pytorch/test/cpp/api
Jeffrey Wan 4ae5764d47 Add is_inference to native functions (#58729)
Summary:
Adds `is_inference` as a native function w/ manual cpp bindings.
Also changes instances of `is_inference_tensor` to `is_inference` to be consistent with other properties such as `is_complex`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/58729

Reviewed By: mruberry

Differential Revision: D28874507

Pulled By: soulitzer

fbshipit-source-id: 0fa6bcdc72a4ae444705e2e0f3c416c1b28dadc7
2021-06-04 08:59:11 -07:00
..
any.cpp [clang-tidy] Exclude cppcoreguidelines-avoid-magic-numbers (#57841) 2021-05-07 20:02:33 -07:00
autograd.cpp [clang-tidy] Exclude cppcoreguidelines-avoid-magic-numbers (#57841) 2021-05-07 20:02:33 -07:00
CMakeLists.txt Workaround intermittent gcc-7.5 ICE in cpp tests (#57016) 2021-04-27 09:21:23 -07:00
dataloader.cpp [clang-tidy] Exclude cppcoreguidelines-avoid-magic-numbers (#57841) 2021-05-07 20:02:33 -07:00
dispatch.cpp [Codemod][GleanFbcode] Remove dead includes in caffe2/test (#39023) 2020-05-27 14:07:26 -07:00
enum.cpp Make PyTorch code-base clang-tidy compliant (#56892) 2021-04-28 14:10:25 -07:00
expanding-array.cpp [clang-tidy] Exclude cppcoreguidelines-avoid-magic-numbers (#57841) 2021-05-07 20:02:33 -07:00
fft.cpp [clang-tidy] Exclude cppcoreguidelines-avoid-magic-numbers (#57841) 2021-05-07 20:02:33 -07:00
functional.cpp Back out "[pytorch][PR] ENH Adds dtype to nn.functional.one_hot" (#59080) 2021-05-27 15:40:52 -07:00
grad_mode.cpp Revert "Make grad mode error just a warning (#56401)" (#57640) 2021-05-05 13:07:29 -07:00
inference_mode.cpp Add is_inference to native functions (#58729) 2021-06-04 08:59:11 -07:00
init_baseline.h Lint trailing newlines (#54737) 2021-03-30 13:09:52 -07:00
init_baseline.py Kaiming Initialization (#14718) 2019-02-15 14:58:22 -08:00
init.cpp [clang-tidy] Exclude cppcoreguidelines-avoid-magic-numbers (#57841) 2021-05-07 20:02:33 -07:00
integration.cpp [clang-tidy] Exclude cppcoreguidelines-avoid-magic-numbers (#57841) 2021-05-07 20:02:33 -07:00
jit.cpp [clang-tidy] Exclude cppcoreguidelines-avoid-magic-numbers (#57841) 2021-05-07 20:02:33 -07:00
memory.cpp [clang-tidy] Exclude cppcoreguidelines-avoid-magic-numbers (#57841) 2021-05-07 20:02:33 -07:00
misc.cpp [clang-tidy] Exclude cppcoreguidelines-avoid-magic-numbers (#57841) 2021-05-07 20:02:33 -07:00
module.cpp [clang-tidy] Exclude cppcoreguidelines-avoid-magic-numbers (#57841) 2021-05-07 20:02:33 -07:00
moduledict.cpp [clang-tidy] Exclude cppcoreguidelines-avoid-magic-numbers (#57841) 2021-05-07 20:02:33 -07:00
modulelist.cpp [clang-tidy] Exclude cppcoreguidelines-avoid-magic-numbers (#57841) 2021-05-07 20:02:33 -07:00
modules.cpp Add mish activation function (#58648) 2021-05-25 10:36:21 -07:00
namespace.cpp Make PyTorch code-base clang-tidy compliant (#56892) 2021-04-28 14:10:25 -07:00
nn_utils.cpp [clang-tidy] Exclude cppcoreguidelines-avoid-magic-numbers (#57841) 2021-05-07 20:02:33 -07:00
operations.cpp [Codemod][GleanFbcode] Remove dead includes in caffe2/test (#43953) 2020-09-01 21:48:28 -07:00
optim_baseline.h Add AdamW to C++ frontend (#40009) 2020-06-18 15:28:12 -07:00
optim_baseline.py Remove legacy constructor calls from pytorch codebase. (#54142) 2021-04-11 15:45:17 -07:00
optim.cpp [clang-tidy] Exclude cppcoreguidelines-avoid-magic-numbers (#57841) 2021-05-07 20:02:33 -07:00
ordered_dict.cpp Make PyTorch code-base clang-tidy compliant (#56892) 2021-04-28 14:10:25 -07:00
parallel_benchmark.cpp [clang-tidy] Exclude cppcoreguidelines-avoid-magic-numbers (#57841) 2021-05-07 20:02:33 -07:00
parallel.cpp [PyTorch] Modify data_parallel to work with small tensors (#37704) 2020-05-04 11:06:42 -07:00
parameterdict.cpp [clang-tidy] Exclude cppcoreguidelines-avoid-magic-numbers (#57841) 2021-05-07 20:02:33 -07:00
parameterlist.cpp Make PyTorch code-base clang-tidy compliant (#56892) 2021-04-28 14:10:25 -07:00
README.md
rnn.cpp [clang-tidy] Exclude cppcoreguidelines-avoid-magic-numbers (#57841) 2021-05-07 20:02:33 -07:00
sequential.cpp [clang-tidy] Exclude cppcoreguidelines-avoid-magic-numbers (#57841) 2021-05-07 20:02:33 -07:00
serialize.cpp [clang-tidy] Exclude cppcoreguidelines-avoid-magic-numbers (#57841) 2021-05-07 20:02:33 -07:00
special.cpp [clang-tidy] Exclude cppcoreguidelines-avoid-magic-numbers (#57841) 2021-05-07 20:02:33 -07:00
static.cpp [clang-tidy] Exclude cppcoreguidelines-avoid-magic-numbers (#57841) 2021-05-07 20:02:33 -07:00
support.cpp Make PyTorch code-base clang-tidy compliant (#56892) 2021-04-28 14:10:25 -07:00
support.h Implement public API InferenceMode and its error handling (#55008) 2021-03-31 10:48:00 -07:00
tensor_cuda.cpp Make PyTorch code-base clang-tidy compliant (#56892) 2021-04-28 14:10:25 -07:00
tensor_flatten.cpp fix unflatten_dense_tensor when there is empty tensor inside (#50321) 2021-01-23 12:14:34 -08:00
tensor_indexing.cpp [clang-tidy] Exclude cppcoreguidelines-avoid-magic-numbers (#57841) 2021-05-07 20:02:33 -07:00
tensor_options_cuda.cpp [clang-tidy] Exclude cppcoreguidelines-avoid-magic-numbers (#57841) 2021-05-07 20:02:33 -07:00
tensor_options.cpp [clang-tidy] Exclude cppcoreguidelines-avoid-magic-numbers (#57841) 2021-05-07 20:02:33 -07:00
tensor.cpp [clang-tidy] Exclude cppcoreguidelines-avoid-magic-numbers (#57841) 2021-05-07 20:02:33 -07:00
torch_include.cpp Make PyTorch code-base clang-tidy compliant (#56892) 2021-04-28 14:10:25 -07:00
transformer.cpp [clang-tidy] Exclude cppcoreguidelines-avoid-magic-numbers (#57841) 2021-05-07 20:02:33 -07:00

C++ Frontend Tests

In this folder live the tests for PyTorch's C++ Frontend. They use the GoogleTest test framework.

CUDA Tests

To make a test runnable only on platforms with CUDA, you should suffix your test with _CUDA, e.g.

TEST(MyTestSuite, MyTestCase_CUDA) { }

To make it runnable only on platforms with at least two CUDA machines, suffix it with _MultiCUDA instead of _CUDA, e.g.

TEST(MyTestSuite, MyTestCase_MultiCUDA) { }

There is logic in main.cpp that detects the availability and number of CUDA devices and supplies the appropriate negative filters to GoogleTest.

Integration Tests

Integration tests use the MNIST dataset. You must download it by running the following command from the PyTorch root folder:

$ python tools/download_mnist.py -d test/cpp/api/mnist

The required paths will be referenced as test/cpp/api/mnist/... in the test code, so you must run the integration tests from the PyTorch root folder.