mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/59848 This whole stack does not change anything to the codegened code Test Plan: Imported from OSS Reviewed By: ailzhang Differential Revision: D29063818 Pulled By: albanD fbshipit-source-id: c68734672eeacd212d7bd9bebe3d53aaa20c3c24
68 lines
2.6 KiB
Python
68 lines
2.6 KiB
Python
from tools.codegen.utils import S, T, context
|
|
from tools.codegen.model import (NativeFunction, NativeFunctionsGroup, BackendIndex, DispatchKey)
|
|
import tools.codegen.local as local
|
|
|
|
import functools
|
|
from typing import TypeVar, Union, Iterator, Callable, Dict
|
|
import contextlib
|
|
|
|
# Helper functions for defining generators on things in the model
|
|
|
|
F = TypeVar(
|
|
'F',
|
|
NativeFunction,
|
|
NativeFunctionsGroup,
|
|
Union[NativeFunction, NativeFunctionsGroup],
|
|
)
|
|
|
|
@contextlib.contextmanager
|
|
def native_function_manager(g: Union[NativeFunctionsGroup, NativeFunction]) -> Iterator[None]:
|
|
if isinstance(g, NativeFunctionsGroup):
|
|
# By default, we associate all errors with structured native functions
|
|
# with the out variant. In some cases, it might be better to have
|
|
# a more specific place to hang things; if so, use
|
|
# native_function_manager again on the inside
|
|
f = g.out
|
|
else:
|
|
f = g
|
|
with context(lambda: f'in native_functions.yaml line {f.loc}:\n {f.func}'):
|
|
with local.parametrize(use_const_ref_for_mutable_tensors=f.use_const_ref_for_mutable_tensors):
|
|
yield
|
|
|
|
# Given a function that operates on NativeFunction, wrap it into a new function
|
|
# that sets some appropriate context managers for that native function.
|
|
# YOU MUST WRAP FUNCTIONS IN THIS for calls to api modules to be sound
|
|
# (you will get an error if we try to access the local variables without having
|
|
# set them).
|
|
def with_native_function(func: Callable[[F], T]) -> Callable[[F], T]:
|
|
@functools.wraps(func)
|
|
def wrapper(f: F) -> T:
|
|
with native_function_manager(f):
|
|
return func(f)
|
|
return wrapper
|
|
|
|
def method_with_native_function(func: Callable[[S, F], T]) -> Callable[[S, F], T]:
|
|
@functools.wraps(func)
|
|
def wrapper(slf: S, f: F) -> T:
|
|
with native_function_manager(f):
|
|
return func(slf, f)
|
|
return wrapper
|
|
|
|
# Convenience decorator for functions that explicitly take in a BackendIndex,
|
|
# instead of indirectly taking one in as a closure
|
|
def with_native_function_and_index(func: Callable[[F, BackendIndex], T]) -> Callable[[F, BackendIndex], T]:
|
|
@functools.wraps(func)
|
|
def wrapper(f: F, backend_index: BackendIndex) -> T:
|
|
with native_function_manager(f):
|
|
return func(f, backend_index)
|
|
return wrapper
|
|
|
|
def with_native_function_and_indices(
|
|
func: Callable[[F, Dict[DispatchKey, BackendIndex]], T]
|
|
) -> Callable[[F, Dict[DispatchKey, BackendIndex]], T]:
|
|
@functools.wraps(func)
|
|
def wrapper(f: F, backend_indices: Dict[DispatchKey, BackendIndex]) -> T:
|
|
with native_function_manager(f):
|
|
return func(f, backend_indices)
|
|
return wrapper
|