pytorch/c10/core/TensorImpl.cpp
Jeffrey Wan 4ae5764d47 Add is_inference to native functions (#58729)
Summary:
Adds `is_inference` as a native function w/ manual cpp bindings.
Also changes instances of `is_inference_tensor` to `is_inference` to be consistent with other properties such as `is_complex`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/58729

Reviewed By: mruberry

Differential Revision: D28874507

Pulled By: soulitzer

fbshipit-source-id: 0fa6bcdc72a4ae444705e2e0f3c416c1b28dadc7
2021-06-04 08:59:11 -07:00

572 lines
19 KiB
C++

#include <c10/core/TensorImpl.h>
#include <c10/core/Backend.h>
#include <c10/core/InferenceMode.h>
#include <c10/core/WrapDimMinimal.h>
#include <c10/core/impl/LocalDispatchKeySet.h>
#include <c10/util/Optional.h>
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
C10_DEFINE_bool(
caffe2_keep_on_shrink,
true,
"If set, keeps memory when a tensor is shrinking its size.");
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
C10_DEFINE_int64(
caffe2_max_keep_on_shrink_memory,
LLONG_MAX,
"The maximum memory in bytes to keep on shrink, if the difference between "
"tensor sizes is bigger than this then tensor will be reset.");
namespace c10 {
namespace impl {
static std::string noop_name_fn(const PyInterpreter*) {
return "<unloaded interpreter>";
}
static void noop_decref_fn(const PyInterpreter*, PyObject*) {
// no-op
}
void PyInterpreter::disarm() noexcept {
name_fn_ = &noop_name_fn;
decref_fn_ = &noop_decref_fn;
}
} // namespace impl
const char* const TensorImpl::err_msg_tensor_metadata_change_not_allowed =
"is not allowed on a Tensor created from .data or .detach().\n"
"If your intent is to change the metadata of a Tensor (such as sizes / strides / storage / storage_offset)\n"
"without autograd tracking the change, remove the .data / .detach() call and wrap the change in a `with torch.no_grad():` block.\n"
"For example, change:\n"
" x.data.set_(y)\n"
"to:\n"
" with torch.no_grad():\n"
" x.set_(y)";
at::Tensor& TensorImpl::mutable_grad() {
if (!autograd_meta_)
autograd_meta_ = impl::GetAutogradMetaFactory()->make();
return autograd_meta_->mutable_grad();
}
const at::Tensor& TensorImpl::grad() const {
// Yes, I know this looks really weird. But I don't really have a choice as
// long as this function returns a const reference to Tensor. I'm not
// really sure how I would have designed this API differently, but it
// is not so easy to fix right now because the mutable counterpart of
// this function must keep working so that "x.grad() = ..." keeps working
// (part of public API).
if (!autograd_meta_)
return impl::GetAutogradMetaFactory()->undefined_tensor();
return autograd_meta_->grad();
}
const at::Tensor& TensorImpl::_fw_grad(uint64_t level, const at::Tensor& self)
const {
// See TensorImpl::grad() above for explanation about the line below
if (!autograd_meta_)
return impl::GetAutogradMetaFactory()->undefined_tensor();
return autograd_meta_->fw_grad(level, self);
}
void TensorImpl::_set_fw_grad(
const at::Tensor& new_grad,
const at::Tensor& self,
uint64_t level,
bool is_inplace_op) {
if (!autograd_meta_)
autograd_meta_ = impl::GetAutogradMetaFactory()->make();
autograd_meta_->set_fw_grad(new_grad, self, level, is_inplace_op);
}
TensorImpl::TensorImpl(
Storage&& storage,
DispatchKeySet key_set,
const caffe2::TypeMeta data_type)
// Use std::forward to suppress static analyzer false positive.
: TensorImpl(
std::forward<Storage>(storage),
key_set,
data_type,
storage.device()) {}
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
TensorImpl::TensorImpl(
ImplType type,
Storage&& storage,
DispatchKeySet key_set,
const caffe2::TypeMeta data_type)
: storage_(std::move(storage)),
pyobj_interpreter_(nullptr),
pyobj_(nullptr),
storage_offset_(0),
numel_(0),
data_type_(data_type),
device_opt_(storage_.device()),
key_set_(key_set) {
init_bitfields();
// Inference tensor doesn't have version counter.
if (!is_inference()) {
version_counter_ = VariableVersion(/*version=*/0);
}
}
TensorImpl::TensorImpl(
DispatchKeySet key_set,
const caffe2::TypeMeta data_type,
c10::optional<c10::Device> device_opt)
// NOLINTNEXTLINE(performance-move-const-arg)
: TensorImpl({}, key_set, data_type, std::move(device_opt)) {}
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
TensorImpl::TensorImpl(
Storage&& storage,
DispatchKeySet key_set,
const caffe2::TypeMeta data_type,
c10::optional<c10::Device> device_opt)
: storage_(std::move(storage)),
pyobj_interpreter_(nullptr),
pyobj_(nullptr),
storage_offset_(0),
numel_(0),
data_type_(data_type),
device_opt_(device_opt) {
init_bitfields();
if (!key_set.empty()) {
TORCH_INTERNAL_ASSERT(
data_type == ScalarType::Undefined || device_opt_.has_value());
// UndefinedTensorImpl is a singleton, so we skip logging it
C10_LOG_API_USAGE_ONCE("tensor.create");
}
bool inference_mode = c10::InferenceMode::is_enabled();
// TODO: be more explicit about the full key set at call sites so we
// don't have to keep recomputing it here
DispatchKey k = key_set.highestPriorityBackendTypeId();
key_set = key_set | getAutocastRelatedKeySetFromBackend(k);
// Inference tensor doesn't have autograd related keys.
if (inference_mode) {
// See Note [Expected TLS state in InferenceMode] for why we exclude
// Autograd & ADInplaceOrView keys. Normally key_set only contains backend
// keys but we do the substraction here to make sure.
key_set_ = key_set - c10::autograd_dispatch_keyset_with_ADInplaceOrView;
} else {
// TODO: Ideally we only add AutogradBackend key when the tensor requires
// grad.
// See Note [Dream: skip VariableType kernel when requires_grad=false]
key_set_ = key_set | getAutogradRelatedKeySetFromBackend(k);
}
// Inference tensor doesn't have version counter.
if (!is_inference()) {
version_counter_ = VariableVersion(/*version=*/0);
}
// we would also like to check that non-cpu devices have an index, but some
// Caffe2 operators create Storages with default devices.
}
#ifndef C10_DISABLE_TENSORIMPL_EXTENSIBILITY
IntArrayRef TensorImpl::sizes() const {
return sizes_and_strides_.sizes_arrayref();
}
#endif
IntArrayRef TensorImpl::strides() const {
return sizes_and_strides_.strides_arrayref();
}
void TensorImpl::HandleResize() {
// If needed, we will free the data. the next mutable_data() call
// will create the data storage.
bool reset_tensor = false;
if (reserved_) {
// If tensor is reserved then don't claim its memeory unless nbytes()
// is smaller than new size
reset_tensor =
storage_.nbytes() < (storage_offset_ + numel_) * data_type_.itemsize();
} else {
reset_tensor = storage_.nbytes() <
(storage_offset_ + numel_) * data_type_.itemsize() ||
!FLAGS_caffe2_keep_on_shrink ||
storage_.nbytes() - (storage_offset_ + numel_) * data_type_.itemsize() >
static_cast<size_t>(FLAGS_caffe2_max_keep_on_shrink_memory);
}
if (reset_tensor && storage_initialized()) {
FreeMemory();
}
}
bool TensorImpl::compute_contiguous() const {
bool is_contiguous = true;
if (is_empty())
return is_contiguous;
int64_t z = 1;
for (int64_t d = dim() - 1; d >= 0; d--) {
const auto size_d = sizes_and_strides_.size_at_unchecked(d);
if (size_d != 1) {
if (sizes_and_strides_.stride_at_unchecked(d) == z) {
z *= size_d;
} else {
is_contiguous = false;
break;
}
}
}
return is_contiguous;
}
bool TensorImpl::compute_channels_last_contiguous_2d() const {
// Please don't combine these code, constant array is used here to let
// compiler fully unroll the loop to get better performance
switch (sizes_and_strides_.size()) {
case 4: {
int64_t expected = 1;
for (auto& d : {1, 3, 2, 0}) {
const auto size_d = sizes_and_strides_.size_at_unchecked(d);
if (size_d != 1) {
if (sizes_and_strides_.stride_at_unchecked(d) != expected) {
return false;
}
expected *= size_d;
}
}
return true;
}
// NOLINTNEXTLINE(bugprone-branch-clone)
case 3:
// TODO dim == 3 case will be enabled once it is fully tested
return false;
default:
return false;
}
}
bool TensorImpl::compute_channels_last_contiguous_3d() const {
// Please don't combine these code, constant array is used here to let
// compiler fully unroll the loop to get better performance
switch (sizes_and_strides_.size()) {
case 5: {
int64_t expected = 1;
for (auto& d : {1, 4, 3, 2, 0}) {
const auto size_d = sizes_and_strides_.size_at_unchecked(d);
if (size_d != 1) {
if (sizes_and_strides_.stride_at_unchecked(d) != expected) {
return false;
}
expected *= size_d;
}
}
return true;
}
// NOLINTNEXTLINE(bugprone-branch-clone)
case 4:
// TODO dim == 4 case will be enabled once it is fully tested
return false;
default:
return false;
}
}
bool TensorImpl::compute_strides_like_channels_last_2d() const {
return is_channels_last_strides_2d(
TensorImpl::sizes(), TensorImpl::strides());
}
bool TensorImpl::compute_strides_like_channels_last_3d() const {
return is_channels_last_strides_3d(
TensorImpl::sizes(), TensorImpl::strides());
}
bool TensorImpl::compute_non_overlapping_and_dense() const {
if (dim() == 1) {
return sizes_and_strides_.size_at_unchecked(0) < 2 ||
sizes_and_strides_.stride_at_unchecked(0) == 1;
}
SmallVector<int64_t, 5> perm;
perm.resize(dim());
for (int64_t i = 0; i < dim(); i++) {
perm[i] = i;
}
// Sort by strides, leaving 0 and 1 sized dims at the end of the array
std::sort(perm.begin(), perm.end(), [&](int64_t a, int64_t b) {
if (sizes_and_strides_.size_at_unchecked(a) < 2) {
return false;
} else if (sizes_and_strides_.size_at_unchecked(b) < 2) {
return true;
}
return sizes_and_strides_.stride_at_unchecked(a) <
sizes_and_strides_.stride_at_unchecked(b);
});
auto require_stride = 1;
for (int64_t i = 0; i < dim(); i++) {
const auto size_perm_i = sizes_and_strides_.size_at_unchecked(perm[i]);
if (size_perm_i < 2) {
return true;
}
if (sizes_and_strides_.stride_at_unchecked(perm[i]) != require_stride) {
return false;
}
require_stride *= size_perm_i;
}
return true;
}
void TensorImpl::release_resources() {
autograd_meta_.reset();
if (storage_) {
storage_ = {};
}
if (owns_pyobj_) {
TORCH_INTERNAL_ASSERT(pyobj_interpreter_ != nullptr);
TORCH_INTERNAL_ASSERT(pyobj_ != nullptr);
pyobj_interpreter_.load(std::memory_order_acquire)->decref(pyobj_);
// NB: this destructor can only be entered when there are no
// references to this C++ object (obviously), NOR any references
// to the PyObject (if there are references to the PyObject,
// then the PyObject holds an owning reference to the tensor).
// So it is OK to clear pyobj_ here as it is impossible for it to
// be used again (modulo weak reference races)
pyobj_ = nullptr; // for safety
}
}
#ifndef C10_DISABLE_TENSORIMPL_EXTENSIBILITY
int64_t TensorImpl::dim() const {
return sizes_and_strides_.size();
}
#endif
int64_t TensorImpl::size(int64_t d) const {
d = at::maybe_wrap_dim(d, dim(), false);
return sizes_and_strides_.size_at_unchecked(d);
}
int64_t TensorImpl::stride(int64_t d) const {
d = at::maybe_wrap_dim(d, dim(), false);
return sizes_and_strides_.stride_at_unchecked(d);
}
#ifndef C10_DISABLE_TENSORIMPL_EXTENSIBILITY
bool TensorImpl::has_storage() const {
return storage_;
}
#endif
void TensorImpl::throw_storage_access_error() const {
TORCH_CHECK_NOT_IMPLEMENTED(
false, "Cannot access storage of ", tensorimpl_type_name());
}
bool TensorImpl::is_contiguous_nondefault_policy_impl(
at::MemoryFormat memory_format) const {
if (has_contiguity_ ==
static_cast<uint8_t>(HasContiguityPolicy::ContiguityNotSupported)) {
TORCH_CHECK_NOT_IMPLEMENTED(
false,
"Tensors of type ",
tensorimpl_type_name(),
" do not have is_contiguous");
} else {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
has_contiguity_ ==
static_cast<uint8_t>(HasContiguityPolicy::CustomBehavior));
return is_contiguous_custom(memory_format);
}
}
bool TensorImpl::is_contiguous_custom(at::MemoryFormat memory_format) const {
TORCH_INTERNAL_ASSERT(
false,
"TensorImpl::is_contiguous_custom should never be called; did you "
"set_has_contiguity_policy and forget to override is_contiguous_custom?");
}
static void deletePlacementDeleteContext(void* ptr) {
delete static_cast<PlacementDeleteContext*>(ptr);
}
at::DataPtr PlacementDeleteContext::makeDataPtr(
at::DataPtr&& data_ptr,
PlacementDtor placement_dtor,
size_t size,
at::Device device) {
auto* ptr = data_ptr.get();
return {
ptr,
new PlacementDeleteContext(std::move(data_ptr), placement_dtor, size),
&deletePlacementDeleteContext,
device};
}
// NOLINTNEXTLINE(modernize-use-equals-default)
AutogradMetaInterface::~AutogradMetaInterface() {}
// Setting requires_grad to true on inference tensor outside InferenceMode
// is forbidden. Ideally it would also be illegal inside InferenceMode.
// But there's no way that we can directly allocate a tensor to have
// requires_grad = true in C++ constructor so set_requires_grad is widely
// used in C++ frontend. Forbidding it inside InferenceMode will force users
// to delete these setter code in their code which is not ideal.
void TensorImpl::set_requires_grad(bool requires_grad) {
TORCH_CHECK(
!(requires_grad && is_inference() && !c10::InferenceMode::is_enabled()),
"Setting requires_grad=True on inference tensor outside InferenceMode is not allowed.");
if (!requires_grad && !autograd_meta_)
return;
if (!autograd_meta_)
autograd_meta_ = impl::GetAutogradMetaFactory()->make();
// NB: In principle, setting requires_grad to false could result in
// the AutogradMeta becoming equal to a default constructed state,
// in which case we could apply the nullptr AutogradMeta optimization
// (see autograd_meta_ docs). But we don't do this right now. Note
// that it is unsound to unconditionally set AutogradMeta to false
// when you set requires_grad to False, as there may be nontrivial
// information content in the other fields; for example, we may
// have set the string name for a Variable, or there may be hooks
// registered for it.
autograd_meta_->set_requires_grad(requires_grad, this);
}
bool TensorImpl::requires_grad() const {
if (!autograd_meta_)
return false;
return autograd_meta_->requires_grad();
}
void TensorImpl::set_autograd_meta(
std::unique_ptr<c10::AutogradMetaInterface> autograd_meta) {
// NB: autograd_meta may be null! That just means it's the default
// constructor
autograd_meta_ = std::move(autograd_meta);
}
c10::AutogradMetaInterface* TensorImpl::autograd_meta() const {
// NB: Might return null!
return autograd_meta_.get();
}
c10::intrusive_ptr<TensorImpl> TensorImpl::shallow_copy_and_detach(
const c10::VariableVersion& version_counter,
bool allow_tensor_metadata_change) const {
auto impl = c10::make_intrusive<TensorImpl>(
// No need to populate Storage; copy_tensor_metadata will do it for us.
key_set_,
data_type_,
device_opt_);
copy_tensor_metadata(
/*src_impl=*/this,
/*dest_impl=*/impl.get(),
/*version_counter=*/version_counter,
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
impl->refresh_numel();
impl->refresh_contiguous();
return impl;
}
c10::intrusive_ptr<TensorImpl> TensorImpl::shallow_copy_and_detach(
c10::VariableVersion&& version_counter,
bool allow_tensor_metadata_change) const {
auto impl = c10::make_intrusive<TensorImpl>(
// No need to populate Storage; copy_tensor_metadata will do it for us.
key_set_,
data_type_,
device_opt_);
copy_tensor_metadata(
/*src_impl=*/this,
/*dest_impl=*/impl.get(),
/*version_counter=*/std::move(version_counter),
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
impl->refresh_numel();
impl->refresh_contiguous();
return impl;
}
void TensorImpl::copy_tensor_metadata_except_version_counter(
const TensorImpl* src_impl,
TensorImpl* dest_impl,
bool allow_tensor_metadata_change) {
dest_impl->storage_ = src_impl->storage_;
dest_impl->sizes_and_strides_ = src_impl->sizes_and_strides_;
dest_impl->storage_offset_ = src_impl->storage_offset_;
dest_impl->data_type_ = src_impl->data_type_;
dest_impl->device_opt_ = src_impl->device_opt_;
dest_impl->key_set_ = src_impl->key_set_;
dest_impl->is_contiguous_ = src_impl->is_contiguous_;
dest_impl->has_contiguity_ = src_impl->has_contiguity_;
dest_impl->is_channels_last_contiguous_ =
src_impl->is_channels_last_contiguous_;
dest_impl->is_channels_last_3d_contiguous_ =
src_impl->is_channels_last_3d_contiguous_;
dest_impl->is_channels_last_ = src_impl->is_channels_last_;
dest_impl->is_channels_last_3d_ = src_impl->is_channels_last_3d_;
dest_impl->is_non_overlapping_and_dense_ =
src_impl->is_non_overlapping_and_dense_;
dest_impl->is_wrapped_number_ = src_impl->is_wrapped_number_;
dest_impl->reserved_ = src_impl->reserved_;
dest_impl->set_allow_tensor_metadata_change(allow_tensor_metadata_change);
dest_impl->storage_access_should_throw_ =
src_impl->storage_access_should_throw_;
if (src_impl->named_tensor_meta_ != nullptr) {
dest_impl->named_tensor_meta_ = src_impl->named_tensor_meta_->clone();
}
}
void TensorImpl::copy_tensor_metadata(
const TensorImpl* src_impl,
TensorImpl* dest_impl,
const c10::VariableVersion& version_counter,
bool allow_tensor_metadata_change) {
copy_tensor_metadata_except_version_counter(
src_impl, dest_impl, allow_tensor_metadata_change);
// TODO: In the ideal end state, it's okay to set disabled version_counter
// on inference tensor since it's a no-op. This requires refactor on call
// sites.
if (!dest_impl->is_inference()) {
dest_impl->set_version_counter(version_counter);
}
}
void TensorImpl::copy_tensor_metadata(
const TensorImpl* src_impl,
TensorImpl* dest_impl,
c10::VariableVersion&& version_counter,
bool allow_tensor_metadata_change) {
copy_tensor_metadata_except_version_counter(
src_impl, dest_impl, allow_tensor_metadata_change);
if (!dest_impl->is_inference()) {
dest_impl->set_version_counter(std::move(version_counter));
}
}
namespace impl {
namespace {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
AutogradMetaFactory* meta_factory = nullptr;
} // namespace
void SetAutogradMetaFactory(AutogradMetaFactory* factory) {
meta_factory = factory;
}
AutogradMetaFactory* GetAutogradMetaFactory() {
TORCH_CHECK(
meta_factory,
"Support for autograd has not been loaded; have you linked against libtorch.so?")
return meta_factory;
}
} // namespace impl
} // namespace c10