mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Resolves https://github.com/pytorch/lockdown/issues/18 This implements NamedTuple by taking advantage of the existing `names` field in `TupleType`. TODO: This currently doesn't retain the NamedTuple-ness through serialization. Discussed with suo offline, we can probably make a way to define an anonymous NamedTuple in script (e.g. `NamedTuple('Foo', [('a', int), ('b', float), ('c', List[float])])` and serialize that TODO: implement support for calling the constructor with kwargs Pull Request resolved: https://github.com/pytorch/pytorch/pull/21428 Differential Revision: D15741564 Pulled By: jamesr66a fbshipit-source-id: c077cbcea1880675ca6deb340a9ec78f824a136c
620 lines
20 KiB
C++
620 lines
20 KiB
C++
#pragma once
|
|
|
|
#include <ATen/core/ivalue.h>
|
|
#include <ATen/core/jit_type.h>
|
|
#include <ATen/core/stack.h>
|
|
#include <torch/csrc/Device.h>
|
|
#include <torch/csrc/jit/operator.h>
|
|
#include <torch/csrc/jit/script/module.h>
|
|
#include <torch/csrc/jit/tracer.h>
|
|
#include <torch/csrc/utils/auto_gil.h>
|
|
#include <torch/csrc/utils/pybind.h>
|
|
#include <torch/csrc/utils/six.h>
|
|
|
|
#include <ATen/core/function_schema.h>
|
|
#include <c10/util/Exception.h>
|
|
|
|
#include <algorithm>
|
|
#include <cstddef>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
// The visibility attribute is to avoid a warning about storing a field in the
|
|
// struct that has a different visibility (from pybind) than the struct.
|
|
#ifdef _WIN32
|
|
#define VISIBILITY_HIDDEN
|
|
#else
|
|
#define VISIBILITY_HIDDEN __attribute__((visibility("hidden")))
|
|
#endif
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
// error reporting: when reporting user-caused errors, these functions should
|
|
// not use AT_ERROR macros, since these macros add stack trace information
|
|
// that is confusing to display to the end user since it always reports
|
|
// locations in libtorch code rather than user code.
|
|
|
|
using tracer::TypedStack;
|
|
struct TypedIValue : public std::pair<IValue, TypePtr> {
|
|
using pair::pair;
|
|
|
|
IValue& ivalue() {
|
|
return this->first;
|
|
}
|
|
TypePtr& type() {
|
|
return this->second;
|
|
}
|
|
};
|
|
|
|
inline TypedIValue toDictKeyIValue(py::handle key) {
|
|
if (py::isinstance<py::str>(key)) {
|
|
return TypedIValue(
|
|
ConstantString::create(py::cast<std::string>(key)),
|
|
StringType::create());
|
|
} else if (py::isinstance<py::int_>(key)) {
|
|
return TypedIValue(py::cast<int64_t>(key), IntType::create());
|
|
} else if (py::isinstance<py::float_>(key)) {
|
|
return TypedIValue(py::cast<double>(key), FloatType::create());
|
|
} else {
|
|
AT_ERROR("Dictionary inputs may only have string, int, or float keys");
|
|
}
|
|
}
|
|
|
|
inline TypedIValue trySpecializeTensorList(
|
|
std::vector<IValue>& elems,
|
|
TypePtr type) {
|
|
// Since we only call this function for trace inputs, the only options are
|
|
// generic list, and list of tensors. We do not need to check for primitive
|
|
// types.
|
|
if (!type->isSubtypeOf(TensorType::get())) {
|
|
return TypedIValue(elems, ListType::create(type));
|
|
}
|
|
std::vector<at::Tensor> tensors;
|
|
tensors.reserve(elems.size());
|
|
for (auto elem : elems) {
|
|
tensors.push_back(elem.toTensor());
|
|
}
|
|
return TypedIValue(tensors, ListType::ofTensors());
|
|
}
|
|
|
|
inline c10::optional<TypePtr> unifyOrInitializeType(
|
|
TypePtr accum,
|
|
TypePtr unify) {
|
|
if (!accum) {
|
|
return unify;
|
|
}
|
|
return unifyTypes(accum, unify);
|
|
}
|
|
|
|
inline TypedIValue toTypedIValue(py::handle input) {
|
|
if (THPVariable_Check(input.ptr())) {
|
|
auto ten = py::cast<at::Tensor>(input);
|
|
if (ten.is_sparse()) {
|
|
AT_ERROR("sparse tensors not supported");
|
|
}
|
|
if (ten.is_mkldnn()) {
|
|
// mkldnn tensor as opaque tensor doesn't have strides, so we can
|
|
// not create a CompleteTensorType
|
|
return TypedIValue(ten, DimensionedTensorType::create(ten));
|
|
}
|
|
return TypedIValue(ten, CompleteTensorType::create(ten));
|
|
} else if (six::isTuple(input)) {
|
|
py::tuple input_tuple = py::cast<py::tuple>(input);
|
|
Stack s;
|
|
std::vector<TypePtr> t;
|
|
s.reserve(input_tuple.size());
|
|
t.reserve(input_tuple.size());
|
|
for (py::handle elem : input_tuple) {
|
|
auto info = toTypedIValue(elem);
|
|
s.push_back(info.first);
|
|
t.push_back(info.second);
|
|
}
|
|
return TypedIValue(c10::ivalue::Tuple::create(s), TupleType::create(t));
|
|
} else if (PyDict_Check(input.ptr())) {
|
|
// Check to make sure we can generate useful input/output types
|
|
auto dict = py::cast<py::dict>(input);
|
|
c10::impl::GenericDictPtr elems = c10::impl::make_generic_dict();
|
|
|
|
size_t len = py::len(dict);
|
|
if (!len) {
|
|
AT_ERROR("Dictionary inputs must have entries.");
|
|
}
|
|
elems.reserve(len);
|
|
|
|
TypePtr keyType = nullptr;
|
|
TypePtr valueType = nullptr;
|
|
for (auto entry : dict) {
|
|
auto keyInfo = toDictKeyIValue(entry.first);
|
|
auto valInfo = toTypedIValue(entry.second);
|
|
auto unifiedKey = unifyOrInitializeType(keyType, keyInfo.second);
|
|
auto unifiedValue = unifyOrInitializeType(valueType, valInfo.second);
|
|
if (!unifiedKey || !unifiedValue) {
|
|
AT_ERROR(
|
|
"Dictionary inputs to traced functions must have consistent type");
|
|
}
|
|
keyType = *unifiedKey;
|
|
valueType = *unifiedValue;
|
|
elems.insert(keyInfo.first, valInfo.first);
|
|
}
|
|
return TypedIValue(
|
|
std::move(elems),
|
|
DictType::create(keyType, valueType));
|
|
} else if (PyList_Check(input.ptr())) {
|
|
auto list = py::cast<py::list>(input);
|
|
std::vector<IValue> elems;
|
|
size_t len = py::len(list);
|
|
if (!len) {
|
|
AT_ERROR("List trace inputs must have elements");
|
|
}
|
|
elems.reserve(len);
|
|
|
|
TypePtr listType = nullptr;
|
|
for (auto elem : list) {
|
|
TypedIValue typedVal = toTypedIValue(elem);
|
|
elems.push_back(typedVal.ivalue());
|
|
auto unify = unifyOrInitializeType(listType, typedVal.type());
|
|
if (!unify) {
|
|
AT_ERROR(
|
|
"List inputs to traced functions must have consistent element type");
|
|
}
|
|
listType = *unify;
|
|
}
|
|
return trySpecializeTensorList(elems, listType);
|
|
} else {
|
|
throw std::runtime_error(c10::str(
|
|
"Only tensors and (possibly nested) tuples of tensors or dicts are supported ",
|
|
"as inputs or outputs of traced functions",
|
|
", but instead got value of type ",
|
|
py::str(input.get_type().attr("__name__")),
|
|
".",
|
|
"\nValue: ",
|
|
py::repr(input)));
|
|
}
|
|
}
|
|
|
|
inline IValue toIValue(py::handle input) {
|
|
return toTypedIValue(input).ivalue();
|
|
}
|
|
|
|
inline Stack toStack(const py::tuple& inputs) {
|
|
return toIValue(inputs).toTuple()->elements();
|
|
}
|
|
|
|
inline TypedStack toTypedStack(const py::tuple& inputs) {
|
|
auto info = toTypedIValue(inputs);
|
|
return TypedStack(
|
|
info.ivalue().toTuple()->elements(), info.type()->expect<TupleType>());
|
|
}
|
|
|
|
inline IValue toIValue(
|
|
py::handle obj,
|
|
const TypePtr& type,
|
|
c10::optional<int32_t> N = c10::nullopt);
|
|
|
|
inline IValue createGenericList(py::handle obj, const TypePtr& elem_type) {
|
|
c10::ListPtr<IValue> elems = c10::make_list<IValue>();
|
|
for (auto elem : obj) {
|
|
elems.push_back(toIValue(elem, elem_type));
|
|
}
|
|
return IValue(std::move(elems));
|
|
}
|
|
|
|
inline IValue createGenericDict(
|
|
py::handle obj,
|
|
const TypePtr& key_type,
|
|
const TypePtr& value_type) {
|
|
c10::impl::GenericDictPtr elems = c10::impl::make_generic_dict();
|
|
elems.reserve(py::len(obj));
|
|
for (auto key : obj) {
|
|
elems.insert(
|
|
toIValue(key, key_type), toIValue(obj[key], value_type));
|
|
}
|
|
return IValue(std::move(elems));
|
|
}
|
|
|
|
inline IValue toIValue(
|
|
py::handle obj,
|
|
const TypePtr& type,
|
|
c10::optional<int32_t> N) {
|
|
switch (type->kind()) {
|
|
case TypeKind::TensorType:
|
|
case TypeKind::AutogradZeroTensorType:
|
|
case TypeKind::DimensionedTensorType:
|
|
case TypeKind::ProfiledTensorType:
|
|
case TypeKind::CompleteTensorType: {
|
|
auto var = py::cast<autograd::Variable>(obj);
|
|
if (var.is_sparse()) {
|
|
AT_ERROR("sparse tensors not supported");
|
|
}
|
|
return var;
|
|
}
|
|
case TypeKind::FloatType:
|
|
return py::cast<double>(obj);
|
|
case TypeKind::IntType:
|
|
return py::cast<int64_t>(obj);
|
|
case TypeKind::NoneType:
|
|
if (obj != Py_None)
|
|
throw py::cast_error();
|
|
|
|
return {};
|
|
case TypeKind::BoolType:
|
|
return py::cast<bool>(obj);
|
|
case TypeKind::TupleType: {
|
|
if (!PyTuple_Check(obj.ptr()))
|
|
throw py::cast_error(); // note: the py::cast does not throw cast_error
|
|
// because it attempts to iterate a non-tuple
|
|
py::tuple tuple = py::cast<py::tuple>(obj);
|
|
size_t tuple_size = tuple.size();
|
|
auto tuple_type = type->cast<TupleType>();
|
|
const auto& elem_types = tuple_type->elements();
|
|
if (elem_types.size() != tuple_size) {
|
|
throw py::cast_error();
|
|
}
|
|
std::vector<IValue> values;
|
|
values.reserve(tuple_size);
|
|
for (size_t i = 0; i < tuple_size; ++i) {
|
|
values.push_back(toIValue(tuple[i], elem_types[i]));
|
|
}
|
|
return c10::ivalue::Tuple::create(std::move(values), tuple_type);
|
|
}
|
|
case TypeKind::StringType:
|
|
return ConstantString::create(py::cast<std::string>(obj));
|
|
case TypeKind::DeviceObjType: {
|
|
auto device = reinterpret_cast<THPDevice*>(obj.ptr());
|
|
return device->device;
|
|
}
|
|
case TypeKind::ListType: {
|
|
const auto& elem_type = type->expect<ListType>()->getElementType();
|
|
switch (elem_type->kind()) {
|
|
// allows single int/float to be broadcasted to a fixed size list
|
|
case TypeKind::IntType:
|
|
if (!N || !py::isinstance<py::int_>(obj)) {
|
|
return py::cast<std::vector<int64_t>>(obj);
|
|
} else {
|
|
double value = py::cast<int64_t>(obj);
|
|
std::vector<double> repeated(*N, value);
|
|
return repeated;
|
|
}
|
|
case TypeKind::FloatType:
|
|
if (!N || !py::isinstance<py::float_>(obj)) {
|
|
return py::cast<std::vector<double>>(obj);
|
|
} else {
|
|
double value = py::cast<double>(obj);
|
|
std::vector<double> repeated(*N, value);
|
|
return repeated;
|
|
}
|
|
case TypeKind::DimensionedTensorType:
|
|
case TypeKind::TensorType:
|
|
return py::cast<std::vector<at::Tensor>>(obj);
|
|
default:
|
|
return createGenericList(obj, elem_type);
|
|
}
|
|
}
|
|
case TypeKind::DictType: {
|
|
const auto& dict_type = type->expect<DictType>();
|
|
return createGenericDict(
|
|
obj, dict_type->getKeyType(), dict_type->getValueType());
|
|
}
|
|
case TypeKind::OptionalType: {
|
|
// check if it's a none obj since optional accepts NoneType
|
|
if (obj == Py_None) {
|
|
// check if it's a none obj since optional accepts NoneType
|
|
// return an IValue() to denote a NoneType
|
|
return {};
|
|
}
|
|
return toIValue(obj, type->expect<OptionalType>()->getElementType());
|
|
}
|
|
case TypeKind::ClassType: {
|
|
auto classType = type->expect<ClassType>();
|
|
// 1. create a bare ivalue
|
|
const size_t numAttrs = classType->numAttributes();
|
|
auto userObj = c10::ivalue::Object::create(classType, numAttrs);
|
|
|
|
// 2. copy all the contained types
|
|
for (size_t slot = 0; slot < numAttrs; slot++) {
|
|
const auto& attrType = classType->getAttribute(slot);
|
|
const auto& attrName = classType->getAttributeName(slot);
|
|
|
|
const auto& contained = py::getattr(obj, attrName.c_str());
|
|
userObj->setSlot(slot, toIValue(contained, attrType));
|
|
}
|
|
return userObj;
|
|
}
|
|
case TypeKind::NumberType:
|
|
case TypeKind::GeneratorType:
|
|
case TypeKind::VarType:
|
|
case TypeKind::FutureType:
|
|
break;
|
|
case TypeKind::FunctionType:
|
|
AT_ERROR("Function Values aren't yet supported");
|
|
}
|
|
AT_ERROR(
|
|
"Missing cases in toIValue for type: ",
|
|
type->str(),
|
|
"! File a bug report.");
|
|
}
|
|
|
|
// Small wrapper around getting the type name string from Python to make
|
|
// types easier to interpret, e.g. give the structural type for a NamedTuple
|
|
inline std::string friendlyTypeName(py::handle obj) {
|
|
if (py::isinstance<py::tuple>(obj) && py::hasattr(obj, "_fields")) {
|
|
auto field_names =
|
|
py::cast<std::vector<std::string>>(py::getattr(obj, "_fields"));
|
|
std::stringstream ss;
|
|
ss << py::str(obj.get_type().attr("__name__"));
|
|
ss << " (aka NamedTuple(";
|
|
bool first = true;
|
|
for (auto& field_name : field_names) {
|
|
if (!first) {
|
|
ss << ", ";
|
|
}
|
|
ss << field_name;
|
|
first = false;
|
|
}
|
|
ss << "))";
|
|
return ss.str();
|
|
} else {
|
|
return py::str(obj.get_type().attr("__name__"));
|
|
}
|
|
}
|
|
|
|
inline IValue argumentToIValue(
|
|
const FunctionSchema& schema,
|
|
size_t argumentPosition,
|
|
py::handle object) {
|
|
const auto& argument = schema.arguments().at(argumentPosition);
|
|
try {
|
|
return toIValue(object, argument.type(), argument.N());
|
|
} catch (const py::cast_error& error) {
|
|
throw std::runtime_error(schema.formatTypeMismatchMsg(
|
|
argument,
|
|
friendlyTypeName(object),
|
|
argumentPosition,
|
|
py::repr(object)));
|
|
}
|
|
}
|
|
|
|
inline IValue returnToIValue(const TypePtr& type, py::handle object) {
|
|
try {
|
|
return toIValue(object, type);
|
|
} catch (const py::cast_error& error) {
|
|
throw std::runtime_error(c10::str(
|
|
" expected value of type ",
|
|
type->str(),
|
|
" for return value but instead got value of type ",
|
|
py::str(object.get_type().attr("__name__")),
|
|
".",
|
|
"\nValue: ",
|
|
py::repr(object)));
|
|
}
|
|
}
|
|
|
|
inline py::object toPyObject(IValue&& ivalue) {
|
|
if (ivalue.isNone()) {
|
|
return py::none();
|
|
} else if (ivalue.isTensor()) {
|
|
auto tensor = std::move(ivalue).toTensor();
|
|
if (tensor.is_sparse()) {
|
|
AT_ERROR("sparse tensors not supported");
|
|
}
|
|
return py::cast(autograd::Variable(std::move(tensor)));
|
|
} else if (ivalue.isDouble()) {
|
|
return py::cast(std::move(ivalue).toDouble());
|
|
} else if (ivalue.isInt()) {
|
|
return py::cast(std::move(ivalue).toInt());
|
|
} else if (ivalue.isBool()) {
|
|
return py::cast(std::move(ivalue).toBool());
|
|
} else if (ivalue.isString()) {
|
|
return py::cast(std::move(ivalue).toStringRef());
|
|
} else if (ivalue.isIntList()) {
|
|
return py::cast(c10::impl::toVector(std::move(ivalue).toIntList()));
|
|
} else if (ivalue.isDoubleList()) {
|
|
return py::cast(c10::impl::toVector(std::move(ivalue).toDoubleList()));
|
|
} else if (ivalue.isBoolList()) {
|
|
return py::cast(c10::impl::toVector(std::move(ivalue).toBoolList()));
|
|
} else if (ivalue.isTensorList()) {
|
|
return py::cast(c10::impl::toVector(std::move(ivalue).toTensorList()));
|
|
} else if (ivalue.isGenericList()) {
|
|
auto list = std::move(ivalue).toGenericList();
|
|
py::list t{list.size()};
|
|
for (size_t i = 0; i < list.size(); ++i) {
|
|
t[i] = toPyObject(IValue{list.get(i)});
|
|
}
|
|
return std::move(t);
|
|
} else if (ivalue.isTuple()) {
|
|
auto tuple = std::move(ivalue).toTuple();
|
|
const auto& elements = tuple->elements();
|
|
py::tuple t{elements.size()};
|
|
for (size_t i = 0; i < elements.size(); ++i) {
|
|
t[i] = toPyObject(IValue{elements.at(i)});
|
|
}
|
|
if (tuple->type && tuple->type->hasNames() && tuple->type->unqualName()) {
|
|
return py::module::import("torch.jit")
|
|
.attr("_create_named_tuple")(
|
|
t, tuple->type->names(), tuple->type->unqualName().value());
|
|
} else {
|
|
return std::move(t);
|
|
}
|
|
} else if (ivalue.isDevice()) {
|
|
return py::cast<py::object>(THPDevice_New(std::move(ivalue).toDevice()));
|
|
} else if (ivalue.isGenericDict()) {
|
|
auto dict = std::move(ivalue).toGenericDict();
|
|
py::dict py_dict;
|
|
for (auto& pair : dict) {
|
|
py_dict[toPyObject(IValue{pair.key()})] = toPyObject(IValue{pair.value()});
|
|
}
|
|
return std::move(py_dict);
|
|
} else if (ivalue.isObject()) {
|
|
const auto obj = std::move(ivalue).toObject();
|
|
auto& pyCu = script::CompilationUnit::_get_python_cu();
|
|
const auto classType = pyCu.get_class(c10::QualifiedName(obj->name()));
|
|
AT_ASSERT(classType);
|
|
auto pyClass =
|
|
py::module::import("torch.jit").attr("_get_script_class")(obj->name());
|
|
auto pyObj = pyClass.attr("__new__")(pyClass);
|
|
|
|
const auto numAttrs = classType->numAttributes();
|
|
|
|
for (size_t slot = 0; slot < numAttrs; slot++) {
|
|
const auto& attrName = classType->getAttributeName(slot);
|
|
IValue v = obj->getSlot(slot);
|
|
py::setattr(pyObj, attrName.c_str(), toPyObject(std::move(v)));
|
|
}
|
|
return pyObj;
|
|
} else {
|
|
AT_ERROR("Missing cases in 'toPyObject'! File a bug report.");
|
|
}
|
|
}
|
|
|
|
struct VISIBILITY_HIDDEN tuple_slice {
|
|
/*implicit*/ tuple_slice(py::tuple tup_)
|
|
: tup(std::move(tup_)), b(0), e(tup.size()) {}
|
|
tuple_slice(py::tuple tup_, int64_t b_)
|
|
: tup(std::move(tup_)), b(b_), e(tup.size()) {}
|
|
tuple_slice(py::tuple tup_, int64_t b_, int64_t e_)
|
|
: tup(std::move(tup_)), b(b_), e(e_) {}
|
|
py::detail::tuple_iterator begin() const {
|
|
return {tup, static_cast<pybind11::ssize_t>(b)};
|
|
}
|
|
py::detail::tuple_iterator end() const {
|
|
return {tup, static_cast<pybind11::ssize_t>(e)};
|
|
}
|
|
size_t size() const {
|
|
return e - b;
|
|
}
|
|
py::detail::tuple_accessor operator[](size_t index) const {
|
|
return {tup, static_cast<size_t>(b + index)};
|
|
}
|
|
|
|
private:
|
|
py::tuple tup;
|
|
int64_t b;
|
|
int64_t e;
|
|
};
|
|
|
|
inline Stack createStackForSchema(
|
|
const FunctionSchema& schema,
|
|
const tuple_slice& args,
|
|
const py::kwargs& kwargs = py::kwargs()) {
|
|
if (args.size() + kwargs.size() > schema.arguments().size()) {
|
|
throw std::runtime_error(c10::str(
|
|
schema.name(),
|
|
"() expected at most ",
|
|
schema.arguments().size(),
|
|
" argument(s) but received ",
|
|
args.size() + kwargs.size(),
|
|
" argument(s). Declaration: ",
|
|
schema));
|
|
}
|
|
Stack stack;
|
|
stack.reserve(schema.arguments().size());
|
|
|
|
// First push all positional args.
|
|
for (size_t i = 0; i < args.size(); ++i) {
|
|
// Use the type information from the schema to convert the PyObject.
|
|
push(stack, argumentToIValue(schema, i, args[i]));
|
|
}
|
|
|
|
// Now for every remaining non-positional argument in the schema, look for it
|
|
// in the kwargs dict and push it if found, or use its default value if it
|
|
// has one.
|
|
size_t consumed_kwargs = 0;
|
|
for (size_t i = args.size(); i < schema.arguments().size(); ++i) {
|
|
const auto& arg = schema.arguments()[i];
|
|
if (kwargs.contains(arg.name().c_str())) {
|
|
push(stack, argumentToIValue(schema, i, kwargs[arg.name().c_str()]));
|
|
consumed_kwargs += 1;
|
|
} else if (arg.default_value()) {
|
|
push(stack, *arg.default_value());
|
|
} else {
|
|
throw std::runtime_error(c10::str(
|
|
schema.name(),
|
|
"() is missing value for argument '",
|
|
arg.name(),
|
|
"'. Declaration: ",
|
|
schema));
|
|
}
|
|
}
|
|
|
|
if (consumed_kwargs != kwargs.size()) {
|
|
std::vector<std::string> names;
|
|
for (const auto& kwarg : kwargs) {
|
|
names.emplace_back(py::cast<std::string>(kwarg.first));
|
|
}
|
|
schema.findErrorInKwargs(names);
|
|
}
|
|
|
|
return stack;
|
|
}
|
|
|
|
inline py::object createPyObjectForStack(Stack&& stack) {
|
|
if (stack.empty()) {
|
|
return py::none();
|
|
}
|
|
|
|
// Return a simple value and not a single-element tuple if there is only one
|
|
// return value.
|
|
if (stack.size() == 1) {
|
|
return toPyObject(std::move(stack[0]));
|
|
}
|
|
|
|
// If there is more than one return value, pop them into a py::tuple.
|
|
py::tuple return_values(stack.size());
|
|
for (size_t ret = 0; ret < return_values.size(); ++ret) {
|
|
return_values[ret] = toPyObject(std::move(stack[ret]));
|
|
}
|
|
|
|
return std::move(return_values);
|
|
}
|
|
|
|
// TODO: Remove once we clean up the GraphExecutor usage.
|
|
inline Stack evilDeprecatedBadCreateStackDoNotUse(
|
|
const py::tuple& tuple,
|
|
at::ArrayRef<Value*> inputs,
|
|
size_t reserve_extra_space = 0) {
|
|
if (tuple.size() != inputs.size()) {
|
|
AT_ERROR(
|
|
"expected " + std::to_string(inputs.size()) + " inputs, but got " +
|
|
std::to_string(tuple.size()));
|
|
}
|
|
Stack result;
|
|
result.reserve(tuple.size() + reserve_extra_space);
|
|
for (size_t i = 0; i < inputs.size(); ++i) {
|
|
result.push_back(toIValue(std::move(tuple[i]), inputs[i]->type()));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template <typename MethodOrFunction>
|
|
inline py::object invokeScriptMethodFromPython(
|
|
MethodOrFunction& callee,
|
|
tuple_slice args,
|
|
py::kwargs kwargs) {
|
|
auto stack = createStackForSchema(
|
|
callee.getSchema(), std::move(args), std::move(kwargs));
|
|
{
|
|
AutoNoGIL no_gil_guard;
|
|
callee.run(stack);
|
|
}
|
|
return toPyObject(std::move(stack.back()));
|
|
}
|
|
|
|
inline py::object invokeOperatorFromPython(
|
|
const Operator& op,
|
|
py::args args,
|
|
py::kwargs kwargs) {
|
|
// Create a stack full of the arguments and keyword arguments.
|
|
auto stack =
|
|
createStackForSchema(op.schema(), std::move(args), std::move(kwargs));
|
|
|
|
// Invoke the operation, which puts the return values onto the stack.
|
|
op.getOperation()(stack);
|
|
|
|
return createPyObjectForStack(std::move(stack));
|
|
}
|
|
|
|
} // namespace jit
|
|
} // namespace torch
|