pytorch/caffe2/python/layers
Xianjie Chen aed3aabc7f model and preprocessor can handle empty dense inputs
Summary: we may not need dense feature inputs in some models (e.g., double helix).

Reviewed By: dzhulgakov

Differential Revision: D4568755

fbshipit-source-id: 6850508f86fafb53f81783b2a2a38776be5455d7
2017-02-22 11:19:15 -08:00
..
__init__.py fbsync. TODO: check if build files need update. 2016-11-15 00:00:46 -08:00
batch_lr_loss.py NextScopedBlob with well-defined behavior and respect namescope 2017-02-16 17:16:36 -08:00
concat.py NextScopedBlob with well-defined behavior and respect namescope 2017-02-16 17:16:36 -08:00
dot_product.py NextScopedBlob with well-defined behavior and respect namescope 2017-02-16 17:16:36 -08:00
expand_dims.py NextScopedBlob with well-defined behavior and respect namescope 2017-02-16 17:16:36 -08:00
fc.py model and preprocessor can handle empty dense inputs 2017-02-22 11:19:15 -08:00
layers.py Convert SparseLookup layer's embedding to fp16 blobs for predictor 2017-02-22 11:05:49 -08:00
simple_operator_layers.py Fix random issues with some of the layers getting missing from registry. 2017-01-10 15:14:31 -08:00
sparse_lookup.py add support of fp16 to SparseLengthsSum and SparseLengthsMean 2017-02-22 11:05:55 -08:00
sparse_to_dense.py NextScopedBlob with well-defined behavior and respect namescope 2017-02-16 17:16:36 -08:00
split.py NextScopedBlob with well-defined behavior and respect namescope 2017-02-16 17:16:36 -08:00
tags.py fbsync. TODO: check if build files need update. 2016-11-15 00:00:46 -08:00