mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Static RNN allows to unroll an RNN into Caffe2 graph using all existing cell abstractions. In this diff I introduce several new tests that already caught a few bugs in our RecurrentNetworkOp gradient accumulation logic by comparing it to an unrolled version. Another use case is perf - potentially we can run an unrolled net faster because DAGNet will have access to the whole graph. Same about memonger. But this work is not part of this diff Reviewed By: akyrola Differential Revision: D5200943 fbshipit-source-id: 20f16fc1b2ca500d06ccc60c4cec6e81839149dc
1364 lines
46 KiB
Python
1364 lines
46 KiB
Python
## @package rnn_cell
|
|
# Module caffe2.python.rnn_cell
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import functools
|
|
import itertools
|
|
import logging
|
|
import numpy as np
|
|
import random
|
|
import six
|
|
|
|
from caffe2.python.attention import (
|
|
AttentionType,
|
|
apply_regular_attention,
|
|
apply_recurrent_attention,
|
|
)
|
|
from caffe2.python import core, recurrent, workspace, brew, scope
|
|
from caffe2.python.modeling.parameter_sharing import ParameterSharing
|
|
from caffe2.python.model_helper import ModelHelper
|
|
|
|
|
|
class RNNCell(object):
|
|
'''
|
|
Base class for writing recurrent / stateful operations.
|
|
|
|
One needs to implement 3 methods: _apply, prepare_input and get_state_names.
|
|
As a result base class will provice apply_over_sequence method, which
|
|
allows you to apply recurrent operations over a sequence of any length.
|
|
'''
|
|
def __init__(self, name, forward_only=False):
|
|
self.name = name
|
|
self.recompute_blobs = []
|
|
self.forward_only = forward_only
|
|
|
|
def scope(self, name):
|
|
return self.name + '/' + name if self.name is not None else name
|
|
|
|
def apply_over_sequence(
|
|
self,
|
|
model,
|
|
inputs,
|
|
seq_lengths,
|
|
initial_states,
|
|
outputs_with_grads=None,
|
|
):
|
|
preprocessed_inputs = self.prepare_input(model, inputs)
|
|
step_model = ModelHelper(name=self.name, param_model=model)
|
|
input_t, timestep = step_model.net.AddScopedExternalInputs(
|
|
'input_t',
|
|
'timestep',
|
|
)
|
|
states_prev = step_model.net.AddScopedExternalInputs(*[
|
|
s + '_prev' for s in self.get_state_names()
|
|
])
|
|
states = self._apply(
|
|
model=step_model,
|
|
input_t=input_t,
|
|
seq_lengths=seq_lengths,
|
|
states=states_prev,
|
|
timestep=timestep,
|
|
)
|
|
|
|
if outputs_with_grads is None:
|
|
outputs_with_grads = [self.get_output_state_index() * 2]
|
|
|
|
# states_for_all_steps consists of combination of
|
|
# states gather for all steps and final states. It looks like this:
|
|
# (state_1_all, state_1_final, state_2_all, state_2_final, ...)
|
|
states_for_all_steps = recurrent.recurrent_net(
|
|
net=model.net,
|
|
cell_net=step_model.net,
|
|
inputs=[(input_t, preprocessed_inputs)],
|
|
initial_cell_inputs=list(zip(states_prev, initial_states)),
|
|
links=dict(zip(states_prev, states)),
|
|
timestep=timestep,
|
|
scope=self.name,
|
|
outputs_with_grads=outputs_with_grads,
|
|
recompute_blobs_on_backward=self.recompute_blobs,
|
|
)
|
|
|
|
output = self._prepare_output_sequence(
|
|
model,
|
|
states_for_all_steps,
|
|
)
|
|
return output, states_for_all_steps
|
|
|
|
def apply(self, model, input_t, seq_lengths, states, timestep):
|
|
input_t = self.prepare_input(model, input_t)
|
|
states = self._apply(
|
|
model, input_t, seq_lengths, states, timestep)
|
|
output = self._prepare_output(model, states)
|
|
return output, states
|
|
|
|
def _apply(
|
|
self,
|
|
model,
|
|
input_t,
|
|
seq_lengths,
|
|
states,
|
|
timestep,
|
|
extra_inputs,
|
|
):
|
|
'''
|
|
A single step of a recurrent network.
|
|
|
|
model: ModelHelper object new operators would be added to
|
|
|
|
input_t: single input with shape (1, batch_size, input_dim)
|
|
|
|
seq_lengths: blob containing sequence lengths which would be passed to
|
|
LSTMUnit operator
|
|
|
|
states: previous recurrent states
|
|
|
|
timestep: current recurrent iteration. Could be used together with
|
|
seq_lengths in order to determine, if some shorter sequences
|
|
in the batch have already ended.
|
|
|
|
extra_inputs: list of tuples (input, dim). specifies additional input
|
|
which is not subject to prepare_input(). (useful when a cell is a
|
|
component of a larger recurrent structure, e.g., attention)
|
|
'''
|
|
raise NotImplementedError('Abstract method')
|
|
|
|
def prepare_input(self, model, input_blob):
|
|
'''
|
|
If some operations in _apply method depend only on the input,
|
|
not on recurrent states, they could be computed in advance.
|
|
|
|
model: ModelHelper object new operators would be added to
|
|
|
|
input_blob: either the whole input sequence with shape
|
|
(sequence_length, batch_size, input_dim) or a single input with shape
|
|
(1, batch_size, input_dim).
|
|
'''
|
|
return input_blob
|
|
|
|
def get_output_state_index(self):
|
|
'''
|
|
Return index into state list of the "primary" step-wise output.
|
|
'''
|
|
return 0
|
|
|
|
def get_state_names(self):
|
|
'''
|
|
Return the names of the recurrent states.
|
|
It's required by apply_over_sequence method in order to allocate
|
|
recurrent states for all steps with meaningful names.
|
|
'''
|
|
raise NotImplementedError('Abstract method')
|
|
|
|
def get_output_dim(self):
|
|
'''
|
|
Specifies the dimension (number of units) of stepwise output.
|
|
'''
|
|
raise NotImplementedError('Abstract method')
|
|
|
|
def _prepare_output(self, model, states):
|
|
'''
|
|
Allows arbitrary post-processing of primary output.
|
|
'''
|
|
return states[self.get_output_state_index()]
|
|
|
|
def _prepare_output_sequence(self, model, state_outputs):
|
|
'''
|
|
Allows arbitrary post-processing of primary sequence output.
|
|
|
|
(Note that state_outputs alternates between full-sequence and final
|
|
output for each state, thus the index multiplier 2.)
|
|
'''
|
|
output_sequence_index = 2 * self.get_output_state_index()
|
|
return state_outputs[output_sequence_index]
|
|
|
|
|
|
class LSTMCell(RNNCell):
|
|
|
|
def __init__(
|
|
self,
|
|
input_size,
|
|
hidden_size,
|
|
forget_bias,
|
|
memory_optimization,
|
|
drop_states=False,
|
|
**kwargs
|
|
):
|
|
super(LSTMCell, self).__init__(**kwargs)
|
|
self.input_size = input_size
|
|
self.hidden_size = hidden_size
|
|
self.forget_bias = float(forget_bias)
|
|
self.memory_optimization = memory_optimization
|
|
self.drop_states = drop_states
|
|
|
|
def _apply(
|
|
self,
|
|
model,
|
|
input_t,
|
|
seq_lengths,
|
|
states,
|
|
timestep,
|
|
extra_inputs=None,
|
|
):
|
|
hidden_t_prev, cell_t_prev = states
|
|
|
|
fc_input = hidden_t_prev
|
|
fc_input_dim = self.hidden_size
|
|
|
|
if extra_inputs is not None:
|
|
extra_input_blobs, extra_input_sizes = zip(*extra_inputs)
|
|
fc_input, _ = model.net.Concat(
|
|
[hidden_t_prev] + list(extra_input_blobs),
|
|
[
|
|
self.scope('gates_concatenated_input_t'),
|
|
self.scope('_gates_concatenated_input_t_concat_dims'),
|
|
],
|
|
axis=2,
|
|
)
|
|
fc_input_dim += sum(extra_input_sizes)
|
|
|
|
gates_t = brew.fc(
|
|
model,
|
|
fc_input,
|
|
self.scope('gates_t'),
|
|
dim_in=fc_input_dim,
|
|
dim_out=4 * self.hidden_size,
|
|
axis=2,
|
|
)
|
|
model.net.Sum([gates_t, input_t], gates_t)
|
|
|
|
hidden_t, cell_t = model.net.LSTMUnit(
|
|
[
|
|
hidden_t_prev,
|
|
cell_t_prev,
|
|
gates_t,
|
|
seq_lengths,
|
|
timestep,
|
|
],
|
|
list(self.get_state_names()),
|
|
forget_bias=self.forget_bias,
|
|
drop_states=self.drop_states,
|
|
)
|
|
model.net.AddExternalOutputs(hidden_t, cell_t)
|
|
if self.memory_optimization:
|
|
self.recompute_blobs = [gates_t]
|
|
return hidden_t, cell_t
|
|
|
|
def get_input_params(self):
|
|
return {
|
|
'weights': self.scope('i2h') + '_w',
|
|
'biases': self.scope('i2h') + '_b',
|
|
}
|
|
|
|
def get_recurrent_params(self):
|
|
return {
|
|
'weights': self.scope('gates_t') + '_w',
|
|
'biases': self.scope('gates_t') + '_b',
|
|
}
|
|
|
|
def prepare_input(self, model, input_blob):
|
|
return brew.fc(
|
|
model,
|
|
input_blob,
|
|
self.scope('i2h'),
|
|
dim_in=self.input_size,
|
|
dim_out=4 * self.hidden_size,
|
|
axis=2,
|
|
)
|
|
|
|
def get_state_names(self):
|
|
return (self.scope('hidden_t'), self.scope('cell_t'))
|
|
|
|
def get_output_dim(self):
|
|
return self.hidden_size
|
|
|
|
|
|
class MILSTMCell(LSTMCell):
|
|
|
|
def _apply(
|
|
self,
|
|
model,
|
|
input_t,
|
|
seq_lengths,
|
|
states,
|
|
timestep,
|
|
extra_inputs=None,
|
|
):
|
|
hidden_t_prev, cell_t_prev = states
|
|
|
|
fc_input = hidden_t_prev
|
|
fc_input_dim = self.hidden_size
|
|
|
|
if extra_inputs is not None:
|
|
extra_input_blobs, extra_input_sizes = zip(*extra_inputs)
|
|
fc_input, _ = model.net.Concat(
|
|
[hidden_t_prev] + list(extra_input_blobs),
|
|
[
|
|
self.scope('gates_concatenated_input_t'),
|
|
self.scope('_gates_concatenated_input_t_concat_dims'),
|
|
],
|
|
axis=2,
|
|
)
|
|
fc_input_dim += sum(extra_input_sizes)
|
|
|
|
prev_t = brew.fc(
|
|
model,
|
|
fc_input,
|
|
self.scope('prev_t'),
|
|
dim_in=fc_input_dim,
|
|
dim_out=4 * self.hidden_size,
|
|
axis=2,
|
|
)
|
|
|
|
# defining MI parameters
|
|
alpha = model.param_init_net.ConstantFill(
|
|
[],
|
|
[self.scope('alpha')],
|
|
shape=[4 * self.hidden_size],
|
|
value=1.0,
|
|
)
|
|
beta_h = model.param_init_net.ConstantFill(
|
|
[],
|
|
[self.scope('beta1')],
|
|
shape=[4 * self.hidden_size],
|
|
value=1.0,
|
|
)
|
|
beta_i = model.param_init_net.ConstantFill(
|
|
[],
|
|
[self.scope('beta2')],
|
|
shape=[4 * self.hidden_size],
|
|
value=1.0,
|
|
)
|
|
b = model.param_init_net.ConstantFill(
|
|
[],
|
|
[self.scope('b')],
|
|
shape=[4 * self.hidden_size],
|
|
value=0.0,
|
|
)
|
|
model.params.extend([alpha, beta_h, beta_i, b])
|
|
|
|
# alpha * input_t + beta_h
|
|
# Shape: [1, batch_size, 4 * hidden_size]
|
|
alpha_by_input_t_plus_beta_h = model.net.ElementwiseLinear(
|
|
[input_t, alpha, beta_h],
|
|
self.scope('alpha_by_input_t_plus_beta_h'),
|
|
axis=2,
|
|
)
|
|
# (alpha * input_t + beta_h) * prev_t =
|
|
# alpha * input_t * prev_t + beta_h * prev_t
|
|
# Shape: [1, batch_size, 4 * hidden_size]
|
|
alpha_by_input_t_plus_beta_h_by_prev_t = model.net.Mul(
|
|
[alpha_by_input_t_plus_beta_h, prev_t],
|
|
self.scope('alpha_by_input_t_plus_beta_h_by_prev_t')
|
|
)
|
|
# beta_i * input_t + b
|
|
# Shape: [1, batch_size, 4 * hidden_size]
|
|
beta_i_by_input_t_plus_b = model.net.ElementwiseLinear(
|
|
[input_t, beta_i, b],
|
|
self.scope('beta_i_by_input_t_plus_b'),
|
|
axis=2,
|
|
)
|
|
# alpha * input_t * prev_t + beta_h * prev_t + beta_i * input_t + b
|
|
# Shape: [1, batch_size, 4 * hidden_size]
|
|
gates_t = model.net.Sum(
|
|
[alpha_by_input_t_plus_beta_h_by_prev_t, beta_i_by_input_t_plus_b],
|
|
self.scope('gates_t')
|
|
)
|
|
hidden_t, cell_t = model.net.LSTMUnit(
|
|
[hidden_t_prev, cell_t_prev, gates_t, seq_lengths, timestep],
|
|
[self.scope('hidden_t_intermediate'), self.scope('cell_t')],
|
|
forget_bias=self.forget_bias,
|
|
drop_states=self.drop_states,
|
|
)
|
|
model.net.AddExternalOutputs(
|
|
cell_t,
|
|
hidden_t,
|
|
)
|
|
if self.memory_optimization:
|
|
self.recompute_blobs = [gates_t]
|
|
return hidden_t, cell_t
|
|
|
|
|
|
class DropoutCell(RNNCell):
|
|
'''
|
|
Wraps arbitrary RNNCell, applying dropout to its output (but not to the
|
|
recurrent connection for the corresponding state).
|
|
'''
|
|
|
|
def __init__(self, internal_cell, dropout_ratio=None, **kwargs):
|
|
self.internal_cell = internal_cell
|
|
self.dropout_ratio = dropout_ratio
|
|
super(DropoutCell, self).__init__(**kwargs)
|
|
|
|
self.prepare_input = internal_cell.prepare_input
|
|
self.get_output_state_index = internal_cell.get_output_state_index
|
|
self.get_state_names = internal_cell.get_state_names
|
|
self.get_output_dim = internal_cell.get_output_dim
|
|
|
|
def _apply(
|
|
self,
|
|
model,
|
|
input_t,
|
|
seq_lengths,
|
|
states,
|
|
timestep,
|
|
extra_inputs=None,
|
|
):
|
|
return self.internal_cell._apply(
|
|
model,
|
|
input_t,
|
|
seq_lengths,
|
|
states,
|
|
timestep,
|
|
extra_inputs,
|
|
)
|
|
|
|
def _prepare_output(self, model, states):
|
|
output = states[self.get_output_state_index()]
|
|
if self.dropout_ratio is not None:
|
|
output = self._apply_dropout(model, output)
|
|
return output
|
|
|
|
def _prepare_output_sequence(self, model, state_outputs):
|
|
output_sequence_index = 2 * self.get_output_state_index()
|
|
output = state_outputs[output_sequence_index]
|
|
if self.dropout_ratio is not None:
|
|
output = self._apply_dropout(model, output)
|
|
return output
|
|
|
|
def _apply_dropout(self, model, output):
|
|
if self.dropout_ratio and not self.forward_only:
|
|
with core.NameScope(self.name or ''):
|
|
output, _ = model.net.Dropout(
|
|
output,
|
|
[
|
|
str(output) + '_with_dropout',
|
|
str(output) + '_dropout_mask',
|
|
],
|
|
ratio=float(self.dropout_ratio),
|
|
)
|
|
return output
|
|
|
|
|
|
class MultiRNNCell(RNNCell):
|
|
'''
|
|
Multilayer RNN via the composition of RNNCell instance.
|
|
|
|
It is the resposibility of calling code to ensure the compatibility
|
|
of the successive layers in terms of input/output dimensiality, etc.,
|
|
and to ensure that their blobs do not have name conflicts, typically by
|
|
creating the cells with names that specify layer number.
|
|
|
|
Assumes first state (recurrent output) for each layer should be the input
|
|
to the next layer.
|
|
'''
|
|
|
|
def __init__(self, cells, residual_output_layers=None, **kwargs):
|
|
'''
|
|
cells: list of RNNCell instances, from input to output side.
|
|
|
|
name: string designating network component (for scoping)
|
|
|
|
residual_output_layers: list of indices of layers whose input will
|
|
be added elementwise to their output elementwise. (It is the
|
|
responsibility of the client code to ensure shape compatibility.)
|
|
Note that layer 0 (zero) cannot have residual output because of the
|
|
timing of prepare_input().
|
|
|
|
forward_only: used to construct inference-only network.
|
|
'''
|
|
super(MultiRNNCell, self).__init__(**kwargs)
|
|
self.cells = cells
|
|
|
|
if residual_output_layers is None:
|
|
self.residual_output_layers = []
|
|
else:
|
|
self.residual_output_layers = residual_output_layers
|
|
|
|
self.state_names = []
|
|
for cell in self.cells:
|
|
self.state_names.extend(cell.get_state_names())
|
|
|
|
if len(self.state_names) != len(set(self.state_names)):
|
|
duplicates = {
|
|
state_name for state_name in self.state_names
|
|
if self.state_names.count(state_name) > 1
|
|
}
|
|
raise RuntimeError(
|
|
'Duplicate state names in MultiRNNCell: {}'.format(
|
|
list(duplicates),
|
|
),
|
|
)
|
|
|
|
def prepare_input(self, model, input_blob):
|
|
return self.cells[0].prepare_input(model, input_blob)
|
|
|
|
def _apply(
|
|
self,
|
|
model,
|
|
input_t,
|
|
seq_lengths,
|
|
states,
|
|
timestep,
|
|
extra_inputs=None,
|
|
):
|
|
|
|
states_per_layer = [len(cell.get_state_names()) for cell in self.cells]
|
|
assert len(states) == sum(states_per_layer)
|
|
|
|
next_states = []
|
|
states_index = 0
|
|
|
|
layer_input = input_t
|
|
for i, layer_cell in enumerate(self.cells):
|
|
num_states = states_per_layer[i]
|
|
layer_states = states[states_index:(states_index + num_states)]
|
|
states_index += num_states
|
|
|
|
if i > 0:
|
|
prepared_input = layer_cell.prepare_input(model, layer_input)
|
|
else:
|
|
prepared_input = layer_input
|
|
|
|
layer_next_states = layer_cell._apply(
|
|
model,
|
|
prepared_input,
|
|
seq_lengths,
|
|
layer_states,
|
|
timestep,
|
|
extra_inputs=(None if i > 0 else extra_inputs),
|
|
)
|
|
# Since we're using here non-public method _apply, instead of apply,
|
|
# we have to manually extract output from states
|
|
if i != len(self.cells) - 1:
|
|
layer_output = layer_cell._prepare_output(
|
|
model,
|
|
layer_next_states,
|
|
)
|
|
if i > 0 and i in self.residual_output_layers:
|
|
layer_input = model.net.Sum(
|
|
[layer_output, layer_input],
|
|
self.scope('residual_output_{}'.format(i)),
|
|
)
|
|
else:
|
|
layer_input = layer_output
|
|
|
|
next_states.extend(layer_next_states)
|
|
return next_states
|
|
|
|
def get_state_names(self):
|
|
return self.state_names
|
|
|
|
def get_output_state_index(self):
|
|
index = 0
|
|
for cell in self.cells[:-1]:
|
|
index += len(cell.get_state_names())
|
|
index += self.cells[-1].get_output_state_index()
|
|
return index
|
|
|
|
def _prepare_output(self, model, states):
|
|
|
|
output = self.cells[-1]._prepare_output(
|
|
model,
|
|
states[-len(self.cells[-1].get_state_names()):],
|
|
)
|
|
|
|
if (len(self.cells) - 1) in self.residual_output_layers:
|
|
last_layer_input_index = 0
|
|
for cell in self.cells[:-2]:
|
|
last_layer_input_index += len(cell.get_state_names())
|
|
last_layer_input_index += self.cells[-2].get_output_state_index()
|
|
last_layer_input = states[last_layer_input_index]
|
|
output = model.net.Sum(
|
|
[output, last_layer_input],
|
|
[self.scope('residual_output')],
|
|
)
|
|
return output
|
|
|
|
def _prepare_output_sequence(self, model, states):
|
|
|
|
output = self.cells[-1]._prepare_output_sequence(
|
|
model,
|
|
states[-(2 * len(self.cells[-1].get_state_names())):],
|
|
)
|
|
|
|
if (len(self.cells) - 1) in self.residual_output_layers:
|
|
last_layer_input_index = 0
|
|
for cell in self.cells[:-2]:
|
|
last_layer_input_index += 2 * len(cell.get_state_names())
|
|
last_layer_input_index += (
|
|
2 * self.cells[-2].get_output_state_index()
|
|
)
|
|
last_layer_input = states[last_layer_input_index]
|
|
output = model.net.Sum(
|
|
[output, last_layer_input],
|
|
[self.scope('residual_output_sequence')],
|
|
)
|
|
return output
|
|
|
|
|
|
class AttentionCell(RNNCell):
|
|
|
|
def __init__(
|
|
self,
|
|
encoder_output_dim,
|
|
encoder_outputs,
|
|
decoder_cell,
|
|
decoder_state_dim,
|
|
attention_type,
|
|
weighted_encoder_outputs,
|
|
attention_memory_optimization,
|
|
**kwargs
|
|
):
|
|
super(AttentionCell, self).__init__(**kwargs)
|
|
self.encoder_output_dim = encoder_output_dim
|
|
self.encoder_outputs = encoder_outputs
|
|
self.decoder_cell = decoder_cell
|
|
self.decoder_state_dim = decoder_state_dim
|
|
self.weighted_encoder_outputs = weighted_encoder_outputs
|
|
self.encoder_outputs_transposed = None
|
|
assert attention_type in [
|
|
AttentionType.Regular,
|
|
AttentionType.Recurrent,
|
|
]
|
|
self.attention_type = attention_type
|
|
self.attention_memory_optimization = attention_memory_optimization
|
|
|
|
def _apply(
|
|
self,
|
|
model,
|
|
input_t,
|
|
seq_lengths,
|
|
states,
|
|
timestep,
|
|
extra_inputs=None,
|
|
):
|
|
decoder_prev_states = states[:-1]
|
|
attention_weighted_encoder_context_t_prev = states[-1]
|
|
|
|
assert extra_inputs is None
|
|
|
|
decoder_states = self.decoder_cell._apply(
|
|
model,
|
|
input_t,
|
|
seq_lengths,
|
|
decoder_prev_states,
|
|
timestep,
|
|
extra_inputs=[(
|
|
attention_weighted_encoder_context_t_prev,
|
|
self.encoder_output_dim,
|
|
)],
|
|
)
|
|
|
|
self.hidden_t_intermediate = self.decoder_cell._prepare_output(
|
|
model,
|
|
decoder_states,
|
|
)
|
|
|
|
if self.attention_type == AttentionType.Recurrent:
|
|
(
|
|
attention_weighted_encoder_context_t,
|
|
self.attention_weights_3d,
|
|
attention_blobs,
|
|
) = apply_recurrent_attention(
|
|
model=model,
|
|
encoder_output_dim=self.encoder_output_dim,
|
|
encoder_outputs_transposed=self.encoder_outputs_transposed,
|
|
weighted_encoder_outputs=self.weighted_encoder_outputs,
|
|
decoder_hidden_state_t=self.hidden_t_intermediate,
|
|
decoder_hidden_state_dim=self.decoder_state_dim,
|
|
scope=self.name,
|
|
attention_weighted_encoder_context_t_prev=(
|
|
attention_weighted_encoder_context_t_prev
|
|
),
|
|
)
|
|
else:
|
|
(
|
|
attention_weighted_encoder_context_t,
|
|
self.attention_weights_3d,
|
|
attention_blobs,
|
|
) = apply_regular_attention(
|
|
model=model,
|
|
encoder_output_dim=self.encoder_output_dim,
|
|
encoder_outputs_transposed=self.encoder_outputs_transposed,
|
|
weighted_encoder_outputs=self.weighted_encoder_outputs,
|
|
decoder_hidden_state_t=self.hidden_t_intermediate,
|
|
decoder_hidden_state_dim=self.decoder_state_dim,
|
|
scope=self.name,
|
|
)
|
|
|
|
if self.attention_memory_optimization:
|
|
self.recompute_blobs.extend(attention_blobs)
|
|
|
|
output = list(decoder_states) + [attention_weighted_encoder_context_t]
|
|
output[self.decoder_cell.get_output_state_index()] = model.Copy(
|
|
output[self.decoder_cell.get_output_state_index()],
|
|
self.scope('hidden_t_external'),
|
|
)
|
|
model.net.AddExternalOutputs(*output)
|
|
|
|
return output
|
|
|
|
def get_attention_weights(self):
|
|
# [batch_size, encoder_length, 1]
|
|
return self.attention_weights_3d
|
|
|
|
def prepare_input(self, model, input_blob):
|
|
if self.encoder_outputs_transposed is None:
|
|
self.encoder_outputs_transposed = model.Transpose(
|
|
self.encoder_outputs,
|
|
self.scope('encoder_outputs_transposed'),
|
|
axes=[1, 2, 0],
|
|
)
|
|
if self.weighted_encoder_outputs is None:
|
|
self.weighted_encoder_outputs = brew.fc(
|
|
model,
|
|
self.encoder_outputs,
|
|
self.scope('weighted_encoder_outputs'),
|
|
dim_in=self.encoder_output_dim,
|
|
dim_out=self.encoder_output_dim,
|
|
axis=2,
|
|
)
|
|
|
|
return self.decoder_cell.prepare_input(model, input_blob)
|
|
|
|
def get_state_names(self):
|
|
state_names = list(self.decoder_cell.get_state_names())
|
|
state_names[self.get_output_state_index()] = self.scope(
|
|
'hidden_t_external',
|
|
)
|
|
state_names.append(self.scope('attention_weighted_encoder_context_t'))
|
|
return state_names
|
|
|
|
def get_output_dim(self):
|
|
return self.decoder_state_dim + self.encoder_output_dim
|
|
|
|
def get_output_state_index(self):
|
|
return self.decoder_cell.get_output_state_index()
|
|
|
|
def _prepare_output(self, model, states):
|
|
attention_context = states[-1]
|
|
with core.NameScope(self.name or ''):
|
|
output, _ = model.net.Concat(
|
|
[self.hidden_t_intermediate, attention_context],
|
|
[
|
|
'states_and_context_combination',
|
|
'_states_and_context_combination_concat_dims',
|
|
],
|
|
axis=2,
|
|
)
|
|
|
|
return output
|
|
|
|
def _prepare_output_sequence(self, model, state_outputs):
|
|
decoder_output = self.decoder_cell._prepare_output_sequence(
|
|
model,
|
|
state_outputs[:-2],
|
|
)
|
|
attention_context_index = 2 * (len(self.get_state_names()) - 1)
|
|
with core.NameScope(self.name or ''):
|
|
output, _ = model.net.Concat(
|
|
[
|
|
decoder_output,
|
|
state_outputs[attention_context_index],
|
|
],
|
|
[
|
|
'states_and_context_combination',
|
|
'_states_and_context_combination_concat_dims',
|
|
],
|
|
axis=2,
|
|
)
|
|
return output
|
|
|
|
|
|
class LSTMWithAttentionCell(AttentionCell):
|
|
|
|
def __init__(
|
|
self,
|
|
encoder_output_dim,
|
|
encoder_outputs,
|
|
decoder_input_dim,
|
|
decoder_state_dim,
|
|
name,
|
|
attention_type,
|
|
weighted_encoder_outputs,
|
|
forget_bias,
|
|
lstm_memory_optimization,
|
|
attention_memory_optimization,
|
|
forward_only=False,
|
|
):
|
|
decoder_cell = LSTMCell(
|
|
input_size=decoder_input_dim,
|
|
hidden_size=decoder_state_dim,
|
|
forget_bias=forget_bias,
|
|
memory_optimization=lstm_memory_optimization,
|
|
name='{}/decoder'.format(name),
|
|
forward_only=False,
|
|
drop_states=False,
|
|
)
|
|
super(LSTMWithAttentionCell, self).__init__(
|
|
encoder_output_dim=encoder_output_dim,
|
|
encoder_outputs=encoder_outputs,
|
|
decoder_cell=decoder_cell,
|
|
decoder_state_dim=decoder_state_dim,
|
|
name=name,
|
|
attention_type=attention_type,
|
|
weighted_encoder_outputs=weighted_encoder_outputs,
|
|
attention_memory_optimization=attention_memory_optimization,
|
|
forward_only=forward_only,
|
|
)
|
|
|
|
|
|
class MILSTMWithAttentionCell(AttentionCell):
|
|
|
|
def __init__(
|
|
self,
|
|
encoder_output_dim,
|
|
encoder_outputs,
|
|
decoder_input_dim,
|
|
decoder_state_dim,
|
|
name,
|
|
attention_type,
|
|
weighted_encoder_outputs,
|
|
forget_bias,
|
|
lstm_memory_optimization,
|
|
attention_memory_optimization,
|
|
forward_only=False,
|
|
):
|
|
decoder_cell = MILSTMCell(
|
|
input_size=decoder_input_dim,
|
|
hidden_size=decoder_state_dim,
|
|
forget_bias=forget_bias,
|
|
memory_optimization=lstm_memory_optimization,
|
|
name='{}/decoder'.format(name),
|
|
forward_only=False,
|
|
drop_states=False,
|
|
)
|
|
super(MILSTMWithAttentionCell, self).__init__(
|
|
encoder_output_dim=encoder_output_dim,
|
|
encoder_outputs=encoder_outputs,
|
|
decoder_cell=decoder_cell,
|
|
decoder_state_dim=decoder_state_dim,
|
|
name=name,
|
|
attention_type=attention_type,
|
|
weighted_encoder_outputs=weighted_encoder_outputs,
|
|
attention_memory_optimization=attention_memory_optimization,
|
|
forward_only=forward_only,
|
|
)
|
|
|
|
|
|
def _LSTM(
|
|
cell_class,
|
|
model,
|
|
input_blob,
|
|
seq_lengths,
|
|
initial_states,
|
|
dim_in,
|
|
dim_out,
|
|
scope,
|
|
outputs_with_grads=(0,),
|
|
return_params=False,
|
|
memory_optimization=False,
|
|
forget_bias=0.0,
|
|
forward_only=False,
|
|
drop_states=False,
|
|
return_last_layer_only=True,
|
|
static_rnn_unroll_size=None,
|
|
):
|
|
'''
|
|
Adds a standard LSTM recurrent network operator to a model.
|
|
|
|
cell_class: LSTMCell or compatible subclass
|
|
|
|
model: ModelHelper object new operators would be added to
|
|
|
|
input_blob: the input sequence in a format T x N x D
|
|
where T is sequence size, N - batch size and D - input dimension
|
|
|
|
seq_lengths: blob containing sequence lengths which would be passed to
|
|
LSTMUnit operator
|
|
|
|
initial_states: a list of (2 * num_layers) blobs representing the initial
|
|
hidden and cell states of each layer. If this argument is None,
|
|
these states will be added to the model as network parameters.
|
|
|
|
dim_in: input dimension
|
|
|
|
dim_out: number of units per LSTM layer
|
|
(use int for single-layer LSTM, list of ints for multi-layer)
|
|
|
|
outputs_with_grads : position indices of output blobs for LAST LAYER which
|
|
will receive external error gradient during backpropagation.
|
|
These outputs are: (h_all, h_last, c_all, c_last)
|
|
|
|
return_params: if True, will return a dictionary of parameters of the LSTM
|
|
|
|
memory_optimization: if enabled, the LSTM step is recomputed on backward
|
|
step so that we don't need to store forward activations for each
|
|
timestep. Saves memory with cost of computation.
|
|
|
|
forget_bias: forget gate bias (default 0.0)
|
|
|
|
forward_only: whether to create a backward pass
|
|
|
|
drop_states: drop invalid states, passed through to LSTMUnit operator
|
|
|
|
return_last_layer_only: only return outputs from final layer
|
|
(so that length of results does depend on number of layers)
|
|
|
|
static_rnn_unroll_size: if not None, we will use static RNN which is
|
|
unrolled into Caffe2 graph. The size of the unroll is the value of
|
|
this parameter.
|
|
'''
|
|
if type(dim_out) is not list and type(dim_out) is not tuple:
|
|
dim_out = [dim_out]
|
|
num_layers = len(dim_out)
|
|
|
|
cells = []
|
|
for i in range(num_layers):
|
|
name = '{}/layer_{}'.format(scope, i) if num_layers > 1 else scope
|
|
cell = cell_class(
|
|
input_size=(dim_in if i == 0 else dim_out[i - 1]),
|
|
hidden_size=dim_out[i],
|
|
forget_bias=forget_bias,
|
|
memory_optimization=memory_optimization,
|
|
name=name,
|
|
forward_only=forward_only,
|
|
drop_states=drop_states,
|
|
)
|
|
cells.append(cell)
|
|
|
|
cell = MultiRNNCell(
|
|
cells,
|
|
name=scope,
|
|
forward_only=forward_only,
|
|
) if num_layers > 1 else cells[0]
|
|
|
|
cell = (
|
|
cell if static_rnn_unroll_size is None
|
|
else UnrolledCell(cell, static_rnn_unroll_size))
|
|
|
|
if initial_states is None:
|
|
initial_states = []
|
|
for i in range(num_layers):
|
|
with core.NameScope(scope):
|
|
suffix = '_{}'.format(i) if num_layers > 1 else ''
|
|
initial_hidden = model.param_init_net.ConstantFill(
|
|
[],
|
|
'initial_hidden_state' + suffix,
|
|
shape=[dim_out[i]],
|
|
value=0.0,
|
|
)
|
|
initial_cell = model.param_init_net.ConstantFill(
|
|
[],
|
|
'initial_cell_state' + suffix,
|
|
shape=[dim_out[i]],
|
|
value=0.0,
|
|
)
|
|
initial_states.extend([initial_hidden, initial_cell])
|
|
model.params.extend([initial_hidden, initial_cell])
|
|
|
|
assert len(initial_states) == 2 * num_layers, \
|
|
"Incorrect initial_states, was expecting 2 * num_layers elements" \
|
|
+ " but had only {}".format(len(initial_states))
|
|
|
|
# outputs_with_grads argument indexes into final layer
|
|
outputs_with_grads = [4 * (num_layers - 1) + i for i in outputs_with_grads]
|
|
_, result = cell.apply_over_sequence(
|
|
model=model,
|
|
inputs=input_blob,
|
|
seq_lengths=seq_lengths,
|
|
initial_states=initial_states,
|
|
outputs_with_grads=outputs_with_grads,
|
|
)
|
|
|
|
if return_last_layer_only:
|
|
result = result[4 * (num_layers - 1):]
|
|
if return_params:
|
|
result = list(result) + [{
|
|
'input': cell.get_input_params(),
|
|
'recurrent': cell.get_recurrent_params(),
|
|
}]
|
|
return tuple(result)
|
|
|
|
|
|
LSTM = functools.partial(_LSTM, LSTMCell)
|
|
MILSTM = functools.partial(_LSTM, MILSTMCell)
|
|
|
|
|
|
class UnrolledCell(RNNCell):
|
|
def __init__(self, cell, T):
|
|
self.T = T
|
|
self.cell = cell
|
|
|
|
def apply_over_sequence(
|
|
self,
|
|
model,
|
|
inputs,
|
|
seq_lengths,
|
|
initial_states,
|
|
outputs_with_grads=None,
|
|
):
|
|
inputs = self.cell.prepare_input(model, inputs)
|
|
|
|
# Now they are blob references - outputs of splitting the input sequence
|
|
split_inputs = model.net.Split(
|
|
inputs,
|
|
[str(inputs) + "_timestep_{}".format(i)
|
|
for i in range(self.T)],
|
|
axis=0)
|
|
if self.T == 1:
|
|
split_inputs = [split_inputs]
|
|
|
|
states = initial_states
|
|
all_states = []
|
|
for t in range(0, self.T):
|
|
scope_name = "timestep_{}".format(t)
|
|
# Parameters of all timesteps are shared
|
|
with ParameterSharing({scope_name: ''}),\
|
|
scope.NameScope(scope_name):
|
|
timestep = model.param_init_net.ConstantFill(
|
|
[], "timestep", value=t, shape=[1],
|
|
dtype=core.DataType.INT32)
|
|
states = self.cell._apply(
|
|
model=model,
|
|
input_t=split_inputs[t],
|
|
seq_lengths=seq_lengths,
|
|
states=states,
|
|
timestep=timestep,
|
|
)
|
|
all_states.append(states)
|
|
|
|
all_states = zip(*all_states)
|
|
all_states = [
|
|
model.net.Concat(
|
|
list(full_output),
|
|
[
|
|
str(full_output[0])[len("timestep_0/"):] + "_concat",
|
|
str(full_output[0])[len("timestep_0/"):] + "_concat_info"
|
|
|
|
],
|
|
axis=0)[0]
|
|
for full_output in all_states
|
|
]
|
|
outputs = tuple(
|
|
six.next(it) for it in
|
|
itertools.cycle([iter(all_states), iter(states)])
|
|
)
|
|
outputs_without_grad = set(range(len(outputs))) - set(
|
|
outputs_with_grads)
|
|
for i in outputs_without_grad:
|
|
model.net.ZeroGradient(outputs[i], [])
|
|
logging.debug("Added 0 gradients for blobs:",
|
|
[outputs[i] for i in outputs_without_grad])
|
|
return None, outputs
|
|
|
|
|
|
def GetLSTMParamNames():
|
|
weight_params = ["input_gate_w", "forget_gate_w", "output_gate_w", "cell_w"]
|
|
bias_params = ["input_gate_b", "forget_gate_b", "output_gate_b", "cell_b"]
|
|
return {'weights': weight_params, 'biases': bias_params}
|
|
|
|
|
|
def InitFromLSTMParams(lstm_pblobs, param_values):
|
|
'''
|
|
Set the parameters of LSTM based on predefined values
|
|
'''
|
|
weight_params = GetLSTMParamNames()['weights']
|
|
bias_params = GetLSTMParamNames()['biases']
|
|
for input_type in param_values.keys():
|
|
weight_values = [
|
|
param_values[input_type][w].flatten()
|
|
for w in weight_params
|
|
]
|
|
wmat = np.array([])
|
|
for w in weight_values:
|
|
wmat = np.append(wmat, w)
|
|
bias_values = [
|
|
param_values[input_type][b].flatten()
|
|
for b in bias_params
|
|
]
|
|
bm = np.array([])
|
|
for b in bias_values:
|
|
bm = np.append(bm, b)
|
|
|
|
weights_blob = lstm_pblobs[input_type]['weights']
|
|
bias_blob = lstm_pblobs[input_type]['biases']
|
|
cur_weight = workspace.FetchBlob(weights_blob)
|
|
cur_biases = workspace.FetchBlob(bias_blob)
|
|
|
|
workspace.FeedBlob(
|
|
weights_blob,
|
|
wmat.reshape(cur_weight.shape).astype(np.float32))
|
|
workspace.FeedBlob(
|
|
bias_blob,
|
|
bm.reshape(cur_biases.shape).astype(np.float32))
|
|
|
|
|
|
def cudnn_LSTM(model, input_blob, initial_states, dim_in, dim_out,
|
|
scope, recurrent_params=None, input_params=None,
|
|
num_layers=1, return_params=False):
|
|
'''
|
|
CuDNN version of LSTM for GPUs.
|
|
input_blob Blob containing the input. Will need to be available
|
|
when param_init_net is run, because the sequence lengths
|
|
and batch sizes will be inferred from the size of this
|
|
blob.
|
|
initial_states tuple of (hidden_init, cell_init) blobs
|
|
dim_in input dimensions
|
|
dim_out output/hidden dimension
|
|
scope namescope to apply
|
|
recurrent_params dict of blobs containing values for recurrent
|
|
gate weights, biases (if None, use random init values)
|
|
See GetLSTMParamNames() for format.
|
|
input_params dict of blobs containing values for input
|
|
gate weights, biases (if None, use random init values)
|
|
See GetLSTMParamNames() for format.
|
|
num_layers number of LSTM layers
|
|
return_params if True, returns (param_extract_net, param_mapping)
|
|
where param_extract_net is a net that when run, will
|
|
populate the blobs specified in param_mapping with the
|
|
current gate weights and biases (input/recurrent).
|
|
Useful for assigning the values back to non-cuDNN
|
|
LSTM.
|
|
'''
|
|
with core.NameScope(scope):
|
|
weight_params = GetLSTMParamNames()['weights']
|
|
bias_params = GetLSTMParamNames()['biases']
|
|
|
|
input_weight_size = dim_out * dim_in
|
|
upper_layer_input_weight_size = dim_out * dim_out
|
|
recurrent_weight_size = dim_out * dim_out
|
|
input_bias_size = dim_out
|
|
recurrent_bias_size = dim_out
|
|
|
|
def init(layer, pname, input_type):
|
|
input_weight_size_for_layer = input_weight_size if layer == 0 else \
|
|
upper_layer_input_weight_size
|
|
if pname in weight_params:
|
|
sz = input_weight_size_for_layer if input_type == 'input' \
|
|
else recurrent_weight_size
|
|
elif pname in bias_params:
|
|
sz = input_bias_size if input_type == 'input' \
|
|
else recurrent_bias_size
|
|
else:
|
|
assert False, "unknown parameter type {}".format(pname)
|
|
return model.param_init_net.UniformFill(
|
|
[],
|
|
"lstm_init_{}_{}_{}".format(input_type, pname, layer),
|
|
shape=[sz])
|
|
|
|
# Multiply by 4 since we have 4 gates per LSTM unit
|
|
first_layer_sz = input_weight_size + recurrent_weight_size + \
|
|
input_bias_size + recurrent_bias_size
|
|
upper_layer_sz = upper_layer_input_weight_size + \
|
|
recurrent_weight_size + input_bias_size + \
|
|
recurrent_bias_size
|
|
total_sz = 4 * (first_layer_sz + (num_layers - 1) * upper_layer_sz)
|
|
|
|
weights = model.param_init_net.UniformFill(
|
|
[], "lstm_weight", shape=[total_sz])
|
|
|
|
model.params.append(weights)
|
|
model.weights.append(weights)
|
|
|
|
lstm_args = {
|
|
'hidden_size': dim_out,
|
|
'rnn_mode': 'lstm',
|
|
'bidirectional': 0, # TODO
|
|
'dropout': 1.0, # TODO
|
|
'input_mode': 'linear', # TODO
|
|
'num_layers': num_layers,
|
|
'engine': 'CUDNN'
|
|
}
|
|
|
|
param_extract_net = core.Net("lstm_param_extractor")
|
|
param_extract_net.AddExternalInputs([input_blob, weights])
|
|
param_extract_mapping = {}
|
|
|
|
# Populate the weights-blob from blobs containing parameters for
|
|
# the individual components of the LSTM, such as forget/input gate
|
|
# weights and bises. Also, create a special param_extract_net that
|
|
# can be used to grab those individual params from the black-box
|
|
# weights blob. These results can be then fed to InitFromLSTMParams()
|
|
for input_type in ['input', 'recurrent']:
|
|
param_extract_mapping[input_type] = {}
|
|
p = recurrent_params if input_type == 'recurrent' else input_params
|
|
if p is None:
|
|
p = {}
|
|
for pname in weight_params + bias_params:
|
|
for j in range(0, num_layers):
|
|
values = p[pname] if pname in p else init(j, pname, input_type)
|
|
model.param_init_net.RecurrentParamSet(
|
|
[input_blob, weights, values],
|
|
weights,
|
|
layer=j,
|
|
input_type=input_type,
|
|
param_type=pname,
|
|
**lstm_args
|
|
)
|
|
if pname not in param_extract_mapping[input_type]:
|
|
param_extract_mapping[input_type][pname] = {}
|
|
b = param_extract_net.RecurrentParamGet(
|
|
[input_blob, weights],
|
|
["lstm_{}_{}_{}".format(input_type, pname, j)],
|
|
layer=j,
|
|
input_type=input_type,
|
|
param_type=pname,
|
|
**lstm_args
|
|
)
|
|
param_extract_mapping[input_type][pname][j] = b
|
|
|
|
(hidden_input_blob, cell_input_blob) = initial_states
|
|
output, hidden_output, cell_output, rnn_scratch, dropout_states = \
|
|
model.net.Recurrent(
|
|
[input_blob, cell_input_blob, cell_input_blob, weights],
|
|
["lstm_output", "lstm_hidden_output", "lstm_cell_output",
|
|
"lstm_rnn_scratch", "lstm_dropout_states"],
|
|
seed=random.randint(0, 100000), # TODO: dropout seed
|
|
**lstm_args
|
|
)
|
|
model.net.AddExternalOutputs(
|
|
hidden_output, cell_output, rnn_scratch, dropout_states)
|
|
|
|
if return_params:
|
|
param_extract = param_extract_net, param_extract_mapping
|
|
return output, hidden_output, cell_output, param_extract
|
|
else:
|
|
return output, hidden_output, cell_output
|
|
|
|
|
|
def LSTMWithAttention(
|
|
model,
|
|
decoder_inputs,
|
|
decoder_input_lengths,
|
|
initial_decoder_hidden_state,
|
|
initial_decoder_cell_state,
|
|
initial_attention_weighted_encoder_context,
|
|
encoder_output_dim,
|
|
encoder_outputs,
|
|
decoder_input_dim,
|
|
decoder_state_dim,
|
|
scope,
|
|
attention_type=AttentionType.Regular,
|
|
outputs_with_grads=(0, 4),
|
|
weighted_encoder_outputs=None,
|
|
lstm_memory_optimization=False,
|
|
attention_memory_optimization=False,
|
|
forget_bias=0.0,
|
|
forward_only=False,
|
|
):
|
|
'''
|
|
Adds a LSTM with attention mechanism to a model.
|
|
|
|
The implementation is based on https://arxiv.org/abs/1409.0473, with
|
|
a small difference in the order
|
|
how we compute new attention context and new hidden state, similarly to
|
|
https://arxiv.org/abs/1508.04025.
|
|
|
|
The model uses encoder-decoder naming conventions,
|
|
where the decoder is the sequence the op is iterating over,
|
|
while computing the attention context over the encoder.
|
|
|
|
model: ModelHelper object new operators would be added to
|
|
|
|
decoder_inputs: the input sequence in a format T x N x D
|
|
where T is sequence size, N - batch size and D - input dimension
|
|
|
|
decoder_input_lengths: blob containing sequence lengths
|
|
which would be passed to LSTMUnit operator
|
|
|
|
initial_decoder_hidden_state: initial hidden state of LSTM
|
|
|
|
initial_decoder_cell_state: initial cell state of LSTM
|
|
|
|
initial_attention_weighted_encoder_context: initial attention context
|
|
|
|
encoder_output_dim: dimension of encoder outputs
|
|
|
|
encoder_outputs: the sequence, on which we compute the attention context
|
|
at every iteration
|
|
|
|
decoder_input_dim: input dimension (last dimension on decoder_inputs)
|
|
|
|
decoder_state_dim: size of hidden states of LSTM
|
|
|
|
attention_type: One of: AttentionType.Regular, AttentionType.Recurrent.
|
|
Determines which type of attention mechanism to use.
|
|
|
|
outputs_with_grads : position indices of output blobs which will receive
|
|
external error gradient during backpropagation
|
|
|
|
weighted_encoder_outputs: encoder outputs to be used to compute attention
|
|
weights. In the basic case it's just linear transformation of
|
|
encoder outputs (that the default, when weighted_encoder_outputs is None).
|
|
However, it can be something more complicated - like a separate
|
|
encoder network (for example, in case of convolutional encoder)
|
|
|
|
lstm_memory_optimization: recompute LSTM activations on backward pass, so
|
|
we don't need to store their values in forward passes
|
|
|
|
attention_memory_optimization: recompute attention for backward pass
|
|
|
|
forward_only: whether to create only forward pass
|
|
'''
|
|
cell = LSTMWithAttentionCell(
|
|
encoder_output_dim=encoder_output_dim,
|
|
encoder_outputs=encoder_outputs,
|
|
decoder_input_dim=decoder_input_dim,
|
|
decoder_state_dim=decoder_state_dim,
|
|
name=scope,
|
|
attention_type=attention_type,
|
|
weighted_encoder_outputs=weighted_encoder_outputs,
|
|
forget_bias=forget_bias,
|
|
lstm_memory_optimization=lstm_memory_optimization,
|
|
attention_memory_optimization=attention_memory_optimization,
|
|
forward_only=forward_only,
|
|
)
|
|
_, result = cell.apply_over_sequence(
|
|
model=model,
|
|
inputs=decoder_inputs,
|
|
seq_lengths=decoder_input_lengths,
|
|
initial_states=(
|
|
initial_decoder_hidden_state,
|
|
initial_decoder_cell_state,
|
|
initial_attention_weighted_encoder_context,
|
|
),
|
|
outputs_with_grads=outputs_with_grads,
|
|
)
|
|
return result
|
|
|
|
|
|
def _layered_LSTM(
|
|
model, input_blob, seq_lengths, initial_states,
|
|
dim_in, dim_out, scope, outputs_with_grads=(0,), return_params=False,
|
|
memory_optimization=False, forget_bias=0.0, forward_only=False,
|
|
drop_states=False, create_lstm=None):
|
|
params = locals() # leave it as a first line to grab all params
|
|
params.pop('create_lstm')
|
|
if not isinstance(dim_out, list):
|
|
return create_lstm(**params)
|
|
elif len(dim_out) == 1:
|
|
params['dim_out'] = dim_out[0]
|
|
return create_lstm(**params)
|
|
|
|
assert len(dim_out) != 0, "dim_out list can't be empty"
|
|
assert return_params is False, "return_params not supported for layering"
|
|
for i, output_dim in enumerate(dim_out):
|
|
params.update({
|
|
'dim_out': output_dim
|
|
})
|
|
output, last_output, all_states, last_state = create_lstm(**params)
|
|
params.update({
|
|
'input_blob': output,
|
|
'dim_in': output_dim,
|
|
'initial_states': (last_output, last_state),
|
|
'scope': scope + '_layer_{}'.format(i + 1)
|
|
})
|
|
return output, last_output, all_states, last_state
|
|
|
|
|
|
layered_LSTM = functools.partial(_layered_LSTM, create_lstm=LSTM)
|