mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Resolves https://github.com/pytorch/lockdown/issues/18 This implements NamedTuple by taking advantage of the existing `names` field in `TupleType`. TODO: This currently doesn't retain the NamedTuple-ness through serialization. Discussed with suo offline, we can probably make a way to define an anonymous NamedTuple in script (e.g. `NamedTuple('Foo', [('a', int), ('b', float), ('c', List[float])])` and serialize that TODO: implement support for calling the constructor with kwargs Pull Request resolved: https://github.com/pytorch/pytorch/pull/21428 Differential Revision: D15741564 Pulled By: jamesr66a fbshipit-source-id: c077cbcea1880675ca6deb340a9ec78f824a136c
872 lines
26 KiB
C++
872 lines
26 KiB
C++
#include <torch/csrc/jit/pickler.h>
|
|
#include <ATen/ATen.h>
|
|
#include <string>
|
|
#include <ATen/core/Dict.h>
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
|
|
using ::c10::IValue;
|
|
|
|
// Protocol 2 is the highest that can be decoded by Python 2
|
|
// See https://docs.python.org/3/library/pickle.html#data-stream-format
|
|
constexpr static uint8_t PROTOCOL_VERSION = 2;
|
|
|
|
PicklerClass getClass(const std::string& str) {
|
|
if (str == "build_tensor_from_id") {
|
|
return PicklerClass::TENSOR;
|
|
} else if (str == "build_intlist") {
|
|
return PicklerClass::INTLIST;
|
|
} else if (str == "build_tensorlist") {
|
|
return PicklerClass::TENSORLIST;
|
|
} else if (str == "build_doublelist") {
|
|
return PicklerClass::DOUBLELIST;
|
|
} else if (str == "build_boollist") {
|
|
return PicklerClass::BOOLLIST;
|
|
}
|
|
|
|
// TODO [unpickler refactor]
|
|
if (str == "TensorID") {
|
|
return PicklerClass::TENSOR;
|
|
} else if (str == "IntList") {
|
|
return PicklerClass::INTLIST;
|
|
}
|
|
AT_ERROR("Unknown class name for unpickler: ", str);
|
|
}
|
|
|
|
const std::string& getClassName(PicklerClass cls) {
|
|
static const std::string tensor_class("build_tensor_from_id\n");
|
|
static const std::string intlist_class("build_intlist\n");
|
|
static const std::string tensorlist_class("build_tensorlist\n");
|
|
static const std::string doublelist_class("build_doublelist\n");
|
|
static const std::string boollist_class("build_boollist\n");
|
|
switch (cls) {
|
|
case PicklerClass::TENSOR:
|
|
return tensor_class;
|
|
case PicklerClass::INTLIST:
|
|
return intlist_class;
|
|
case PicklerClass::TENSORLIST:
|
|
return tensorlist_class;
|
|
case PicklerClass::DOUBLELIST:
|
|
return doublelist_class;
|
|
case PicklerClass::BOOLLIST:
|
|
return boollist_class;
|
|
default:
|
|
AT_ERROR("Unknown class for pickler");
|
|
}
|
|
}
|
|
|
|
const std::string& getModuleName() {
|
|
static const std::string module_name("torch.jit._pickle\n");
|
|
return module_name;
|
|
}
|
|
|
|
const std::vector<char>& Pickler::stack() {
|
|
return stack_;
|
|
}
|
|
|
|
void Pickler::start() {
|
|
push<OpCode>(OpCode::PROTO);
|
|
push<uint8_t>(PROTOCOL_VERSION);
|
|
}
|
|
|
|
void Pickler::startTuple() {
|
|
// All attributes get pushed into a tuple and their indices saved in the
|
|
// module def
|
|
push<OpCode>(OpCode::MARK);
|
|
}
|
|
|
|
void Pickler::endTuple() {
|
|
push<OpCode>(OpCode::TUPLE);
|
|
}
|
|
|
|
void Pickler::finish() {
|
|
push<OpCode>(OpCode::STOP);
|
|
|
|
|
|
// Add the binary data for all the tensors to be included in the same binary
|
|
// TODO: The pickler should be refactored to stream out to a stream directly
|
|
// instead of staging in the stack_ array
|
|
if (literal_tensors_.size() > 0) {
|
|
// As another pickle program in the same binary archive, add a list of
|
|
// keys for each tensor (see torch/serialization.py)
|
|
start();
|
|
push<OpCode>(OpCode::MARK);
|
|
for (const auto& tensor : literal_tensors_) {
|
|
std::string key = std::to_string(getStorageKey(tensor));
|
|
push<OpCode>(OpCode::BINUNICODE);
|
|
push<uint32_t>(key.size());
|
|
pushString(key);
|
|
}
|
|
push<OpCode>(OpCode::TUPLE);
|
|
push<OpCode>(OpCode::STOP);
|
|
|
|
// Now dump the tensor binary data
|
|
for (const auto& tensor : literal_tensors_) {
|
|
pushTensorData(tensor);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Pickler::pushTensorData(const at::Tensor& tensor) {
|
|
// first dump size
|
|
auto numel = tensor.numel();
|
|
auto numel_ptr = reinterpret_cast<const char*>(&numel);
|
|
stack_.insert(stack_.end(), numel_ptr, numel_ptr + sizeof(numel));
|
|
|
|
uint64_t record_size;
|
|
at::Tensor storage_tensor;
|
|
std::tie(storage_tensor, record_size) = getWriteableTensor(tensor);
|
|
auto storage_byte_ptr = reinterpret_cast<uint8_t*>(storage_tensor.storage().data());
|
|
stack_.insert(stack_.end(), storage_byte_ptr, storage_byte_ptr + record_size);
|
|
}
|
|
|
|
void Pickler::pushMetadata() {
|
|
// Output data to match torch.save, see torch/serialization.py for details
|
|
// Magic number (0x1950a86a20f9469cfc6c)
|
|
start();
|
|
push<OpCode>(OpCode::LONG1);
|
|
// LONG1 size
|
|
pushString("\x0a");
|
|
// LONG1 data
|
|
pushString("\x6c\xfc\x9c\x46\xf9\x20\x6a\xa8\x50\x19");
|
|
push<OpCode>(OpCode::STOP);
|
|
|
|
// Protocol Version (1001)
|
|
start();
|
|
push<OpCode>(OpCode::BININT2);
|
|
pushString("\xe9\x03");
|
|
push<OpCode>(OpCode::STOP);
|
|
|
|
// sys_info, this isn't actually used in de-serialization so we can leave this
|
|
// one empty
|
|
start();
|
|
push<OpCode>(OpCode::EMPTY_DICT);
|
|
push<OpCode>(OpCode::STOP);
|
|
}
|
|
|
|
void Pickler::addIValue(const IValue& ivalue) {
|
|
// Check if reference ivalue has been saved before
|
|
const void* ivalue_ptr = getPointer(ivalue);
|
|
if (ivalue_ptr) {
|
|
auto memo_entry = memo_map_.find(ivalue_ptr);
|
|
if (memo_entry != memo_map_.end()) {
|
|
// This value has already been pushed, just do a BINGET
|
|
pushBinGet(memo_entry->second);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (ivalue.isTensor()) {
|
|
pushTensor(ivalue);
|
|
} else if (ivalue.isTuple()) {
|
|
pushTuple(ivalue);
|
|
} else if (ivalue.isDouble()) {
|
|
pushDouble(ivalue);
|
|
} else if (ivalue.isInt()) {
|
|
pushInt(ivalue);
|
|
} else if (ivalue.isBool()) {
|
|
if (ivalue.toBool()) {
|
|
push<OpCode>(OpCode::NEWTRUE);
|
|
} else {
|
|
push<OpCode>(OpCode::NEWFALSE);
|
|
}
|
|
} else if (ivalue.isString()) {
|
|
pushMemoizedString(ivalue);
|
|
} else if (ivalue.isGenericList()) {
|
|
pushGenericList(ivalue);
|
|
} else if (ivalue.isGenericDict()) {
|
|
pushDict(ivalue);
|
|
} else if (ivalue.isNone()) {
|
|
push<OpCode>(OpCode::NONE);
|
|
} else if (ivalue.isIntList()) {
|
|
pushSpecializedList(
|
|
ivalue, PicklerClass::INTLIST, [=](const IValue& ivalue) {
|
|
for (const int64_t item : ivalue.toIntListRef()) {
|
|
addIValue(item);
|
|
}
|
|
});
|
|
} else if (ivalue.isTensorList()) {
|
|
pushSpecializedList(
|
|
ivalue, PicklerClass::TENSORLIST, [=](const IValue& ivalue) {
|
|
for (const at::Tensor& item : ivalue.toTensorListRef()) {
|
|
addIValue(item);
|
|
}
|
|
});
|
|
} else if (ivalue.isDoubleList()) {
|
|
pushSpecializedList(
|
|
ivalue, PicklerClass::DOUBLELIST, [=](const IValue& ivalue) {
|
|
for (double item : ivalue.toDoubleListRef()) {
|
|
addIValue(item);
|
|
}
|
|
});
|
|
} else if (ivalue.isBoolList()) {
|
|
pushSpecializedList(
|
|
ivalue, PicklerClass::BOOLLIST, [=](const IValue& ivalue) {
|
|
for (bool item : ivalue.toBoolList()) {
|
|
addIValue(item);
|
|
}
|
|
});
|
|
} else {
|
|
AT_ERROR("Unknown IValue type for pickling: ", ivalue.tagKind());
|
|
}
|
|
}
|
|
|
|
/// Returns a void* uniquely identifying this IValue's data. For non-containers,
|
|
/// returns nullptr. Also adds the ivalue to the Pickler's list of memoized
|
|
/// IValues so the pointers are guaranteed to be valid for the Pickler's
|
|
/// lifetime.
|
|
const void* Pickler::getPointer(const IValue& ivalue) {
|
|
if (ivalue.isGenericDict() || ivalue.isGenericList() || ivalue.isTuple()
|
|
|| ivalue.isString() || ivalue.isIntList() || ivalue.isTensorList()
|
|
|| ivalue.isDoubleList() || ivalue.isBoolList()) {
|
|
return ivalue.internalToPointer();
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
void Pickler::pushInt(const IValue& ivalue) {
|
|
auto n = ivalue.toInt();
|
|
if (n >= std::numeric_limits<int8_t>::min() &&
|
|
n <= std::numeric_limits<int8_t>::max()) {
|
|
push<OpCode>(OpCode::BININT1);
|
|
push<int8_t>(n);
|
|
} else if (
|
|
n >= std::numeric_limits<int32_t>::min() &&
|
|
n <= std::numeric_limits<int32_t>::max()) {
|
|
push<OpCode>(OpCode::BININT);
|
|
push<int32_t>(n);
|
|
} else {
|
|
// Push 8 byte integer
|
|
push<OpCode>(OpCode::LONG1);
|
|
push<uint8_t>(8);
|
|
push<int64_t>(n);
|
|
}
|
|
}
|
|
|
|
void Pickler::pushBinGet(uint32_t memo_id) {
|
|
if (memo_id <= std::numeric_limits<uint8_t>::max()) {
|
|
push<OpCode>(OpCode::BINGET);
|
|
push<uint8_t>(memo_id);
|
|
} else {
|
|
// Memoized too many items, issue a LONG_BINGET instead
|
|
push<OpCode>(OpCode::LONG_BINGET);
|
|
push<uint32_t>(memo_id);
|
|
}
|
|
}
|
|
|
|
void Pickler::pushMemoizedString(const IValue& ivalue) {
|
|
const auto& string = ivalue.toStringRef();
|
|
|
|
push<OpCode>(OpCode::BINUNICODE);
|
|
push<uint32_t>(string.size());
|
|
pushString(string);
|
|
pushMemoization(ivalue);
|
|
}
|
|
|
|
void Pickler::pushString(const std::string& string) {
|
|
stack_.insert(stack_.end(), string.begin(), string.end());
|
|
}
|
|
|
|
void Pickler::pushGlobal(const std::string& name_temp) {
|
|
auto memo_entry = memoized_strings_map_.find(name_temp);
|
|
if (memo_entry == memoized_strings_map_.end()) {
|
|
push<OpCode>(OpCode::GLOBAL);
|
|
pushString(name_temp);
|
|
|
|
// Push BINPUT without adding anything to the memo_map_
|
|
size_t memo_id = pushNextBinPut();
|
|
memoized_strings_map_.insert({name_temp, memo_id});
|
|
} else {
|
|
pushBinGet(memo_entry->second);
|
|
}
|
|
}
|
|
|
|
void Pickler::pushTensor(const IValue& ivalue) {
|
|
if (tensor_table_ == nullptr) {
|
|
pushLiteralTensor(ivalue);
|
|
} else {
|
|
pushTensorReference(ivalue);
|
|
}
|
|
}
|
|
|
|
void Pickler::pushLiteralTensor(const IValue& ivalue) {
|
|
// In contrast to tensor references, literal tensors are included in the
|
|
// pickle program binary blob. They are written to the file after the STOP
|
|
// opcode. They can't be included in the pickle program itself without a bunch
|
|
// of extra machinery since byte strings are limited to 4 GB.
|
|
//
|
|
// The format here is the same one used by `torch.save()`. The code for the
|
|
// format can be found in `torch/serialization.py`.
|
|
auto tensor = ivalue.toTensor();
|
|
|
|
// The arguments to this function are:
|
|
// storage, storage_offset, size, stride, requires_grad, backward_hooks
|
|
pushGlobal("torch._utils\n_rebuild_tensor_v2\n");
|
|
push<OpCode>(OpCode::MARK);
|
|
|
|
// Tuple for persistent_load
|
|
push<OpCode>(OpCode::MARK);
|
|
// typename
|
|
pushMemoizedString(std::string("storage"));
|
|
// data_type
|
|
std::stringstream data_type;
|
|
data_type << "torch\n" << toString(tensor.scalar_type()) << "Storage\n";
|
|
pushGlobal(data_type.str());
|
|
// root_key
|
|
pushMemoizedString(std::to_string(getStorageKey(tensor)));
|
|
// location
|
|
pushMemoizedString(std::string("cpu"));
|
|
// size
|
|
pushInt(tensor.numel());
|
|
// view_metadata
|
|
push<OpCode>(OpCode::NONE);
|
|
push<OpCode>(OpCode::TUPLE);
|
|
push<OpCode>(OpCode::BINPERSID);
|
|
|
|
// storage offset
|
|
int64_t storage_offset = 0;
|
|
pushInt(storage_offset);
|
|
|
|
// size
|
|
push<OpCode>(OpCode::MARK);
|
|
for (auto size : tensor.sizes()) {
|
|
pushInt(size);
|
|
}
|
|
push<OpCode>(OpCode::TUPLE);
|
|
|
|
// stride
|
|
push<OpCode>(OpCode::MARK);
|
|
for (auto stride : tensor.strides()) {
|
|
pushInt(stride);
|
|
}
|
|
push<OpCode>(OpCode::TUPLE);
|
|
|
|
// requires_grad
|
|
addIValue(tensor.requires_grad());
|
|
|
|
// backward_hooks
|
|
pushGlobal("collections\nOrderedDict\n");
|
|
push<OpCode>(OpCode::EMPTY_TUPLE);
|
|
// Construct the collections.OrderedDict for the backward_hooks
|
|
push<OpCode>(OpCode::REDUCE);
|
|
|
|
push<OpCode>(OpCode::TUPLE);
|
|
|
|
// Call torch._utils._rebuild_tensor_v2
|
|
push<OpCode>(OpCode::REDUCE);
|
|
|
|
// Store tensor so it can be placed into the binary after the pickle program
|
|
literal_tensors_.push_back(ivalue.toTensor());
|
|
}
|
|
|
|
void Pickler::pushClass(PicklerClass cls) {
|
|
pushGlobal(getModuleName() + getClassName(cls));
|
|
}
|
|
|
|
void Pickler::pushTensorReference(const IValue& ivalue) {
|
|
pushClass(PicklerClass::TENSOR);
|
|
tensor_table_->push_back(ivalue.toTensor());
|
|
int64_t tensor_id = tensor_table_->size() - 1;
|
|
// Reduce arguments are spread (e.g. `*args`) before calling the global,
|
|
// so wrap in a tuple
|
|
push<OpCode>(OpCode::MARK);
|
|
addIValue(tensor_id);
|
|
push<OpCode>(OpCode::TUPLE);
|
|
|
|
push<OpCode>(OpCode::REDUCE);
|
|
}
|
|
|
|
void Pickler::pushSpecializedList(
|
|
const IValue& ivalue,
|
|
PicklerClass cls,
|
|
const std::function<void(const IValue&)>& item_pusher) {
|
|
pushClass(cls);
|
|
|
|
// Reduce arguments are spread (e.g. `*args`) before calling the global,
|
|
// so wrap in a tuple
|
|
push<OpCode>(OpCode::MARK);
|
|
|
|
push<OpCode>(OpCode::EMPTY_LIST);
|
|
// Mark list
|
|
push<OpCode>(OpCode::MARK);
|
|
|
|
// Add all items
|
|
item_pusher(ivalue);
|
|
|
|
// Finish list
|
|
push<OpCode>(OpCode::APPENDS);
|
|
|
|
// Finish tuple
|
|
push<OpCode>(OpCode::TUPLE);
|
|
|
|
// Call reduce
|
|
push<OpCode>(OpCode::REDUCE);
|
|
pushMemoization(ivalue);
|
|
}
|
|
|
|
void Pickler::pushDouble(const IValue& ivalue) {
|
|
double value = ivalue.toDouble();
|
|
AT_ASSERT(sizeof(double) == 8);
|
|
char* bytes = reinterpret_cast<char*>(&value);
|
|
|
|
push<OpCode>(OpCode::BINFLOAT);
|
|
for (size_t i = 0; i < 8; ++i) {
|
|
push<uint8_t>(bytes[8 - i - 1]);
|
|
}
|
|
}
|
|
|
|
void Pickler::pushDict(const IValue& ivalue) {
|
|
push<OpCode>(OpCode::EMPTY_DICT);
|
|
pushMemoization(ivalue);
|
|
|
|
push<OpCode>(OpCode::MARK);
|
|
|
|
// Sort the dict for deterministic keys
|
|
auto dict_items = iterationOrder(ivalue.toGenericDict());
|
|
for (const auto& pair : dict_items) {
|
|
addIValue(pair.first);
|
|
addIValue(pair.second);
|
|
}
|
|
|
|
push<OpCode>(OpCode::SETITEMS);
|
|
}
|
|
|
|
void Pickler::pushMemoization(const void* item) {
|
|
TORCH_CHECK(item != nullptr, "Pickler cannot memoize a nullptr");
|
|
memo_map_[item] = pushNextBinPut();
|
|
}
|
|
|
|
size_t Pickler::pushNextBinPut() {
|
|
if (memo_id_ <= std::numeric_limits<uint8_t>::max()) {
|
|
push<OpCode>(OpCode::BINPUT);
|
|
push<uint8_t>(memo_id_);
|
|
} else {
|
|
// Memoized too many items, issue a LONG_BINPUT instead
|
|
push<OpCode>(OpCode::LONG_BINPUT);
|
|
push<uint32_t>(memo_id_);
|
|
}
|
|
AT_ASSERT(memo_id_ <= std::numeric_limits<uint32_t>::max());
|
|
++memo_id_;
|
|
return memo_id_ - 1;
|
|
}
|
|
|
|
void Pickler::pushMemoization(const IValue& ivalue) {
|
|
auto ptr = getPointer(ivalue);
|
|
memoized_ivalues_.push_back(ivalue);
|
|
TORCH_CHECK(
|
|
ptr != nullptr,
|
|
"Pickler cannot memoize ",
|
|
ivalue.tagKind(),
|
|
" IValue ",
|
|
ivalue)
|
|
pushMemoization(ptr);
|
|
}
|
|
|
|
void Pickler::pushGenericList(const IValue& ivalue) {
|
|
auto list = ivalue.toGenericListRef();
|
|
push<OpCode>(OpCode::EMPTY_LIST);
|
|
pushMemoization(ivalue);
|
|
|
|
push<OpCode>(OpCode::MARK);
|
|
|
|
for (const IValue& item : list) {
|
|
addIValue(item);
|
|
}
|
|
|
|
push<OpCode>(OpCode::APPENDS);
|
|
}
|
|
|
|
void Pickler::pushTuple(const IValue& ivalue) {
|
|
// TODO: Small tuple unrolling (e.g. TUPLE3)
|
|
push<OpCode>(OpCode::MARK);
|
|
auto tuple = ivalue.toTuple();
|
|
|
|
for (const IValue& item : tuple->elements()) {
|
|
addIValue(item);
|
|
}
|
|
|
|
push<OpCode>(OpCode::TUPLE);
|
|
pushMemoization(ivalue);
|
|
}
|
|
|
|
std::vector<IValue> Unpickler::parse_ivalue_list() {
|
|
run();
|
|
TORCH_CHECK(
|
|
stack_.size() == 1,
|
|
"Unpickler expected 1 element on the stack, but found ",
|
|
stack_.size());
|
|
|
|
auto value = stack_[0].ivalue();
|
|
if (value.isGenericList()) {
|
|
// TODO [unpickler refactor]
|
|
return value.toGenericListRef().vec();
|
|
}
|
|
return value.toTuple()->elements();
|
|
}
|
|
|
|
double Unpickler::readFloat() {
|
|
AT_ASSERT(sizeof(double) == 8);
|
|
AT_ASSERT(bytes_ + 8 < end_ptr_);
|
|
double result;
|
|
|
|
// Pickle floats are big endian, so reverse the bytes
|
|
std::reverse_copy(
|
|
reinterpret_cast<const char*>(bytes_),
|
|
reinterpret_cast<const char*>(bytes_ + 8),
|
|
reinterpret_cast<char*>(&result));
|
|
|
|
bytes_ += 8;
|
|
return result;
|
|
}
|
|
|
|
void Unpickler::run() {
|
|
// Expect a PROTO opcode and protocol number at the start of blob
|
|
TORCH_CHECK(
|
|
readOpCode() == OpCode::PROTO,
|
|
"Expected PROTO opcode at the start"
|
|
" of pickle archive");
|
|
uint8_t protocol = read<uint8_t>();
|
|
TORCH_CHECK(
|
|
protocol == 2,
|
|
"Only Pickle protocol 2 is supported, found protocol = ",
|
|
protocol);
|
|
|
|
while (bytes_ < end_ptr_) {
|
|
OpCode opcode = readInstruction();
|
|
if (opcode == OpCode::STOP) {
|
|
return;
|
|
}
|
|
last_opcode_ = opcode;
|
|
}
|
|
|
|
AT_ERROR("Overran buffer while unpickling data, didn't find STOP opcode");
|
|
}
|
|
|
|
OpCode Unpickler::readInstruction() {
|
|
auto opcode = readOpCode();
|
|
switch (opcode) {
|
|
case OpCode::EMPTY_LIST: {
|
|
if (last_opcode_ == OpCode::NEWOBJ) {
|
|
// TODO [unpickler refactor] remove this case
|
|
// It's a list specialization, the enum ID of which is on the stack
|
|
TORCH_CHECK(
|
|
stack_.size() > 0,
|
|
"Unpickler found an empty stack when it expected a value");
|
|
auto value = stack_.back().ivalue().toInt();
|
|
TORCH_CHECK(
|
|
value >= 0 && value <= std::numeric_limits<uint8_t>::max(),
|
|
"Unpickler could not decode PicklerClass for ",
|
|
value);
|
|
PicklerClass cls = static_cast<PicklerClass>(uint8_t(value));
|
|
if (cls == PicklerClass::INTLIST) {
|
|
stack_.emplace_back(std::vector<int64_t>());
|
|
}
|
|
} else if (stack_.size() > 0 && stack_.back().pickler_class_opt()) {
|
|
// Check if we're in a GLOBAL opcode and if so, if it's a list
|
|
// specialization
|
|
if (stack_.back().pickler_class() == PicklerClass::INTLIST) {
|
|
stack_.emplace_back(std::vector<int64_t>());
|
|
} else if (stack_.back().pickler_class() == PicklerClass::INTLIST) {
|
|
stack_.emplace_back(std::vector<int64_t>());
|
|
} else if (stack_.back().pickler_class() == PicklerClass::TENSORLIST) {
|
|
stack_.emplace_back(std::vector<at::Tensor>());
|
|
} else if (stack_.back().pickler_class() == PicklerClass::DOUBLELIST) {
|
|
stack_.emplace_back(std::vector<double>());
|
|
} else if (stack_.back().pickler_class() == PicklerClass::BOOLLIST) {
|
|
stack_.emplace_back(std::vector<bool>());
|
|
} else {
|
|
AT_ERROR("Unknown list specialization");
|
|
}
|
|
} else {
|
|
stack_.emplace_back(std::vector<IValue>());
|
|
}
|
|
} break;
|
|
case OpCode::EMPTY_TUPLE: {
|
|
stack_.emplace_back(c10::ivalue::Tuple::create({}));
|
|
} break;
|
|
case OpCode::BINPUT: {
|
|
size_t memo_id = read<uint8_t>();
|
|
if (memo_table_.capacity() <= memo_id) {
|
|
memo_table_.reserve(1 + 2 * memo_id);
|
|
}
|
|
memo_table_.push_back(stack_.back());
|
|
} break;
|
|
case OpCode::LONG_BINPUT: {
|
|
TORCH_CHECK(
|
|
std::numeric_limits<size_t>::max() >=
|
|
std::numeric_limits<uint32_t>::max(),
|
|
"Found a LONG_BINPUT opcode, but size_t on this system is "
|
|
"not big enough to decode it");
|
|
size_t memo_id = read<uint32_t>();
|
|
if (memo_table_.capacity() <= memo_id) {
|
|
memo_table_.reserve(1 + 2 * memo_id);
|
|
}
|
|
memo_table_.push_back(stack_.back());
|
|
} break;
|
|
case OpCode::MARK: {
|
|
// Mark location of the container ivalue in the stack
|
|
marks_.push_back(stack_.size());
|
|
} break;
|
|
case OpCode::NEWTRUE: {
|
|
stack_.emplace_back(true);
|
|
} break;
|
|
case OpCode::NEWFALSE: {
|
|
stack_.emplace_back(false);
|
|
} break;
|
|
case OpCode::NONE: {
|
|
stack_.emplace_back(IValue());
|
|
} break;
|
|
case OpCode::BININT1: {
|
|
int8_t value = read<int8_t>();
|
|
stack_.emplace_back(int64_t(value));
|
|
} break;
|
|
case OpCode::BININT: {
|
|
int32_t value = read<int32_t>();
|
|
stack_.emplace_back(int64_t(value));
|
|
} break;
|
|
case OpCode::LONG1: {
|
|
// Only read LONG1s with 8 as the length
|
|
uint8_t length = read<uint8_t>();
|
|
AT_ASSERT(length == 8);
|
|
stack_.emplace_back(int64_t(read<int64_t>()));
|
|
} break;
|
|
case OpCode::BINUNICODE: {
|
|
uint32_t length = read<uint32_t>();
|
|
const char* characters = reinterpret_cast<const char*>(bytes_);
|
|
AT_ASSERT(bytes_ + length < end_ptr_);
|
|
bytes_ += length;
|
|
stack_.emplace_back(std::string(characters, /*n=*/length));
|
|
} break;
|
|
case OpCode::BINFLOAT:
|
|
stack_.emplace_back(readFloat());
|
|
break;
|
|
case OpCode::TUPLE: {
|
|
size_t start = marks_.back();
|
|
marks_.pop_back();
|
|
auto tuple = c10::ivalue::Tuple::create({});
|
|
tuple->elements().reserve(stack_.size() - start);
|
|
auto start_it = stack_.begin() + start;
|
|
for (auto it = start_it; it != stack_.end(); ++it) {
|
|
tuple->elements().emplace_back(it->ivalue());
|
|
}
|
|
stack_.erase(start_it, stack_.end());
|
|
stack_.emplace_back(IValue(tuple));
|
|
} break;
|
|
case OpCode::EMPTY_DICT:
|
|
stack_.emplace_back(c10::impl::make_generic_dict());
|
|
break;
|
|
case OpCode::APPENDS: {
|
|
readList();
|
|
} break;
|
|
case OpCode::SETITEMS: {
|
|
size_t start = marks_.back();
|
|
marks_.pop_back();
|
|
auto dict = stack_.at(start - 1).ivalue().toGenericDict();
|
|
for (size_t i = start; i < stack_.size(); i += 2) {
|
|
dict.insert_or_assign(stack_[i].ivalue(), stack_[i + 1].ivalue());
|
|
}
|
|
stack_.erase(stack_.begin() + start, stack_.end());
|
|
} break;
|
|
case OpCode::BINGET: {
|
|
stack_.push_back(memo_table_.at(read<uint8_t>()));
|
|
} break;
|
|
case OpCode::LONG_BINGET: {
|
|
stack_.push_back(memo_table_.at(read<uint32_t>()));
|
|
} break;
|
|
case OpCode::STOP:
|
|
break;
|
|
case OpCode::GLOBAL: {
|
|
// Module name, it's not needed for anything
|
|
auto module_name = readString();
|
|
// TODO [unpickler refactor] __main__ isn't used by the pickler anymore
|
|
if (module_name == "__main__") {
|
|
stack_.emplace_back(static_cast<uint8_t>(getClass(readString())));
|
|
} else {
|
|
// Push class name to stack
|
|
stack_.emplace_back(getClass(readString()));
|
|
}
|
|
} break;
|
|
case OpCode::NEWOBJ: {
|
|
// pop empty tuple
|
|
stack_.pop_back();
|
|
} break;
|
|
case OpCode::BUILD: {
|
|
// TODO: [unpickler refactor]
|
|
auto setitem_data = stack_.back().ivalue();
|
|
stack_.pop_back();
|
|
|
|
auto class_name =
|
|
static_cast<PicklerClass>(uint8_t(stack_.back().ivalue().toInt()));
|
|
stack_.pop_back();
|
|
|
|
switch (class_name) {
|
|
case PicklerClass::TENSOR:
|
|
stack_.emplace_back(tensor_table_->at(setitem_data.toInt()));
|
|
break;
|
|
case PicklerClass::INTLIST:
|
|
stack_.emplace_back(setitem_data);
|
|
break;
|
|
default:
|
|
AT_ERROR("Unknown pickler class id");
|
|
}
|
|
} break;
|
|
case OpCode::REDUCE: {
|
|
// Pop reduce arg off the stack
|
|
auto data = stack_.back().ivalue().toTuple();
|
|
stack_.pop_back();
|
|
|
|
// Remove GLOBAL from stack
|
|
auto class_name = stack_.back().pickler_class();
|
|
stack_.pop_back();
|
|
|
|
switch (class_name) {
|
|
case PicklerClass::TENSOR:
|
|
stack_.emplace_back(
|
|
tensor_table_->at(data->elements().at(0).toInt()));
|
|
break;
|
|
case PicklerClass::INTLIST:
|
|
stack_.emplace_back(data->elements().at(0).toIntList());
|
|
break;
|
|
case PicklerClass::TENSORLIST:
|
|
stack_.emplace_back(data->elements().at(0).toTensorList());
|
|
break;
|
|
case PicklerClass::DOUBLELIST:
|
|
stack_.emplace_back(data->elements().at(0).toDoubleList());
|
|
break;
|
|
case PicklerClass::BOOLLIST:
|
|
stack_.emplace_back(data->elements().at(0).toBoolList());
|
|
break;
|
|
default:
|
|
AT_ERROR("Unknown pickler class id");
|
|
}
|
|
} break;
|
|
default:
|
|
AT_ERROR(
|
|
"Unknown opcode for unpickling at ",
|
|
reinterpret_cast<void*>(opcode),
|
|
": ",
|
|
static_cast<uint8_t>(opcode));
|
|
}
|
|
return opcode;
|
|
}
|
|
|
|
// Pop all the list items off of the stack and append them to the list at the
|
|
// corresponding MARK
|
|
void Unpickler::readList() {
|
|
size_t start = marks_.back();
|
|
marks_.pop_back();
|
|
auto list_ivalue = stack_.at(start - 1).ivalue();
|
|
auto num_elements = stack_.size() - start;
|
|
auto elements = at::ArrayRef<StackItem>(stack_).slice(start);
|
|
if (list_ivalue.isIntList()) {
|
|
auto list = std::move(list_ivalue).toIntList();
|
|
list.reserve(num_elements);
|
|
for (const auto& elem : elements) {
|
|
list.emplace_back(elem.ivalue().toInt());
|
|
}
|
|
} else if (list_ivalue.isTensorList()) {
|
|
auto list = std::move(list_ivalue).toTensorList();
|
|
list.reserve(num_elements);
|
|
for (const auto& elem : elements) {
|
|
list.emplace_back(elem.ivalue().toTensor());
|
|
}
|
|
} else if (list_ivalue.isDoubleList()) {
|
|
auto list = std::move(list_ivalue).toDoubleList();
|
|
list.reserve(num_elements);
|
|
for (const auto& elem : elements) {
|
|
list.emplace_back(elem.ivalue().toDouble());
|
|
}
|
|
} else if (list_ivalue.isBoolList()) {
|
|
auto list = std::move(list_ivalue).toBoolList();
|
|
list.reserve(num_elements);
|
|
for (const auto& elem : elements) {
|
|
list.push_back(elem.ivalue().toBool());
|
|
}
|
|
} else if (list_ivalue.isGenericList()) {
|
|
auto list = std::move(list_ivalue).toGenericList();
|
|
list.reserve(num_elements);
|
|
for (const auto& elem : elements) {
|
|
list.emplace_back(elem.ivalue());
|
|
}
|
|
} else {
|
|
AT_ERROR("Unknown IValue list kind: ", list_ivalue.tagKind());
|
|
}
|
|
|
|
stack_.erase(stack_.begin() + start, stack_.end());
|
|
}
|
|
|
|
inline bool is_valid_python_id_char(char c) {
|
|
return c == '_' || c == '.' || (c >= '0' && c <= '9') ||
|
|
(c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z');
|
|
}
|
|
|
|
// Read a newline terminated string
|
|
std::string Unpickler::readString() {
|
|
const char* chars = reinterpret_cast<const char*>(bytes_);
|
|
const char* char_end_ptr = reinterpret_cast<const char*>(end_ptr_);
|
|
size_t n = 0;
|
|
while (true) {
|
|
char c = chars[n];
|
|
if (c == '\n') {
|
|
break;
|
|
}
|
|
|
|
// Simple check just in case there is no terminating '\n'
|
|
TORCH_CHECK(
|
|
is_valid_python_id_char(c),
|
|
"Found character '",
|
|
uint8_t(c),
|
|
"' in string, "
|
|
"strings must be qualified Python identifiers");
|
|
|
|
// Increment after to exclude newline from string
|
|
++n;
|
|
TORCH_CHECK(
|
|
chars + n < char_end_ptr,
|
|
"Unpickler overran buffer while reading a string (expected a newline)");
|
|
}
|
|
|
|
// Increment by string length + newline char
|
|
bytes_ += n + 1;
|
|
return std::string(chars, n);
|
|
}
|
|
|
|
OpCode Unpickler::readOpCode() {
|
|
return static_cast<OpCode>(read<uint8_t>());
|
|
}
|
|
|
|
std::pair<at::Tensor, uint64_t> getWriteableTensor(const at::Tensor& tensor) {
|
|
at::Tensor storage_tensor = tensor;
|
|
uint64_t record_size = tensor.element_size() * tensor.storage().size();
|
|
// TODO HIP support
|
|
if (tensor.storage().device_type() == at::DeviceType::CUDA) {
|
|
// NB: This new tensor is created to support cuda tensors.
|
|
// Storages can be mutated when converting tensors from cuda to cpu,
|
|
// and we need a cpu tensor to copy data from.
|
|
storage_tensor = at::empty({0}, tensor.options())
|
|
.set_(
|
|
tensor.storage(),
|
|
/* storage_offset = */ 0,
|
|
/* size = */
|
|
{static_cast<int64_t>(tensor.storage().size())},
|
|
/* stride = */ {1})
|
|
.cpu();
|
|
TORCH_CHECK(
|
|
storage_tensor.element_size() * storage_tensor.storage().size() ==
|
|
record_size,
|
|
"Storage tensor size did not match record size");
|
|
}
|
|
|
|
return std::make_pair(storage_tensor, record_size);
|
|
}
|
|
|
|
uint64_t getStorageKey(const at::Tensor& tensor) {
|
|
at::StorageImpl* storage_key = tensor.storage().unsafeGetStorageImpl();
|
|
return reinterpret_cast<intptr_t>(storage_key);
|
|
}
|
|
|
|
} // namespace jit
|
|
} // namespace torch
|