mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Remove the use of `NextName` in layer model helper, so that the same function return `model_helper` that should construct identical `Net`, when under the same NameScope. The `NextScopedBlob` should only take effect when there is real name conflicting, otherwise it returns ScopedBlobReference. This is critical for parameter blobs. In long run, we need to be able to specify parameter blobs more explicitly. (kennyhorror is working on this). This solution works in short term for e.g., two tower sparse nn models. Reviewed By: kennyhorror Differential Revision: D4555423 fbshipit-source-id: 2c4b99a61392e5d51aa878f7346466a8f14be187
321 lines
11 KiB
Python
321 lines
11 KiB
Python
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
from caffe2.python import core, model_helper, schema
|
|
from caffe2.python.layers import layers
|
|
|
|
from functools import partial
|
|
|
|
import logging
|
|
import numpy as np
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class LayerModelHelper(model_helper.ModelHelperBase):
|
|
"""
|
|
Model helper for building models on top of layers abstractions.
|
|
|
|
Each layer is the abstraction that is higher level than Operator. Layer
|
|
is responsible for ownership of it's own parameters and can easily be
|
|
instantiated in multiple nets possible with different sets of ops.
|
|
As an example: one can easily instantiate predict and train nets from
|
|
the same set of layers, where predict net will have subset of the
|
|
operators from train net.
|
|
"""
|
|
|
|
def __init__(self, name, input_feature_schema, trainer_extra_schema):
|
|
super(LayerModelHelper, self).__init__(name=name)
|
|
self._layer_names = set()
|
|
self._layers = []
|
|
|
|
# optimizer bookkeeping
|
|
self.param_to_optim = {}
|
|
|
|
self._default_optimizer = None
|
|
self._loss = None
|
|
self._output_schema = None
|
|
|
|
# Connect Schema to self.net. That particular instance of schmea will be
|
|
# use for generation of the Layers accross the network and would be used
|
|
# for connection with Readers.
|
|
self._input_feature_schema = schema.NewRecord(
|
|
self.net,
|
|
input_feature_schema
|
|
)
|
|
self._trainer_extra_schema = schema.NewRecord(
|
|
self.net,
|
|
trainer_extra_schema
|
|
)
|
|
|
|
self._init_global_constants()
|
|
self.param_init_net = self.create_init_net('param_init_net')
|
|
|
|
def add_global_constant(self, name, array=None, dtype=None,
|
|
initializer=None):
|
|
# This is global namescope for constants. They will be created in all
|
|
# init_nets and there should be very few of them.
|
|
assert name not in self.global_constants
|
|
self.global_constants[name] = self.net.NextBlob(name)
|
|
|
|
if array is not None:
|
|
assert initializer is None,\
|
|
"Only one from array and initializer should be specified"
|
|
if dtype is None:
|
|
array = np.array(array)
|
|
else:
|
|
array = np.array(array, dtype=dtype)
|
|
|
|
# TODO: make GivenTensor generic
|
|
op_name = None
|
|
if array.dtype == np.int32:
|
|
op_name = 'GivenTensorIntFill'
|
|
elif array.dtype == np.int64:
|
|
op_name = 'GivenTensorInt64Fill'
|
|
elif array.dtype == np.str:
|
|
op_name = 'GivenTensorStringFill'
|
|
else:
|
|
op_name = 'GivenTensorFill'
|
|
|
|
def initializer(blob_name):
|
|
return core.CreateOperator(op_name,
|
|
[],
|
|
blob_name,
|
|
shape=array.shape,
|
|
values=array.flatten().tolist()
|
|
)
|
|
else:
|
|
assert initializer is not None
|
|
|
|
self.global_constant_initializers.append(
|
|
initializer(self.global_constants[name]))
|
|
return self.global_constants[name]
|
|
|
|
def _init_global_constants(self):
|
|
self.global_constants = {}
|
|
self.global_constant_initializers = []
|
|
self.add_global_constant('ONE', 1.0)
|
|
self.add_global_constant('ZERO', 0.0)
|
|
self.add_global_constant('ZERO_RANGE', [0, 0], dtype='int32')
|
|
|
|
def _add_global_constants(self, init_net):
|
|
for initializer_op in self.global_constant_initializers:
|
|
init_net._net.op.extend([initializer_op])
|
|
|
|
def create_init_net(self, name):
|
|
init_net = core.Net(name)
|
|
self._add_global_constants(init_net)
|
|
return init_net
|
|
|
|
def next_layer_name(self, prefix):
|
|
base_name = core.ScopedName(prefix)
|
|
name = base_name
|
|
index = 0
|
|
while name in self._layer_names:
|
|
name = base_name + '_auto_' + str(index)
|
|
index += 1
|
|
|
|
self._layer_names.add(name)
|
|
return name
|
|
|
|
def add_layer(self, layer):
|
|
self._layers.append(layer)
|
|
for param in layer.get_parameters():
|
|
assert isinstance(param.parameter, core.BlobReference)
|
|
self.param_to_optim[str(param.parameter)] = param.optimizer
|
|
|
|
# The primary value of adding everything to self.net - generation of the
|
|
# operators right away, i.e. if error happens it'll be detected
|
|
# immediately. Other then this - create_x_net should be called.
|
|
layer.add_operators(self.net, self.param_init_net)
|
|
return layer.get_output_schema()
|
|
|
|
def get_parameter_blobs(self):
|
|
param_blobs = []
|
|
for layer in self._layers:
|
|
for param in layer.get_parameters():
|
|
param_blobs.append(param.parameter)
|
|
|
|
return param_blobs
|
|
|
|
@property
|
|
def default_optimizer(self):
|
|
return self._default_optimizer
|
|
|
|
@default_optimizer.setter
|
|
def default_optimizer(self, optimizer):
|
|
self._default_optimizer = optimizer
|
|
|
|
@property
|
|
def input_feature_schema(self):
|
|
return self._input_feature_schema
|
|
|
|
@property
|
|
def trainer_extra_schema(self):
|
|
return self._trainer_extra_schema
|
|
|
|
@property
|
|
def output_schema(self):
|
|
assert self._output_schema is not None
|
|
return self._output_schema
|
|
|
|
@output_schema.setter
|
|
def output_schema(self, schema):
|
|
assert self._output_schema is None
|
|
self._output_schema = schema
|
|
|
|
@property
|
|
def loss(self):
|
|
assert self._loss is not None
|
|
return self._loss
|
|
|
|
@loss.setter
|
|
def loss(self, loss):
|
|
assert self._loss is None
|
|
self._loss = loss
|
|
|
|
def __getattr__(self, layer):
|
|
if not layers.layer_exists(layer):
|
|
raise ValueError(
|
|
"Tring to create non-registered layer: {0}".format(layer))
|
|
|
|
def wrapper(*args, **kwargs):
|
|
return self.add_layer(
|
|
layers.create_layer(layer, self, *args, **kwargs))
|
|
return wrapper
|
|
|
|
@property
|
|
def layers(self):
|
|
return self._layers
|
|
|
|
# TODO(amalevich): Optimizer should not really in model. Move it out.
|
|
# Copy over from another Helper
|
|
def SgdOptim(self, base_lr=0.01, policy='fixed', **kwargs):
|
|
return partial(self.Sgd, base_lr=base_lr, policy=policy, **kwargs)
|
|
|
|
def AdagradOptim(self, alpha=0.01, epsilon=1e-4, **kwargs):
|
|
return partial(self.Adagrad, alpha=alpha, epsilon=epsilon, **kwargs)
|
|
|
|
def FtrlOptim(self, alpha=0.01, beta=1e-4, lambda1=0, lambda2=0, **kwargs):
|
|
return partial(self.Ftrl, alpha=alpha, beta=beta, lambda1=lambda1,
|
|
lambda2=lambda2, **kwargs)
|
|
|
|
def _GetOne(self):
|
|
return self.global_constants['ONE']
|
|
|
|
def Adagrad(self, net, param_init_net,
|
|
param, grad, alpha, epsilon, sparse_dedup_aggregator=None,
|
|
engine=''):
|
|
if alpha <= 0:
|
|
return
|
|
|
|
param_square_sum = param_init_net.ConstantFill(
|
|
[param],
|
|
core.ScopedBlobReference(param + "_square_sum"),
|
|
value=0.0
|
|
)
|
|
# Set learning rate to negative so that we can add the grad to param
|
|
# directly later.
|
|
lr = param_init_net.ConstantFill(
|
|
[], core.ScopedBlobReference(param + "_lr"), value=-alpha)
|
|
if isinstance(grad, core.GradientSlice):
|
|
if sparse_dedup_aggregator:
|
|
grad = net.DeduplicateGradientSlices(
|
|
grad, aggregator=sparse_dedup_aggregator)
|
|
|
|
net.SparseAdagrad(
|
|
[param, param_square_sum, grad.indices, grad.values, lr],
|
|
[param, param_square_sum],
|
|
epsilon=epsilon,
|
|
engine=engine
|
|
)
|
|
|
|
else:
|
|
net.Adagrad(
|
|
[param, param_square_sum, grad, lr],
|
|
[param, param_square_sum],
|
|
epsilon=epsilon,
|
|
engine=engine
|
|
)
|
|
|
|
def Ftrl(self, net, param_init_net,
|
|
param, grad, alpha, beta, lambda1, lambda2,
|
|
sparse_dedup_aggregator=None, engine=''):
|
|
if alpha <= 0:
|
|
return
|
|
|
|
nz = param_init_net.ConstantFill(
|
|
[param],
|
|
core.ScopedBlobReference(param + "_ftrl_nz"),
|
|
extra_shape=[2],
|
|
value=0.0
|
|
)
|
|
if isinstance(grad, core.GradientSlice):
|
|
if sparse_dedup_aggregator:
|
|
grad = net.DeduplicateGradientSlices(
|
|
grad, aggregator=sparse_dedup_aggregator)
|
|
|
|
net.SparseFtrl(
|
|
[param, nz, grad.indices, grad.values],
|
|
[param, nz],
|
|
engine=engine,
|
|
alpha=alpha,
|
|
beta=beta,
|
|
lambda1=lambda1,
|
|
lambda2=lambda2
|
|
)
|
|
else:
|
|
net.Ftrl(
|
|
[param, nz, grad],
|
|
[param, nz],
|
|
engine=engine,
|
|
alpha=alpha,
|
|
beta=beta,
|
|
lambda1=lambda1,
|
|
lambda2=lambda2
|
|
)
|
|
|
|
def Sgd(self, net, param_init_net,
|
|
param, grad, base_lr, policy, momentum=0.0, **kwargs):
|
|
if (base_lr <= 0):
|
|
return
|
|
# Set learning rate to negative so that we can add the grad to param
|
|
# directly later.
|
|
|
|
# TODO(amalevich): Get rid of iter duplication if other parts are good
|
|
# enough
|
|
lr = net.LearningRate(
|
|
[net.Iter([], 1)],
|
|
core.ScopedBlobReference(param + "_lr"),
|
|
base_lr=-base_lr,
|
|
policy=policy,
|
|
**kwargs
|
|
)
|
|
|
|
if momentum > 0:
|
|
momentum_data = param_init_net.ConstantFill(
|
|
param, core.ScopedBlobReference(param + "_momentum"), value=0.)
|
|
|
|
if isinstance(grad, core.GradientSlice):
|
|
assert momentum == 0., "Doesn't support momentum for sparse"
|
|
net.ScatterWeightedSum(
|
|
[param, self._GetOne(),
|
|
grad.indices, grad.values, lr],
|
|
param
|
|
)
|
|
else:
|
|
if momentum > 0.:
|
|
net.MomentumSGD(
|
|
[grad, momentum_data, lr], [grad, momentum_data],
|
|
momentum=momentum,
|
|
nesterov=1)
|
|
coeff = self._GetOne()
|
|
else:
|
|
coeff = lr
|
|
|
|
net.WeightedSum(
|
|
[param, self._GetOne(), grad, coeff],
|
|
param
|
|
)
|