mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-08 07:39:33 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/51166 Currently scale and zero_point values are stored as constant values in the graph. This prevents these values from being updated in the graph and also does not enable saving these values to state_dict After this PR we store scale/zero_point values for quantized ops as buffers in the root module and createe get_attr nodes for them in the graph. We also use the FQN of the module where the quantized ops are present to name these attributes so that they can be uniquely identified and mapped to quantized ops. Test Plan: python test/test_quantization.py TestQuantizeFx.test_qparams_buffers Imported from OSS Reviewed By: jerryzh168 Differential Revision: D26092965 fbshipit-source-id: b549b2d3dccb45c5d38415ce95a09c26f5bd590b
289 lines
11 KiB
Python
289 lines
11 KiB
Python
import re
|
|
import torch
|
|
from ..utils import is_per_tensor, is_per_channel
|
|
|
|
from torch.fx import GraphModule, map_arg
|
|
|
|
from torch.fx.graph import (
|
|
Graph,
|
|
Node,
|
|
)
|
|
|
|
from typing import Callable, Optional, List, Dict, Any, Set, Tuple
|
|
from .quantization_types import QuantizerCls
|
|
|
|
# turn foo.bar -> ['foo', 'bar']
|
|
def _parent_name(target):
|
|
r = target.rsplit('.', 1)
|
|
if len(r) == 1:
|
|
return '', r[0]
|
|
else:
|
|
return r[0], r[1]
|
|
|
|
def graph_pretty_str(g, shorten=True) -> str:
|
|
"""Returns a printable representation of the ops in the graph of g.
|
|
If shorten is True, tries to abbreviate fields.
|
|
"""
|
|
built_in_func_re = re.compile('<built-in function (.*)>')
|
|
built_in_meth_re = re.compile('<built-in method (.*) of type.*>')
|
|
op_dict = {
|
|
'placeholder': 'plchdr',
|
|
'get_attr': 'gt_prm',
|
|
'call_function': 'cl_fun',
|
|
'call_module': 'cl_mod',
|
|
'call_method': 'cl_meth',
|
|
}
|
|
|
|
max_lens = {}
|
|
col_names = ("name", "op", "target", "args", "kwargs")
|
|
for s in col_names:
|
|
max_lens[s] = len(s)
|
|
|
|
results = []
|
|
for n in g.nodes:
|
|
|
|
# activation_post_process_0 -> obs_0
|
|
name = str(n.name)
|
|
if shorten:
|
|
name = name.replace("activation_post_process", "obs")
|
|
|
|
op = str(n.op)
|
|
# placeholder -> plchdr, and so on
|
|
if shorten and op in op_dict:
|
|
op = op_dict[op]
|
|
|
|
target = str(n.target)
|
|
# <built-in function foo> -> <bi_fun foo>, and so on
|
|
if shorten:
|
|
built_in_func = built_in_func_re.search(target)
|
|
if built_in_func:
|
|
target = f"<bi_fun {built_in_func.group(1)}>"
|
|
built_in_meth = built_in_meth_re.search(target)
|
|
if built_in_meth:
|
|
target = f"<bi_meth {built_in_meth.group(1)}>"
|
|
target = target.replace("activation_post_process", "obs")
|
|
|
|
args = str(n.args)
|
|
if shorten:
|
|
args = args.replace("activation_post_process", "obs")
|
|
|
|
kwargs = str(n.kwargs)
|
|
|
|
# calculate maximum length of each column, so we can tabulate properly
|
|
for k, v in zip(col_names, (name, op, target, args, kwargs)):
|
|
max_lens[k] = max(max_lens[k], len(v))
|
|
results.append([name, op, target, args, kwargs])
|
|
|
|
res_str = ""
|
|
format_str = "{:<{name}} {:<{op}} {:<{target}} {:<{args}} {:<{kwargs}}\n"
|
|
res_str += format_str.format(*col_names, **max_lens)
|
|
for result in results:
|
|
res_str += format_str.format(*result, **max_lens)
|
|
|
|
# print an exra note on abbreviations which change attribute names,
|
|
# since users will have to un-abbreviate for further debugging
|
|
if shorten:
|
|
res_str += "*obs_{n} = activation_post_process_{n}\n"
|
|
return res_str
|
|
|
|
def get_per_tensor_qparams(activation_post_process):
|
|
assert is_per_tensor(activation_post_process.qscheme), 'Only per tensor quantization is supported'
|
|
scale, zero_point = activation_post_process.calculate_qparams()
|
|
scale = float(scale)
|
|
zero_point = int(zero_point)
|
|
dtype = activation_post_process.dtype
|
|
return scale, zero_point, dtype
|
|
|
|
def get_quantize_op_and_qparams(activation_post_process):
|
|
''' Given an activation_post_process module,
|
|
return quantize op(e.g. quantize_per_tensor) and a dictionary
|
|
of extracted qparams from the module
|
|
'''
|
|
scale, zero_point = activation_post_process.calculate_qparams()
|
|
dtype = activation_post_process.dtype
|
|
if is_per_channel(activation_post_process.qscheme):
|
|
ch_axis = int(activation_post_process.ch_axis)
|
|
qparams = {'_scale_': scale, '_zero_point_': zero_point, '_axis_': ch_axis, '_dtype_': dtype}
|
|
quantize_op = torch.quantize_per_channel
|
|
else:
|
|
scale = float(scale)
|
|
zero_point = int(zero_point)
|
|
qparams = {'_scale_': scale, '_zero_point_': zero_point, '_dtype_': dtype}
|
|
quantize_op = torch.quantize_per_tensor # type: ignore
|
|
return quantize_op, qparams
|
|
|
|
def quantize_node(root_module, graph, node, activation_post_process):
|
|
''' Add quantization nodes for given node to graph
|
|
with the qparams calculated from activation_post_process module
|
|
e.g. Given input `node` in `node = self.conv(x)`, insert node:
|
|
`quantized_node = torch.quantize_per_tensor(x, self._scale_0, self._zer_point_0, self._dtype_0)`
|
|
where self._scale_0, self._zero_point_0 and self._dtype_0 are
|
|
calculated from `activation_post_process`
|
|
'''
|
|
def module_has_qparams_attr_with_index(module, qparams, i):
|
|
for name in qparams.keys():
|
|
if hasattr(module, name + str(i)):
|
|
return True
|
|
return False
|
|
|
|
def get_next_qparams_idx(module, qparams):
|
|
idx = 0
|
|
while module_has_qparams_attr_with_index(module, qparams, idx):
|
|
idx += 1
|
|
return idx
|
|
|
|
quantize_op, qparams = get_quantize_op_and_qparams(activation_post_process)
|
|
idx = get_next_qparams_idx(root_module, qparams)
|
|
inputs = [node]
|
|
for key, value in qparams.items():
|
|
setattr(root_module, key + str(idx), value)
|
|
qparam_full_path = key + str(idx)
|
|
inputs.append(graph.create_node('get_attr', qparam_full_path))
|
|
return graph.create_node('call_function', quantize_op, tuple(inputs), {})
|
|
|
|
def get_custom_module_class_keys(custom_config_dict, custom_config_dict_key) -> List[Any]:
|
|
r""" Get all the unique custom module keys in the custom config dict
|
|
e.g.
|
|
Input:
|
|
custom_config_dict = {
|
|
"float_to_observed_custom_module_class": {
|
|
"static": {
|
|
CustomModule1: ObservedCustomModule
|
|
},
|
|
"dynamic": {
|
|
CustomModule2: DynamicObservedCustomModule
|
|
},
|
|
"weight_only": {
|
|
CustomModule3: WeightOnlyObservedCustomModule
|
|
},
|
|
},
|
|
}
|
|
|
|
Output:
|
|
# extract all the keys in "static", "dynamic" and "weight_only" dict
|
|
[CustomModule1, CustomModule2, CustomModule3]
|
|
"""
|
|
# using set to dedup
|
|
float_custom_module_classes : Set[Any] = set()
|
|
custom_module_mapping = custom_config_dict.get(custom_config_dict_key, {})
|
|
for quant_mode in ["static", "dynamic", "weight_only"]:
|
|
quant_mode_custom_module_config = custom_module_mapping.get(quant_mode, {})
|
|
quant_mode_custom_module_classes = set(quant_mode_custom_module_config.keys())
|
|
float_custom_module_classes |= quant_mode_custom_module_classes
|
|
return list(float_custom_module_classes)
|
|
|
|
def get_linear_prepack_op_for_dtype(dtype):
|
|
if dtype == torch.float16:
|
|
return torch.ops.quantized.linear_prepack_fp16
|
|
elif dtype == torch.qint8:
|
|
return torch.ops.quantized.linear_prepack
|
|
else:
|
|
raise Exception("can't get linear prepack op for dtype:", dtype)
|
|
|
|
# Returns a function that can get a new attribute name for module with given
|
|
# prefix, for example,
|
|
# >> get_new_observer_name = get_new_attr_name_with_prefix('_observer')
|
|
# >> new_name = get_new_observer_name(module)
|
|
# new_name will be an unused attribute name on module, e.g. `_observer_1`
|
|
def get_new_attr_name_with_prefix(prefix: str) -> Callable:
|
|
prefix = prefix.replace(".", "_")
|
|
|
|
def get_new_attr_name(module: torch.nn.Module):
|
|
def get_attr_name(i: int):
|
|
return prefix + str(i)
|
|
i = 0
|
|
attr_name = get_attr_name(i)
|
|
while hasattr(module, attr_name):
|
|
i += 1
|
|
attr_name = get_attr_name(i)
|
|
return attr_name
|
|
return get_new_attr_name
|
|
|
|
def collect_producer_nodes(node: Node) -> Optional[List[Node]]:
|
|
r''' Starting from a target node, trace back until we hit inpu or
|
|
getattr node. This is used to extract the chain of operators
|
|
starting from getattr to the target node, for example
|
|
def forward(self, x):
|
|
observed = self.observer(self.weight)
|
|
return F.linear(x, observed)
|
|
collect_producer_nodes(observed) will either return a list of nodes that
|
|
produces the observed node or None if we can't extract a self contained
|
|
graph without free variables(inputs of the forward function).
|
|
'''
|
|
nodes = [node]
|
|
frontier = [node]
|
|
while frontier:
|
|
node = frontier.pop()
|
|
all_args = list(node.args) + list(node.kwargs.values())
|
|
for arg in all_args:
|
|
if not isinstance(arg, Node):
|
|
continue
|
|
if arg.op == 'placeholder':
|
|
# hit input, can't fold in this case
|
|
return None
|
|
nodes.append(arg)
|
|
if not (arg.op == 'call_function' and arg.target == getattr):
|
|
frontier.append(arg)
|
|
return nodes
|
|
|
|
def graph_module_from_producer_nodes(
|
|
root: GraphModule, producer_nodes: List[Node]) -> GraphModule:
|
|
r''' Construct a graph module from extracted producer nodes
|
|
from `collect_producer_nodes` function
|
|
Args:
|
|
root: the root module for the original graph
|
|
producer_nodes: a list of nodes we use to construct the graph
|
|
Return:
|
|
A graph module constructed from the producer nodes
|
|
'''
|
|
assert len(producer_nodes) > 0, 'list of producer nodes can not be empty'
|
|
# since we traced back from node to getattrr
|
|
producer_nodes.reverse()
|
|
graph = Graph()
|
|
env: Dict[Any, Any] = {}
|
|
|
|
def load_arg(a):
|
|
return map_arg(a, lambda node: env[node])
|
|
for producer_node in producer_nodes:
|
|
env[producer_node] = graph.node_copy(producer_node, load_arg)
|
|
graph.output(load_arg(producer_nodes[-1]))
|
|
graph_module = GraphModule(root, graph)
|
|
return graph_module
|
|
|
|
def assert_and_get_unique_device(module: torch.nn.Module) -> Any:
|
|
"""
|
|
Returns the unique device for a module, or None if no device is found.
|
|
Throws an error if multiple devices are detected.
|
|
"""
|
|
devices = {p.device for p in module.parameters()} | \
|
|
{p.device for p in module.buffers()}
|
|
assert len(devices) <= 1, (
|
|
"prepare only works with cpu or single-device CUDA modules, "
|
|
"but got devices {}".format(devices)
|
|
)
|
|
device = next(iter(devices)) if len(devices) > 0 else None
|
|
return device
|
|
|
|
def create_getattr_from_value(module: GraphModule, graph: Graph, prefix: str, value: Any) -> Node:
|
|
"""
|
|
Given a value of any type, creates a getattr node corresponding to the value and
|
|
registers the value as a buffer to the module.
|
|
"""
|
|
get_new_attr_name = get_new_attr_name_with_prefix(prefix)
|
|
attr_name = get_new_attr_name(module)
|
|
module.register_buffer(attr_name, torch.tensor(value))
|
|
# Create get_attr with value
|
|
attr_node = graph.create_node("get_attr", attr_name)
|
|
return attr_node
|
|
|
|
def create_qparam_nodes(quantizer: QuantizerCls, node_name: str, scale: Any, zero_point: Any) -> Tuple[Node, Node]:
|
|
"""
|
|
Create getattr nodes in the quantizer graph for scale and zero point values.
|
|
The nodes are registered with the root_module of the model.
|
|
"""
|
|
root_module = quantizer.modules['']
|
|
module_path, _ = quantizer.node_name_to_scope[node_name]
|
|
scale_node = create_getattr_from_value(root_module, quantizer.quantized_graph, (module_path + "_scale_"), scale)
|
|
zero_point_node = create_getattr_from_value(root_module, quantizer.quantized_graph, (module_path + "_zero_point_"), zero_point)
|
|
return (scale_node, zero_point_node)
|