"test_resnet18_backward_trace",
"test_trace_subclasses",
])
class TestGenericProxyTensorSymbolic(TestGenericProxyTensor):
tracing_mode = "symbolic"
del TestGenericProxyTensor
class TestRealProxyTensor(TestCase):
pass
class TestFakeProxyTensor(TestCase):
def test_issue82547(self):
x = nn.Parameter(torch.randn(3, 3))
def f():
return torch.ops.aten.t.default(x)
self.assertRaisesRegex(Exception, "non-Fake Tensor", lambda: make_fx(f, tracing_mode="fake")())
class A(torch.Tensor):
pass
x = A(torch.randn(3, 3))
self.assertRaisesRegex(TypeError, "no implementation found", lambda: make_fx(f, tracing_mode="fake")())
def test_use_fake_and_tensor(self):
def f(x, y):
z = torch.tensor([2.0, 3.0])
return x + y + z
g = make_fx(f, tracing_mode="fake")(torch.randn(2), torch.randn(2))
x, y = torch.randn(2), torch.randn(2)
self.assertEqual(g(x, y), f(x, y))
# TODO: Need to test the guards themselves specifically as well
@skipIfNoSympy
class TestSymbolicTracing(TestCase):
def _test_dynamic(self, fn, trace_inputs, test_inputs, assert_eq=True):
"""
Tests fn traced with trace_inputs against test_inputs
Also returns shape env
"""
trace_inputs = [torch.randn(shape) for shape in trace_inputs]
traced_f = make_fx(fn, tracing_mode="symbolic")(*trace_inputs)
for input in test_inputs:
input = [torch.randn(shape) for shape in input]
rx, ry = traced_f(*input), fn(*input)
if assert_eq:
self.assertEqual(rx, ry)
return traced_f.shape_env
def test_unary(self):
def f(x):
assert x.shape[0] < 20
return x.cos()
test_inputs = []
test_inputs.append([(2, 5)])
test_inputs.append([(6, 8)])
shape_env = self._test_dynamic(f, [(3, 4)], test_inputs)
self.assertTrue(shape_env.evaluate_guards_for_args(torch.randn(4, 5)))
self.assertFalse(shape_env.evaluate_guards_for_args(torch.randn(25, 5)))
assert len(shape_env.guards) == 1
def test_binary_broadcast(self):
def f(a, b):
c = a * b
return c
test_inputs = []
test_inputs.append([(1, 5), (3, 1)])
test_inputs.append([(1, 4), (4, 1)])
shape_env = self._test_dynamic(f, [(1, 2), (3, 1)], test_inputs)
assert len(shape_env.guards) == 0
def test_multiply_shape(self):
def f(a):
return torch.empty(a.shape[0] * 2)
r = str(make_fx(f, tracing_mode="symbolic")(torch.empty(4)).code).strip()
self.assertExpectedInline(r, """\
def forward(self, a_1):
size = a_1.size(0); a_1 = None
mul = size * 2; size = None
empty = torch.ops.aten.empty.SymInt([mul], device = device(type='cpu'), pin_memory = False); mul = None
size_1 = empty.size(0)
return empty""")
def test_cat(self):
def f(a, b):
val = torch.mul(a, b)
out = torch.cat([val, val])
if out.shape[0] * out.shape[1] > 20:
out = out.cos()
return out
test_inputs = []
test_inputs.append([(1, 5), (6, 1)])
test_inputs.append([(1, 4), (3, 1)])
shape_env = self._test_dynamic(f, [(1, 6), (8, 1)], test_inputs)
self.assertTrue(shape_env.evaluate_guards_for_args(torch.randn(1, 10), torch.randn(6, 1)))
self.assertFalse(shape_env.evaluate_guards_for_args(torch.randn(1, 2), torch.randn(4, 1)))
assert len(shape_env.guards) == 1
def test_new_empty(self):
def f(a, b):
return a.new_empty(b.shape[0], b.shape[1] * 2)
self._test_dynamic(f, [(2, 4), (4, 5)], [[(2, 3), (5, 7)], [(3, 7), (9, 3)]], assert_eq=False)
def test_expand(self):
def f(a):
b = torch.mul(a, a)
c = b.expand(a.shape)
return c
self._test_dynamic(f, [(3,)], [[(3,)], [(4,)], [(2,)]])
self._test_dynamic(f, [(5, 1)], [[(4, 1)], [(3, 1)], [(6, 1)]])
make_fx_failures = {
# unknown
xfail('allclose'),
xfail('equal'),
xfail('linalg.eigvals'),
xfail('nn.functional.max_pool1d', device_type='cpu'),
# empty
skip('new_empty'),
skip('empty_like'),
skip('empty'),
# flaky
skip('linalg.lstsq', 'grad_oriented'),
skip('nn.functional.max_unpool1d', '', device_type='cpu'),
skip('nn.functional.max_unpool2d', '', device_type='cpu'),
skip('nn.functional.max_unpool3d', '', device_type='cpu'),
skip('linalg.lstsq'), # flaky, probably just a precision issue
# data-dependent control flow
xfail('cov'),
xfail('istft'),
xfail('nn.functional.gaussian_nll_loss'),
xfail('tensor_split'),
xfail('corrcoef'),
xfail('quantile'),
xfail('nanquantile'),
# Seems like it's creating a sparse tensor that isn't captured by tensor.is_sparse
xfail('sparse.sampled_addmm'),
# ???
xfail('nn.functional.ctc_loss'),
# proxy tensor doesn't support sparse correctly right now
skip('to_sparse'),
# segfaults
skip('block_diag'),
}
fake_tensor_failures = {
# FakeTensor fallback doesn't work
xfail('segment_reduce', 'lengths'),
xfail('multinomial'),
xfail('mvlgamma', 'mvlgamma_p_1'),
xfail('mvlgamma', 'mvlgamma_p_3'),
xfail('mvlgamma', 'mvlgamma_p_5'),
xfail('cholesky'),
xfail('cholesky_inverse'),
# ASAN failures due to divide by 0
skip('nn.functional.nll_loss'),
}
symbolic_tensor_failures = {
# Needs complex-value support
xfail('polar'),
xfail('complex'),
xfail('linalg.eig'),
xfail('__getitem__', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('__rmatmul__', ''), # aten.new_empty.default - couldn't find symbolic meta function/decomposition
xfail('__rpow__', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('_masked.amax', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('_masked.amin', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('_masked.argmax', ''), # aten.argmax.default - couldn't find symbolic meta function/decomposition
xfail('_masked.argmin', ''), # aten.argmin.default - couldn't find symbolic meta function/decomposition
xfail('_masked.cumprod', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('_masked.cumsum', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('_masked.log_softmax', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('_masked.logaddexp', ''), # aten.logaddexp.default - couldn't find symbolic meta function/decomposition
xfail('_masked.logsumexp', ''), # Tensors of type TensorImpl do not have numel
xfail('_masked.mean', ''), # ones() received an invalid combination of arguments - got (torch.Size, device=torch.device, ...
xfail('_masked.median', ''), # aten.nanmedian.dim - couldn't find symbolic meta function/decomposition
xfail('_masked.norm', ''), # aten.linalg_vector_norm.default - couldn't find symbolic meta function/decomposition
xfail('_masked.normalize', ''), # aten.linalg_vector_norm.default - couldn't find symbolic meta function/decomposition
xfail('_masked.prod', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('_masked.softmax', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('_masked.softmin', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('_masked.std', ''), # ones() received an invalid combination of arguments - got (torch.Size, device=torch.device, d...
xfail('_masked.sum', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('_masked.var', ''), # ones() received an invalid combination of arguments - got (torch.Size, device=torch.device, d...
xfail('addbmm', ''), # aten.addbmm.default - couldn't find symbolic meta function/decomposition
xfail('addmm', ''), # aten.mm.default - couldn't find symbolic meta function/decomposition
xfail('addmm', 'decomposed'), # aten.mm.default - couldn't find symbolic meta function/decomposition
xfail('addmv', ''), # aten.addmv.default - couldn't find symbolic meta function/decomposition
xfail('addr', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('all', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type promotion!
xfail('aminmax', ''), # aten.aminmax.default - couldn't find symbolic meta function/decomposition
xfail('argmax', ''), # aten.argmax.default - couldn't find symbolic meta function/decomposition
xfail('argmin', ''), # aten.argmin.default - couldn't find symbolic meta function/decomposition
xfail('argsort', ''), # aten.sort.default - couldn't find symbolic meta function/decomposition
xfail('argwhere', ''), # aten.nonzero.default - couldn't find symbolic meta function/decomposition
xfail('as_strided', ''), # aten.as_strided.default - couldn't find symbolic meta function/decomposition
xfail('as_strided_scatter', ''), # aten.as_strided_scatter.default - couldn't find symbolic meta function/decomposition
xfail('baddbmm', ''), # aten.baddbmm.default - couldn't find symbolic meta function/decomposition
xfail('bernoulli', ''), # aten.bernoulli.default - couldn't find symbolic meta function/decomposition
xfail('bfloat16', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('bmm', ''), # aten.bmm.default - couldn't find symbolic meta function/decomposition
xfail('bool', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('broadcast_tensors', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('bucketize', ''), # aten.bucketize.Tensor - couldn't find symbolic meta function/decomposition
xfail('byte', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('cartesian_prod', ''), # Tensors of type TensorImpl do not have numel
xfail('cdist', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('chalf', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('char', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('cholesky_solve', ''), # Could not run 'aten::_cholesky_solve_helper' with arguments from the 'Meta' back...
xfail('chunk', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('clamp_max', ''), # Received type <class 'NoneType'> that is neither a tensor or a number!
xfail('clone', ''), # aten.clone.default - couldn't find symbolic meta function/decomposition
xfail('column_stack', ''), # Tensors of type TensorImpl do not have numel
xfail('constant_pad_nd', ''), # aten.fill.Scalar - couldn't find symbolic meta function/decomposition
xfail('count_nonzero', ''), # Could not run 'aten::count_nonzero.dim_IntList' with arguments from the 'Meta' ba...
xfail('cross', ''), # aten.linalg_cross.default - couldn't find symbolic meta function/decomposition
xfail('cummax', ''), # aten.cummax.default - couldn't find symbolic meta function/decomposition
xfail('cummin', ''), # aten.cummin.default - couldn't find symbolic meta function/decomposition
xfail('cumprod', ''), # aten.cumprod.default - couldn't find symbolic meta function/decomposition
xfail('cumsum', ''), # aten.cumsum.default - couldn't find symbolic meta function/decomposition
xfail('cumulative_trapezoid', ''), # aten.slice.Tensor - couldn't find symbolic meta function/decomposition
xfail('deg2rad', ''), # aten.deg2rad.default - couldn't find symbolic meta function/decomposition
xfail('diag_embed', ''), # aten.diag_embed.default - couldn't find symbolic meta function/decomposition
xfail('diagflat', ''), # Tensors of type TensorImpl do not have numel
xfail('diagonal', ''), # aten.diagonal.default - couldn't find symbolic meta function/decomposition
xfail('diagonal_scatter', ''), # aten.diagonal_scatter.default - couldn't find symbolic meta function/decomposition
xfail('diff', ''), # aten.empty_like.default - couldn't find symbolic meta function/decomposition
xfail('dist', ''), # aten.dist.default - couldn't find symbolic meta function/decomposition
xfail('double', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('dsplit', ''), # aten.slice.Tensor - couldn't find symbolic meta function/decomposition
xfail('eig', ''), # aten.eig.default - couldn't find symbolic meta function/decomposition
xfail('einsum', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('expand_as', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.fft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.fft', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.fftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.fftshift', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.hfft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.hfft', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('fft.hfftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.ifft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.ifft', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.ifftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.ifftshift', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.ihfft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.ihfft', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.ihfftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.irfft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.irfft', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('fft.irfftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.rfft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.rfft', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.rfftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fill', ''), # The underlying op of 'aten.stride' has no overload name '_schema'
xfail('flatten', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('unflatten', ''), # RuntimeError: Trying to call aten.size on a tensor with symbolic shapes...
xfail('float', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('float_power', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('frexp', ''), # aten.frexp.Tensor - couldn't find symbolic meta function/decomposition
xfail('full_like', ''), # aten.full_like.default - couldn't find symbolic meta function/decomposition
xfail('gather', ''), # aten.gather.default - couldn't find symbolic meta function/decomposition
xfail('geqrf', ''), # aten.geqrf.default - couldn't find symbolic meta function/decomposition
xfail('gradient', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('half', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('histc', ''), # Could not run 'aten::histc' with arguments from the 'Meta' backend. This could be because...
xfail('histogram', ''), # Could not run 'aten::histogram.bin_ct' with arguments from the 'Meta' backend. This c...
xfail('histogramdd', ''), # aten._histogramdd_bin_edges.default - couldn't find symbolic meta function/decomposition
xfail('hsplit', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('i0', ''), # aten.i0.default - couldn't find symbolic meta function/decomposition
xfail('index_add', ''), # Float
xfail('index_copy', ''), # Expected a long tensor for index, but got Float
xfail('index_fill', ''), # aten.index_fill.int_Scalar - couldn't find symbolic meta function/decomposition
xfail('index_put', ''), # aten.index_put.default - couldn't find symbolic meta function/decomposition
xfail('index_reduce', ''), # Float
xfail('inner', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('int', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('inverse', ''), # Tensors of type TensorImpl do not have numel
xfail('isclose', ''), # The underlying op of 'aten.stride' has no overload name '_schema'
xfail('isin', ''), # aten.isin.Tensor_Tensor - couldn't find symbolic meta function/decomposition
xfail('isreal', ''), # aten.empty_like.default - couldn't find symbolic meta function/decomposition
xfail('kron', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('kthvalue', ''), # aten.kthvalue.default - couldn't find symbolic meta function/decomposition
xfail('lerp', ''), # aten.lerp.Scalar - couldn't find symbolic meta function/decomposition
xfail('linalg.cholesky', ''), # aten.linalg_cholesky_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.cholesky_ex', ''), # aten.linalg_cholesky_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.cond', ''), # Tensors of type TensorImpl do not have numel
xfail('linalg.cross', ''), # aten.linalg_cross.default - couldn't find symbolic meta function/decomposition
xfail('linalg.det', ''), # aten._linalg_det.default - couldn't find symbolic meta function/decomposition
xfail('linalg.eigh', ''), # aten._linalg_eigh.default - couldn't find symbolic meta function/decomposition
xfail('linalg.eigvalsh', ''), # aten._linalg_eigh.default - couldn't find symbolic meta function/decomposition
xfail('linalg.householder_product', ''), # aten.linalg_householder_product.default - couldn't find symbolic meta funct...
xfail('linalg.inv', ''), # aten.linalg_inv_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.inv_ex', ''), # aten.linalg_inv_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.ldl_factor', ''), # aten.linalg_ldl_factor_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.ldl_factor_ex', ''), # aten.linalg_ldl_factor_ex.default - couldn't find symbolic meta function/decompos...
xfail('linalg.ldl_solve', ''), # aten.linalg_ldl_solve.default - couldn't find symbolic meta function/decomposition
xfail('linalg.lu', ''), # aten.linalg_lu.default - couldn't find symbolic meta function/decomposition
xfail('linalg.lu_factor', ''), # aten.linalg_lu_factor_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.lu_factor_ex', ''), # aten.linalg_lu_factor_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.lu_solve', ''), # aten.linalg_lu_solve.default - couldn't find symbolic meta function/decomposition
xfail('linalg.matrix_power'), # RuntimeError: Trying to call aten.size on a tensor with symbolic shape
xfail('linalg.matrix_norm', ''), # aten.linalg_vector_norm.default - couldn't find symbolic meta function/decomposition
xfail('linalg.matrix_rank', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('linalg.matrix_rank', 'hermitian'), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('linalg.multi_dot', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('linalg.norm', ''), # TensorImpl do not have numel
xfail('linalg.norm', 'subgradients_at_zero'), # TensorImpl do not have numel
xfail('linalg.pinv', ''), # aten.linalg_pinv.atol_rtol_tensor - couldn't find symbolic meta function/decomposition
xfail('linalg.pinv', 'singular'), # aten.linalg_cholesky_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.pinv', 'hermitian'), # aten.linalg_pinv.atol_rtol_tensor - couldn't find symbolic meta function/decompo...
xfail('linalg.qr', ''), # aten.linalg_qr.default - couldn't find symbolic meta function/decomposition
xfail('linalg.slogdet', ''), # aten._linalg_slogdet.default - couldn't find symbolic meta function/decomposition
xfail('linalg.solve', ''), # aten._linalg_solve_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.solve_ex', ''), # aten._linalg_solve_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.solve_triangular', ''), # aten.linalg_solve_triangular.default - couldn't find symbolic meta function/de...
xfail('linalg.svd', ''), # aten._linalg_svd.default - couldn't find symbolic meta function/decomposition
xfail('linalg.svdvals', ''), # aten._linalg_svd.default - couldn't find symbolic meta function/decomposition
xfail('linalg.tensorinv', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('linalg.tensorsolve', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('linalg.vander', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('linalg.vecdot', ''), # Could not run 'aten::vdot' with arguments from the 'Meta' backend. This could be ...
xfail('linalg.vector_norm', ''), # TensorImpl do not have numel
xfail('log_softmax', 'dtype'), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('logaddexp2', ''), # aten.logaddexp2.default - couldn't find symbolic meta function/decomposition
xfail('logaddexp', ''), # aten.logaddexp.default - couldn't find symbolic meta function/decomposition
xfail('logcumsumexp', ''), # aten.logcumsumexp.default - couldn't find symbolic meta function/decomposition
xfail('logdet', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('long', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('lu', ''), # aten.linalg_lu_factor_ex.default - couldn't find symbolic meta function/decomposition
xfail('lu_solve', ''), # aten.linalg_lu_solve.default - couldn't find symbolic meta function/decomposition
xfail('lu_unpack', ''), # aten.lu_unpack.default - couldn't find symbolic meta function/decomposition
xfail('masked_fill', ''), # expected predicate to be bool, got torch.float32
xfail('masked_scatter', ''), # aten.masked_scatter.default - couldn't find symbolic meta function/decomposition
xfail('masked_select', ''), # aten.masked_select.default - couldn't find symbolic meta function/decomposition
xfail('matmul', ''), # aten.new_empty.default - couldn't find symbolic meta function/decomposition
xfail('matrix_exp', ''), # aten.linalg_matrix_exp.default - couldn't find symbolic meta function/decomposition
xfail('max', 'reduction_with_dim'), # aten.max.dim - couldn't find symbolic meta function/decomposition
xfail('mean', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type promotion!
xfail('median', ''), # Could not run 'aten::median' with arguments from the 'Meta' backend. This could be becau...
xfail('meshgrid', 'list_of_tensors'), # Tensors of type TensorImpl do not have numel
xfail('meshgrid', 'variadic_tensors'), # Tensors of type TensorImpl do not have numel
xfail('min', 'reduction_with_dim'), # aten.min.dim - couldn't find symbolic meta function/decomposition
xfail('mm', ''), # aten.mm.default - couldn't find symbolic meta function/decomposition
xfail('mode', ''), # aten.mode.default - couldn't find symbolic meta function/decomposition
xfail('msort', ''), # aten.sort.default - couldn't find symbolic meta function/decomposition
xfail('mv', ''), # aten.mv.default - couldn't find symbolic meta function/decomposition
xfail('nanmean', ''), # The underlying op of 'aten.stride' has no overload name '_schema'
xfail('nanquantile', ''), # Could not run 'aten::equal' with arguments from the 'Meta' backend.
xfail('narrow', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('native_layer_norm', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type promot...
xfail('nn.functional.adaptive_avg_pool1d', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.adaptive_avg_pool2d', ''), # argument 'size' must be tuple of ints, but found element o...
xfail('nn.functional.adaptive_avg_pool3d', ''), # aten._adaptive_avg_pool3d.default - couldn't find symbolic meta func...
xfail('nn.functional.adaptive_max_pool1d', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.adaptive_max_pool2d', ''), # aten.adaptive_max_pool2d.default - couldn't find symbolic meta funct...
xfail('nn.functional.adaptive_max_pool3d', ''), # argument 'output_size' (position 2) must be tupl...
xfail('nn.functional.avg_pool1d', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.avg_pool2d', ''), # aten.avg_pool2d.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.avg_pool3d', ''), # aten.avg_pool3d.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.batch_norm', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.bilinear', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.binary_cross_entropy', ''), # aten.new_empty.default - couldn't find symbolic meta function/decom...
xfail('nn.functional.binary_cross_entropy_with_logits', ''), # aten.binary_cross_entropy_with_logits.default - couldn'...
xfail('nn.functional.conv1d', ''), # aten.convolution.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.conv2d', ''), # aten.convolution.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.conv_transpose1d', ''), # aten.convolution.default - couldn't find symbolic meta function/decompo...
xfail('nn.functional.conv_transpose2d', ''), # aten.convolution.default - couldn't find symbolic meta function/decompo...
xfail('nn.functional.conv_transpose3d', ''), # aten.convolution.default - couldn't find symbolic meta function/decompo...
xfail('nn.functional.cosine_embedding_loss', ''), # The underlying op of 'aten.stride' has no overload name '_schema'
xfail('nn.functional.cosine_similarity', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.cross_entropy', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.dropout2d', ''), # Tensors of type TensorImpl do not have numel
xfail('nn.functional.dropout3d', ''), # Tensors of type TensorImpl do not have numel
xfail('nn.functional.dropout', ''), # Tensors of type TensorImpl do not have numel
xfail('nn.functional.embedding_bag', ''), # aten._embedding_bag_forward_only.default - couldn't find symbolic meta fun...
xfail('nn.functional.embedding', ''), # argument 'size' must be tuple of ints, but found element of type tor...
xfail('nn.functional.feature_alpha_dropout', 'with_train'), # Tensors of type TensorImpl do not have numel
xfail('nn.functional.fractional_max_pool2d', ''), # argument 'size' must be tuple of ints, but found element of t...
xfail('nn.functional.fractional_max_pool3d', ''), # argument 'size' must be tuple of ints, but found element of t...
xfail('nn.functional.glu', ''), # aten.glu.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.grid_sample', ''), # aten.grid_sampler_2d.default - couldn't find symbolic meta function/decompos...
xfail('nn.functional.group_norm', ''), # 'torch._C.SymIntNode' and 'int'
xfail('nn.functional.hardsigmoid', ''), # Received type <class 'NoneType'> that is neither a tensor or a number!
xfail('nn.functional.hardswish', ''), # Received type <class 'NoneType'> that is neither a tensor or a number!
xfail('nn.functional.hinge_embedding_loss', ''), # aten.empty_like.default - couldn't find symbolic meta function/deco...
xfail('nn.functional.huber_loss', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.instance_norm', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.interpolate', 'area'), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.interpolate', 'bicubic'), # aten.upsample_bicubic2d.vec - couldn't find symbolic meta function/d...
xfail('nn.functional.interpolate', 'bilinear'), # aten.upsample_bilinear2d.vec - couldn't find symbolic meta function...
xfail('nn.functional.interpolate', 'linear'), # aten.upsample_linear1d.vec - couldn't find symbolic meta function/dec...
xfail('nn.functional.interpolate', 'nearest'), # aten.upsample_nearest1d.vec - couldn't find symbolic meta function/d...
xfail('nn.functional.interpolate', 'trilinear'), # aten.upsample_trilinear3d.vec - couldn't find symbolic meta functi...
xfail('nn.functional.kl_div', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type pro...
xfail('nn.functional.l1_loss', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.layer_norm', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type...
xfail('nn.functional.linear', ''), # aten.mv.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.local_response_norm', ''), # Tensors of type TensorImpl do not have numel
xfail('nn.functional.margin_ranking_loss', ''), # The underlying op of 'aten.stride' has no overload name '_schema'
xfail('nn.functional.max_pool2d', ''), # aten.max_pool2d_with_indices.default - couldn't find symbolic meta function/d...
xfail('nn.functional.max_pool3d', ''), # aten.max_pool3d_with_indices.default - couldn't find symbolic meta function/d...
xfail('nn.functional.max_unpool1d', 'grad'), # aten.max_unpool2d.default - couldn't find symbolic meta function/decom...
xfail('nn.functional.max_unpool2d', 'grad'), # aten.max_unpool2d.default - couldn't find symbolic meta function/decom...
xfail('nn.functional.max_unpool3d', 'grad'), # aten.max_unpool3d.default - couldn't find symbolic meta function/decom...
xfail('nn.functional.mse_loss', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.multi_margin_loss', ''), # Could not run 'aten::multi_margin_loss' with arguments from the...
xfail('nn.functional.multilabel_margin_loss', ''), # Could not run 'aten::multilabel_margin_loss_forward' with ...
xfail('nn.functional.multilabel_soft_margin_loss', ''), # aten.new_empty.default - couldn't find symbolic meta functio...
xfail('nn.functional.normalize', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.pad', 'circular'), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.pad', 'constant'), # aten.fill.Scalar - couldn't find symbolic meta function/decomposition
xfail('nn.functional.pad', 'reflect'), # aten.reflection_pad1d.default - couldn't find symbolic meta function/decompo...
xfail('nn.functional.pad', 'replicate'), # aten.replication_pad1d.default - couldn't find symbolic meta function/deco...
xfail('nn.functional.pdist', ''), # Could not run 'aten::_pdist_forward' with arguments from the 'Meta' backend...
xfail('nn.functional.pixel_shuffle', ''), # aten.pixel_shuffle.default - couldn't find symbolic meta function/decompos...
xfail('nn.functional.pixel_unshuffle', ''), # aten.pixel_unshuffle.default - couldn't find symbolic meta function/deco...
xfail('nn.functional.poisson_nll_loss', ''), # The underlying op of 'aten.stride' has no overload name '_schema'
xfail('nn.functional.rrelu', ''), # aten.empty_like.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.smooth_l1_loss', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.soft_margin_loss', ''), # aten.soft_margin_loss.default - couldn't find symbolic meta function/de...
xfail('nn.functional.softmin', 'with_dtype'), # aten._to_copy.default - couldn't find symbolic meta function/decompos...
xfail('nn.functional.triplet_margin_loss', ''), # Unexpected type <class 'torch.SymIntNode'> when computing element...
xfail('nn.functional.triplet_margin_with_distance_loss', ''), # Unexpected type <class 'torch.SymIntNode'> when com...
xfail('nn.functional.unfold', ''), # aten.im2col.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.upsample_bilinear', ''), # aten.upsample_bilinear2d.vec - couldn't find symbolic meta function/de...
xfail('nn.functional.upsample_nearest', ''), # aten.upsample_nearest1d.vec - couldn't find symbolic meta function/deco...
xfail('norm', ''), # TensorImpl does not have numel
xfail('norm', 'nuc'), # aten._linalg_svd.default - couldn't find symbolic meta function/decomposition
xfail('normal', ''), # aten.normal.Tensor_Tensor - couldn't find symbolic meta function/decomposition
xfail('normal', 'number_mean'), # aten.normal.float_Tensor - couldn't find symbolic meta function/decomposition
xfail('ones_like', ''), # aten.ones_like.default - couldn't find symbolic meta function/decomposition
xfail('ormqr', ''), # aten.ormqr.default - couldn't find symbolic meta function/decomposition
xfail('outer', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('pca_lowrank', ''), # aten.mm.default - couldn't find symbolic meta function/decomposition
xfail('pinverse', ''), # aten.linalg_pinv.atol_rtol_tensor - couldn't find symbolic meta function/decomposition
xfail('polygamma', 'polygamma_n_0'), # aten.polygamma.default - couldn't find symbolic meta function/decomposition
xfail('polygamma', 'polygamma_n_1'), # aten.polygamma.default - couldn't find symbolic meta function/decomposition
xfail('polygamma', 'polygamma_n_2'), # aten.polygamma.default - couldn't find symbolic meta function/decomposition
xfail('polygamma', 'polygamma_n_3'), # aten.polygamma.default - couldn't find symbolic meta function/decomposition
xfail('polygamma', 'polygamma_n_4'), # aten.polygamma.default - couldn't find symbolic meta function/decomposition
xfail('put', ''), # aten.clone.default - couldn't find symbolic meta function/decomposition
xfail('quantile', ''), # Could not run 'aten::equal' with arguments from the 'Meta' backend.
xfail('qr', ''), # aten.linalg_qr.default - couldn't find symbolic meta function/decomposition
xfail('rad2deg', ''), # aten.rad2deg.default - couldn't find symbolic meta function/decomposition
xfail('rand_like', ''), # aten.randn_like.default - couldn't find symbolic meta function/decomposition
xfail('randint_like', ''), # aten.randint_like.default - couldn't find symbolic meta function/decomposition
xfail('randn_like', ''), # aten.randn_like.default - couldn't find symbolic meta function/decomposition
xfail('ravel', ''), # Tensors of type TensorImpl do not have numel
xfail('renorm', ''), # aten.renorm.default - couldn't find symbolic meta function/decomposition
xfail('repeat', ''), # aten.repeat.default - couldn't find symbolic meta function/decomposition
xfail('reshape_as', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('reshape', ''), # Tensors of type TensorImpl do not have numel
xfail('resize_', ''), # aten.clone.default - couldn't find symbolic meta function/decomposition
xfail('resize_as_', ''), # aten.clone.default - couldn't find symbolic meta function/decomposition
xfail('roll', ''), # Tensors of type TensorImpl do not have numel
xfail('rot90', ''), # aten.empty_like.default - couldn't find symbolic meta function/decomposition
xfail('round', ''), # aten.round.default - couldn't find symbolic meta function/decomposition
xfail('round', 'decimals_0'), # aten.round.decimals - couldn't find symbolic meta function/decomposition
xfail('round', 'decimals_3'), # aten.round.decimals - couldn't find symbolic meta function/decomposition
xfail('round', 'decimals_neg_3'), # aten.round.decimals - couldn't find symbolic meta function/decomposition
xfail('scatter_add', ''), # aten.scatter_add.default - couldn't find symbolic meta function/decomposition
xfail('scatter', ''), # aten.scatter.src - couldn't find symbolic meta function/decomposition
xfail('scatter_reduce', 'amax'), # aten.scatter_reduce.two - couldn't find symbolic meta function/decomposition
xfail('scatter_reduce', 'amin'), # aten.scatter_reduce.two - couldn't find symbolic meta function/decomposition
xfail('scatter_reduce', 'mean'), # aten.scatter_reduce.two - couldn't find symbolic meta function/decomposition
xfail('scatter_reduce', 'prod'), # aten.scatter_reduce.two - couldn't find symbolic meta function/decomposition
xfail('scatter_reduce', 'sum'), # aten.scatter_reduce.two - couldn't find symbolic meta function/decomposition
xfail('searchsorted', ''), # Could not run 'aten::searchsorted.Tensor' with arguments from the 'Meta' backend. ...
xfail('segment_reduce', 'offsets'), # aten.segment_reduce.default - couldn't find symbolic meta function/decomposition
xfail('select', ''), # aten.select.int - couldn't find symbolic meta function/decomposition
xfail('select_scatter', ''), # aten.select_scatter.default - couldn't find symbolic meta function/decomposition
xfail('sgn', ''), # aten.sgn.default - couldn't find symbolic meta function/decomposition
xfail('short', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('sinc', ''), # aten.sinc.default - couldn't find symbolic meta function/decomposition
xfail('slice_scatter', ''), # aten.slice_scatter.default - couldn't find symbolic meta function/decomposition
xfail('softmax', 'with_dtype'), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('sort', ''), # aten.sort.default - couldn't find symbolic meta function/decomposition
xfail('special.airy_ai', ''), # aten.special_airy_ai.default - couldn't find symbolic meta function/decomposition
xfail('special.bessel_j0', ''), # aten.special_bessel_j0.default - couldn't find symbolic meta function/decomposition
xfail('special.bessel_j1', ''), # aten.special_bessel_j1.default - couldn't find symbolic meta function/decomposition
xfail('special.bessel_y0', ''), # aten.special_bessel_y0.default - couldn't find symbolic meta function/decomposition
xfail('special.bessel_y1', ''), # aten.special_bessel_y1.default - couldn't find symbolic meta function/decomposition
xfail('special.chebyshev_polynomial_t', ''), # aten.special_chebyshev_polynomial_t.default - couldn't find symbolic me...
xfail('special.chebyshev_polynomial_u', ''), # aten.special_chebyshev_polynomial_u.default - couldn't find symbolic me...
xfail('special.entr', ''), # aten.special_entr.default - couldn't find symbolic meta function/decomposition
xfail('special.erfcx', ''), # aten.special_erfcx.default - couldn't find symbolic meta function/decomposition
xfail('special.hermite_polynomial_h', ''), # aten.special_hermite_polynomial_h.default - couldn't find symbolic meta f...
xfail('special.hermite_polynomial_he', ''), # aten.special_hermite_polynomial_he.default - couldn't find symbolic meta...
xfail('special.laguerre_polynomial_l', ''), # aten.special_laguerre_polynomial_l.default - couldn't find symbolic meta...
xfail('special.log_ndtr', ''), # aten.special_log_ndtr.default - couldn't find symbolic meta function/decomposition
xfail('special.modified_bessel_i0', ''), # aten.special_modified_bessel_i0.default - couldn't find symbolic meta funct...
xfail('special.modified_bessel_i1', ''), # aten.special_modified_bessel_i1.default - couldn't find symbolic meta funct...
xfail('special.modified_bessel_k0', ''), # aten.special_modified_bessel_k0.default - couldn't find symbolic meta funct...
xfail('special.modified_bessel_k1', ''), # aten.special_modified_bessel_k1.default - couldn't find symbolic meta funct...
xfail('special.ndtri', ''), # aten.special_ndtri.default - couldn't find symbolic meta function/decomposition
xfail('special.polygamma', 'special_polygamma_n_0'), # aten.polygamma.default - couldn't find symbolic meta function/...
xfail('special.scaled_modified_bessel_k0', ''), # aten.special_scaled_modified_bessel_k0.default - couldn't find symbo...
xfail('special.scaled_modified_bessel_k1', ''), # aten.special_scaled_modified_bessel_k1.default - couldn't find symbo...
xfail('special.spherical_bessel_j0', ''), # aten.special_spherical_bessel_j0.default - couldn't find symbolic meta fun...
xfail('special.xlog1py', ''), # aten.special_xlog1py.default - couldn't find symbolic meta function/decomposition
xfail('split', ''), # 'torch._C.SymIntNode' and 'int'
xfail('split', 'list_args'), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('split_with_sizes', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('stack', ''), # argument 'size' must be tuple of ints, but found element of type torch._C.SymIntNode a...
xfail('std', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type promotion!
xfail('std_mean', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type promotion!
xfail('stft', ''), # argument 'size' must be tuple of ints, but found element of type torch._C.SymIntNode at...
xfail('sum_to_size', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('svd', ''), # aten._linalg_svd.default - couldn't find symbolic meta function/decomposition
xfail('svd_lowrank', ''), # aten.mm.default - couldn't find symbolic meta function/decomposition
xfail('symeig', ''), # aten.symeig.default - couldn't find symbolic meta function/decomposition
xfail('take_along_dim', ''), # dtype of indices should be Long but got Float
xfail('take', ''), # aten.take.default - couldn't find symbolic meta function/decomposition
xfail('tensordot', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('tile', ''), # aten.repeat.default - couldn't find symbolic meta function/decomposition
xfail('topk', ''), # aten.topk.default - couldn't find symbolic meta function/decomposition
xfail('trapz', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('trapezoid', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('triangular_solve', ''), # aten.triangular_solve.default - couldn't find symbolic meta function/decomposition
xfail('tril', ''), # aten.tril.default - couldn't find symbolic meta function/decomposition
xfail('triu', ''), # aten.triu.default - couldn't find symbolic meta function/decomposition
xfail('unfold', ''), # aten.unfold.default - couldn't find symbolic meta function/decomposition
xfail('var_mean', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type promotion!
xfail('var', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type promotion!
xfail('vdot', ''), # aten.vdot.default - couldn't find symbolic meta function/decomposition
xfail('view_as_complex', ''), # aten.view_as_complex.default - couldn't find symbolic meta function/decomposition
xfail('view_as', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('view', ''), # Tensors of type TensorImpl do not have numel
xfail('vsplit', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('where', ''), # expected predicate to be bool, got torch.float32
xfail('zero_', ''), # aten.clone.default - couldn't find symbolic meta function/decomposition
xfail('zeros_like', ''), # aten.zeros_like.default - couldn't find symbolic meta function/decomposition
xfail('unbind', ''), # aten.unbind.int - couldn't find symbolic meta function/decomposition
}
def _test_make_fx_helper(self, device, dtype, op, tracing_mode):
def f(args, kwargs):
return op.op(*args, **kwargs)
sample_inputs_itr = op.sample_inputs(device, dtype, requires_grad=False)
new_f = None
for sample_input in sample_inputs_itr:
args = [sample_input.input] + list(sample_input.args)
kwargs = sample_input.kwargs
try:
new_f = make_fx(f, tracing_mode=tracing_mode)(args, kwargs)
except DynamicOutputShapeException as e:
self.skipTest("Dynamic output shape operation in trace")
for arg in args:
if isinstance(arg, torch.Tensor) and arg.dtype == torch.float:
arg.uniform_(0, 1)
try:
old_out = f(args, kwargs)
except Exception:
continue
new_out = wrapper_set_seed(new_f, args, kwargs)
self.assertEqual(new_out, old_out)
class TestProxyTensorOpInfo(TestCase):
@ops(op_db, allowed_dtypes=(torch.float,))
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_exhaustive', make_fx_failures)
def test_make_fx_exhaustive(self, device, dtype, op):
_test_make_fx_helper(self, device, dtype, op, "real")
@ops(op_db, allowed_dtypes=(torch.float,))
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_fake_exhaustive', make_fx_failures.union(fake_tensor_failures))
def test_make_fx_fake_exhaustive(self, device, dtype, op):
_test_make_fx_helper(self, device, dtype, op, "fake")
@skipIfNoSympy
@ops(op_db, allowed_dtypes=(torch.float,))
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_symbolic_exhaustive',
make_fx_failures | fake_tensor_failures | symbolic_tensor_failures)
def test_make_fx_symbolic_exhaustive(self, device, dtype, op):
_test_make_fx_helper(self, device, dtype, op, "symbolic")
only_for = ("cpu")
instantiate_device_type_tests(TestProxyTensorOpInfo, globals(), only_for=only_for)
if __name__ == '__main__':
run_tests()