pytorch/torch/csrc/utils/tensor_new.cpp
gchanan 4c81282c33
Introduce torch.layout and split layout from dtypes. (#6145)
* Introduce torch.layout and split layout from dtypes.

Tensors (and tensor types) now have a 'layout' attribute that returns either 'torch.strided' or 'torch.sparse_coo'.

Previously, dtypes were 1-to-1 with ATen types/PyTensorTypes; the impetus behind this decision was to make things easy in the common case
(i.e. specifying a type in a factory function).  But this doesn't really follow for sparity, which isn't a common case.

It also doesn't properly represent the concept or a dtype, which in numpy are proper scalar types (i.e. roughly the type returned from indexing the
last dimension of an n-d array).  But this should be the same whether or not the tensor is represented via strides, sparsity, etc.

This is accomplished by:
1) having the dtype of tensor return the (device-type, scalar-type) combination, i.e. torch.cuda.float32, so both
   torch.cuda.FloatTensor and torch.cuda.sparse.FloatTensor have the same dtype
2) Adding a layout parameter to python functions, where the combination of (dtype, layout) maps to an ATen type that is used for dispatch.

* Formatting, make init throw python_error.

* Fix cuda not enabled error message.

* Fix test.
2018-04-02 14:07:50 -04:00

506 lines
19 KiB
C++

#include <Python.h>
#include "tensor_new.h"
#include <ATen/ATen.h>
#include <ATen/Error.h>
#include <ATen/optional.h>
#include "torch/csrc/DynamicTypes.h"
#include "torch/csrc/Exceptions.h"
#include "torch/csrc/Size.h"
#include "torch/csrc/autograd/variable.h"
#include "torch/csrc/utils/auto_gil.h"
#include "torch/csrc/utils/auto_gpu.h"
#include "torch/csrc/utils/cuda_lazy_init.h"
#include "torch/csrc/utils/numpy_stub.h"
#include "torch/csrc/utils/python_arg_parser.h"
#include "torch/csrc/utils/python_numbers.h"
#include "torch/csrc/utils/python_scalars.h"
#include "torch/csrc/utils/python_strings.h"
#include "torch/csrc/utils/tensor_conversion_dispatch.h"
#include "torch/csrc/utils/tensor_numpy.h"
static const int MAX_DIMS = 128;
using namespace at;
namespace torch { namespace utils {
static void maybe_initialize_cuda(const at::Type &type) {
if (type.is_cuda()) {
torch::utils::cuda_lazy_init();
}
}
static Tensor dispatch_zeros(const Type& type, int device, IntList sizes) {
maybe_initialize_cuda(type);
AutoNoGIL no_gil;
AutoGPU auto_gpu(device);
return type.zeros(sizes);
}
static Tensor dispatch_ones(const Type& type, int device, IntList sizes) {
maybe_initialize_cuda(type);
AutoNoGIL no_gil;
AutoGPU auto_gpu(device);
return type.ones(sizes);
}
static Tensor dispatch_full(const Type& type, Scalar fill_value, int device, IntList sizes) {
maybe_initialize_cuda(type);
AutoNoGIL no_gil;
AutoGPU auto_gpu(device);
return type.full(sizes, fill_value);
}
static Tensor new_with_sizes(const Type& type, int device, IntList sizes) {
maybe_initialize_cuda(type);
AutoNoGIL no_gil;
AutoGPU auto_gpu(device);
return type.tensor(sizes);
}
static Tensor new_with_storage(const Type& type, Storage& storage) {
auto tensor = type.tensor();
tensor.set_(storage);
return tensor;
}
static Tensor new_with_tensor(const Type& type, Tensor other) {
if (other.type() != type) {
throw TypeError("expected %s (got %s)", type.toString(), other.type().toString());
}
return other.slice();
}
static Tensor new_with_type_conversion(const Type& type, Tensor other, int64_t device) {
return dispatch_type_conversion(other, type, device, false);
}
static Tensor new_with_tensor_copy(const Type& type, Tensor other, int64_t device) {
maybe_initialize_cuda(type);
AutoNoGIL no_gil;
AutoGPU auto_gpu(device);
return type.copy(other);
}
static std::vector<int64_t> compute_sizes(PyObject* seq) {
std::vector<int64_t> sizes;
THPObjectPtr handle;
while (PySequence_Check(seq)) {
auto length = PySequence_Length(seq);
if (length < 0) throw python_error();
sizes.push_back(length);
if (sizes.size() > MAX_DIMS) {
throw ValueError("too many dimensions '%s'", Py_TYPE(seq)->tp_name);
}
if (length == 0) break;
handle = THPObjectPtr(PySequence_GetItem(seq, 0));
seq = handle.get();
}
return sizes;
}
static ScalarType infer_scalar_type(PyObject *obj) {
if (PyFloat_Check(obj)) {
// this is always guaranteed to be a floating-point type, and makes it more
// convenient to write e.g. torch.tensor(0.) than torch.tensor(0., dtype=torch.Tensor.dtype).
return torch::tensor::get_default_tensor_type().scalarType();
}
if (THPUtils_checkLong(obj)) {
return ScalarType::Long;
}
if (PyBool_Check(obj)) {
// TODO: infer Bool when we have Bool ScalarType
return ScalarType::Byte;
}
if (THPVariable_Check(obj)) {
auto var = reinterpret_cast<THPVariable*>(obj)->cdata;
return var.type().scalarType();
}
#ifdef WITH_NUMPY
if (PyArray_Check(obj)) {
auto array = (PyArrayObject*)obj;
return numpy_dtype_to_aten(PyArray_TYPE(array));
}
#endif
if (PySequence_Check(obj)) {
at::optional<ScalarType> scalarType;
auto length = PySequence_Length(obj);
if (length < 0) throw python_error();
// match NumPy semantics, except use default tensor type instead of double.
if (length == 0) return torch::tensor::get_default_tensor_type().scalarType();
for (int i = 0; i < length; ++i) {
THPObjectPtr handle(PySequence_GetItem(obj, i));
if (!handle) throw python_error();
ScalarType item_scalarType = infer_scalar_type(handle.get());
scalarType = (scalarType) ?
at::promoteTypes(*scalarType, item_scalarType) : item_scalarType;
if (scalarType == ScalarType::Double) {
// this won't change (unless we hit undefined, but that will fail later).
return *scalarType;
}
}
return *scalarType;
}
AT_ERROR("Could not infer dtype of %s", Py_TYPE(obj)->tp_name);
}
static void recursive_store(char* data, IntList sizes, IntList strides, int64_t dim,
ScalarType scalarType, int elementSize, PyObject* obj) {
int64_t ndim = sizes.size();
if (dim == ndim) {
torch::utils::store_scalar(data, scalarType, obj);
return;
}
auto n = sizes[dim];
auto seq = THPObjectPtr(PySequence_Fast(obj, "not a sequence"));
if (!seq) throw python_error();
auto seq_size = PySequence_Fast_GET_SIZE(seq.get());
if (seq_size != n) {
throw ValueError("expected sequence of length %lld at dim %lld (got %lld)",
(long long)n, (long long)dim, (long long)seq_size);
}
PyObject** items = PySequence_Fast_ITEMS(seq.get());
for (int64_t i = 0; i < n; i++) {
recursive_store(data, sizes, strides, dim + 1, scalarType, elementSize, items[i]);
data += strides[dim] * elementSize;
}
}
static Tensor internal_new_from_data(const Type & type, int device, PyObject* data,
bool copy_variables, bool copy_numpy,
bool type_inference) {
if (THPUtils_checkString(data)) {
throw TypeError("new(): invalid data type '%s'", Py_TYPE(data)->tp_name);
}
if (THPVariable_Check(data)) {
auto var = reinterpret_cast<THPVariable*>(data)->cdata;
const auto& type_to_use = type_inference ? var.type() : type;
return copy_variables ? new_with_tensor_copy(type_to_use, var, device) :
new_with_type_conversion(type_to_use, var, device);
}
#ifdef WITH_NUMPY
if (PyArray_Check(data)) {
auto tensor = autograd::make_variable(tensor_from_numpy(data), /*requires_grad=*/false);
const auto& type_to_use = type_inference ? tensor.type() : type;
return copy_numpy ? new_with_tensor_copy(type_to_use, tensor, device) :
new_with_type_conversion(type_to_use, tensor, device);
}
#endif
auto sizes = compute_sizes(data);
ScalarType scalarType = type_inference ? infer_scalar_type(data) : type.scalarType();
auto tensor = autograd::make_variable(CPU(scalarType).tensor(sizes), /*requires_grad=*/false);
recursive_store(
(char*)tensor.data_ptr(), tensor.sizes(), tensor.strides(), 0,
scalarType, tensor.type().elementSizeInBytes(), data);
const auto& type_to_use = type_inference ? type.toScalarType(scalarType) : type;
return new_with_type_conversion(type_to_use, tensor, device);
}
Tensor legacy_new_from_data(const Type & type, int device, PyObject *data) {
return internal_new_from_data(type, device, data, false, false, false);
}
static Tensor new_from_data_copy(const Type & type, int device, PyObject *data) {
return internal_new_from_data(type, device, data, true, true, false);
}
static Tensor legacy_new_from_sequence(const Type & type, int device, PyObject* data) {
if (!PySequence_Check(data)) {
throw TypeError("new(): data must be a sequence (got %s)", Py_TYPE(data)->tp_name);
}
return legacy_new_from_data(type, device, data);
}
static Tensor legacy_sparse_tensor_ctor(const Type& type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"new(*, int64_t? device=-1)",
"new(IntList size, *, int64_t? device=-1)",
"new(*, int64_t cdata)|hidden",
"new(Tensor indices, Tensor values, *, int64_t? device=-1)",
"new(Tensor indices, Tensor values, IntList size, *, int64_t? device=-1)",
});
ParsedArgs<4> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
AutoGPU auto_gpu(r.toInt64(0));
return type.tensor();
} else if (r.idx == 1) {
PyObject* arg = r.pyobject(0);
if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) {
// new(sequence) binds to this signature but should be treated differently
// unless the sequences is a torch.Size
return legacy_new_from_sequence(type, r.toInt64(1), r.pyobject(0));
}
return new_with_sizes(type, r.toInt64(1), r.intlist(0));
} else if (r.idx == 2) {
auto cdata = reinterpret_cast<void*>(r.toInt64(0));
return type.unsafeTensorFromTH(cdata, true);
} else if (r.idx == 3) {
AutoGPU auto_gpu(r.toInt64(2));
return type.sparse_coo_tensor(r.tensor(0), r.tensor(1));
} else if (r.idx == 4) {
AutoGPU auto_gpu(r.toInt64(3));
return type.sparse_coo_tensor(r.tensor(0), r.tensor(1), r.intlist(2));
}
throw std::runtime_error("new(): invalid arguments");
}
Tensor legacy_tensor_ctor(const Type& type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"new(*, int64_t? device=-1)",
"new(IntList size, *, int64_t? device=-1)",
"new(Storage storage)",
"new(*, int64_t cdata)|hidden",
"new(Tensor other)",
"new(PyObject* data, *, int64_t? device=-1)",
});
if (type.is_sparse()) {
return legacy_sparse_tensor_ctor(type, args, kwargs);
}
ParsedArgs<2> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
AutoGPU auto_gpu(r.toInt64(0));
return type.tensor();
} else if (r.idx == 1) {
PyObject* arg = r.pyobject(0);
if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) {
// new(sequence) binds to this signature but should be treated differently
// unless the sequences is a torch.Size
return legacy_new_from_sequence(type, r.toInt64(1), r.pyobject(0));
}
return new_with_sizes(type, r.toInt64(1), r.intlist(0));
} else if (r.idx == 2) {
return new_with_storage(type, *r.storage(0));
} else if (r.idx == 3) {
auto cdata = reinterpret_cast<void*>(r.toInt64(0));
return type.unsafeTensorFromTH(cdata, true);
} else if (r.idx == 4) {
return new_with_tensor(type, r.tensor(0));
} else if (r.idx == 5) {
return legacy_new_from_sequence(type, r.toInt64(1), r.pyobject(0));
}
throw std::runtime_error("new(): invalid arguments");
}
static Tensor legacy_sparse_tensor_new(const Type& type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"new(*, int64_t? device=-1)",
"new(IntList size, *, int64_t? device=-1)",
"new(*, int64_t cdata)|hidden",
"new(Tensor indices, Tensor values, *, int64_t? device=-1)",
"new(Tensor indices, Tensor values, IntList size, *, int64_t? device=-1)",
});
ParsedArgs<5> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
AutoGPU auto_gpu(r.toInt64(0));
return type.tensor();
} else if (r.idx == 1) {
PyObject* arg = r.pyobject(0);
if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) {
// new(sequence) binds to this signature but should be treated differently
// unless the sequences is a torch.Size
return legacy_new_from_sequence(type, r.toInt64(1), r.pyobject(0));
}
return new_with_sizes(type, r.toInt64(1), r.intlist(0));
} else if (r.idx == 2) {
auto cdata = reinterpret_cast<void*>(r.toInt64(0));
return type.unsafeTensorFromTH(cdata, true);
} else if (r.idx == 3) {
// Note: this signature doesn't have a dtype, even though it has a device; it probably shouldn't
// have a device (we should infer it).
AutoGPU auto_gpu(r.toInt64(2));
return type.sparse_coo_tensor(r.tensor(0), r.tensor(1));
} else if (r.idx == 4) {
// Note: this signature doesn't have a dtype, even though it has a device; it probably shouldn't
// have a device (we should infer it).
AutoGPU auto_gpu(r.toInt64(3));
return type.sparse_coo_tensor(r.tensor(0), r.tensor(1), r.intlist(2));
}
throw std::runtime_error("new(): invalid arguments");
}
Tensor legacy_tensor_new(const Type& type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"new(*, int64_t? device=-1)",
"new(IntList size, *, int64_t? device=-1)",
"new(Storage storage)",
"new(*, int64_t cdata)|hidden",
"new(Tensor other)", // this doesn't have a dtype/device because it creates an alias.
"new(PyObject* data, *, int64_t? device=-1)",
});
if (type.is_sparse()) {
return legacy_sparse_tensor_new(type, args, kwargs);
}
ParsedArgs<3> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
AutoGPU auto_gpu(r.toInt64(0));
return type.tensor();
} else if (r.idx == 1) {
PyObject* arg = r.pyobject(0);
if (!THPSize_Check(arg) && PyTuple_GET_SIZE(args) >= 1 && arg == PyTuple_GET_ITEM(args, 0)) {
// new(sequence) binds to this signature but should be treated differently
// unless the sequences is a torch.Size
return legacy_new_from_sequence(type, r.toInt64(1), r.pyobject(0));
}
return new_with_sizes(type, r.toInt64(1), r.intlist(0));
} else if (r.idx == 2) {
return new_with_storage(type, *r.storage(0));
} else if (r.idx == 3) {
auto cdata = reinterpret_cast<void*>(r.toInt64(0));
return type.unsafeTensorFromTH(cdata, true);
} else if (r.idx == 4) {
return new_with_tensor(type, r.tensor(0));
} else if (r.idx == 5) {
return legacy_new_from_sequence(type, r.toInt64(1), r.pyobject(0));
}
throw std::runtime_error("new(): invalid arguments");
}
static const Type& typeWithDefault(PythonArgs& r, int64_t idx, const Type& type) {
auto dtype = r.dtypeWithDefault(idx, *torch::getDtype(type.scalarType(), type.is_cuda()));
return torch::getType(dtype, *torch::getLayout(type.backend()));
}
static Tensor set_requires_grad(Tensor self, bool requires_grad) {
static_cast<torch::autograd::Variable&>(self).set_requires_grad(requires_grad);
return self;
}
Tensor sparse_coo_tensor_ctor(const Type& type, PyObject* args, PyObject* kwargs) {
Backend sparse_backend = type.is_cuda() ? kSparseCUDA : kSparseCPU;
const auto& default_sparse_type = type.toBackend(sparse_backend);
static PythonArgParser parser({
"sparse_coo_tensor(PyObject* indices, PyObject* values, *, Dtype dtype=None, int64_t? device=-1, bool requires_grad=False)",
"sparse_coo_tensor(PyObject* indices, PyObject* values, IntList size, *, Dtype dtype=None, int64_t? device=-1, bool requires_grad=False)",
});
ParsedArgs<6> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
bool type_inference = r.isNone(2);
const auto& sparse_type = typeWithDefault(r, 2, default_sparse_type);
const auto& dense_type = sparse_type.toBackend(sparse_type.is_cuda() ? kCUDA : kCPU);
const auto& index_type = dense_type.toScalarType(kLong);
AutoGPU autogpu(r.toInt64(3));
// explanation of booleans: allow variables, do type conversion of them, copy numpy data
Tensor indices = internal_new_from_data(index_type, -1, r.pyobject(0), false, true, false);
Tensor values = internal_new_from_data(dense_type, -1, r.pyobject(1), false, true, type_inference);
const auto& sparse_type_to_use = values.type().toBackend(values.type().is_cuda() ? kSparseCUDA : kSparseCPU);
return set_requires_grad(sparse_type_to_use.sparse_coo_tensor(indices, values), r.toBool(4));
} else if (r.idx == 1) {
bool type_inference = r.isNone(3);
const auto& sparse_type = typeWithDefault(r, 3, default_sparse_type);
const auto& dense_type = sparse_type.toBackend(sparse_type.is_cuda() ? kCUDA : kCPU);
const auto& index_type = dense_type.toScalarType(kLong);
AutoGPU autogpu(r.toInt64(4));
// explanation of booleans: allow variables, do type conversion of them, copy numpy data
Tensor indices = internal_new_from_data(index_type, -1, r.pyobject(0), false, true, false);
Tensor values = internal_new_from_data(dense_type, -1, r.pyobject(1), false, true, type_inference);
const auto& sparse_type_to_use = values.type().toBackend(values.type().is_cuda() ? kSparseCUDA : kSparseCPU);
return set_requires_grad(sparse_type_to_use.sparse_coo_tensor(indices, values, r.intlist(2)), r.toBool(5));
}
throw std::runtime_error("sparse_coo_tensor(): invalid arguments");
}
Tensor tensor_ctor(const Type& type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"tensor(PyObject* data, *, Dtype dtype=None, int64_t? device=-1, bool requires_grad=False)",
});
ParsedArgs<4> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
bool type_inference = r.isNone(1);
return set_requires_grad(internal_new_from_data(typeWithDefault(r, 1, type), r.toInt64(2), r.pyobject(0), true, true, type_inference), r.toBool(3));
}
throw std::runtime_error("tensor(): invalid arguments");
}
Tensor new_tensor(const Type& type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"new_tensor(PyObject* data, *, Dtype dtype=None, int64_t? device=-1, bool requires_grad=False)",
});
ParsedArgs<4> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
return set_requires_grad(new_from_data_copy(typeWithDefault(r, 1, type), r.toInt64(2), r.pyobject(0)), r.toBool(3));
}
throw std::runtime_error("new_tensor(): invalid arguments");
}
Tensor new_empty(const at::Type& type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"new_empty(IntList size, *, Dtype dtype=None, int64_t? device=-1, bool requires_grad=False)",
});
ParsedArgs<4> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
const auto& actual_type = typeWithDefault(r, 1, type);
return set_requires_grad(new_with_sizes(actual_type, r.toInt64(2), r.intlist(0)), r.toBool(3));
}
throw std::runtime_error("new_empty(): invalid arguments");
}
Tensor new_full(const at::Type& type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"new_full(IntList size, Scalar fill_value, *, Dtype dtype=None, int64_t? device=-1, bool requires_grad=False)",
});
ParsedArgs<5> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
const auto& actual_type = typeWithDefault(r, 2, type);
return set_requires_grad(dispatch_full(actual_type, r.scalar(1), r.toInt64(3), r.intlist(0)), r.toBool(4));
}
throw std::runtime_error("new_full(): invalid arguments");
}
Tensor new_ones(const at::Type& type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"new_ones(IntList size, *, Dtype dtype=None, int64_t? device=-1, bool requires_grad=False)",
});
ParsedArgs<4> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
const auto& actual_type = typeWithDefault(r, 1, type);
return set_requires_grad(dispatch_ones(actual_type, r.toInt64(2), r.intlist(0)), r.toBool(3));
}
throw std::runtime_error("new_ones(): invalid arguments");
}
Tensor new_zeros(const at::Type& type, PyObject* args, PyObject* kwargs) {
static PythonArgParser parser({
"new_zeros(IntList size, *, Dtype dtype=None, int64_t? device=-1, bool requires_grad=False)",
});
ParsedArgs<4> parsed_args;
auto r = parser.parse(args, kwargs, parsed_args);
if (r.idx == 0) {
const auto& actual_type = typeWithDefault(r, 1, type);
return set_requires_grad(dispatch_zeros(actual_type, r.toInt64(2), r.intlist(0)), r.toBool(3));
}
throw std::runtime_error("new_zeros(): invalid arguments");
}
}} // namespace torch::utils