mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Partially fixes: #66328 This PR: - adds support for `ITensorList` to the dispatcher for: - computing the dispatch key - boxing and unboxing `ITensorList` - modified the codegen for structured kernels: - codegen APIs use `ITensorList` instead of `ArrayRef<Tensor>` **Changes summary:** - Signature changes due to the different APIs: - dispatcher API (e.g. `BatchingRegistrations.cpp`) - C++ API (e.g. `TensorShape.cpp`) - Miscelaneous functions used by codegen'd functions (e.g. `FunctionalTensorWrapper.*`) - Dispatcher changes for handling `ITensorList` correctly (e.g. `DispatchKeyExtractor.h`) - Signature changes of `at::cat` due to the need of `const` inside `TensorBody.h` - Forward declarations of `ITensorList` (e.g. `MethodOperators.h`) - Codegen changes, special casing structured kernels (e.g. `gen.py`) **Short description of structured kernels special casing:** I introduced, mainly, 5 types of changes to the codegen for generating code depending on whether the kernel is structured or not: 1. Added a `structured_type_override` flag to the `argument_type` function definition of the affected APIs (mainly the dispatcher and C++ APIs). - `api/cpp.py`, `api/dispatcher.py`, `api/native.py` 2. Added a `structured_type_override` member to the signature classes (e.g. `CppSignature`), since `FunctionSchema` doesn't really know whether the function is structured or not - `api/types.py` 3. Added a `part_of_structured_group` to `NativeFunction` class, which is just a convenient function to forward to `structured_type_override` wherever needed - `model.py` 4. Appropriately changed the rest of the codegen, whenever it used either the signature classes or the `arguments` function directly 5. Added a check for `const ITensorList&` type wherever there was a check for `TensorList` Pull Request resolved: https://github.com/pytorch/pytorch/pull/73350 Approved by: https://github.com/bdhirsh
91 lines
2.5 KiB
C++
91 lines
2.5 KiB
C++
#include <torch/csrc/lazy/backend/backend_device.h>
|
|
|
|
#include <c10/core/Device.h>
|
|
#include <c10/util/Exception.h>
|
|
#include <c10/util/Optional.h>
|
|
#include <c10/util/StringUtil.h>
|
|
#include <torch/csrc/lazy/backend/backend_interface.h>
|
|
#include <torch/csrc/lazy/core/tensor.h>
|
|
|
|
namespace torch {
|
|
namespace lazy {
|
|
|
|
BackendDevice::BackendDevice()
|
|
: type_(getBackend()->GetDefaultDeviceType()),
|
|
ordinal_(getBackend()->GetDefaultDeviceOrdinal()) {}
|
|
|
|
BackendDevice::BackendDevice(
|
|
std::shared_ptr<BackendDeviceType>&& type,
|
|
int64_t ordinal)
|
|
: type_(std::move(type)), ordinal_(ordinal) {}
|
|
|
|
int8_t BackendDevice::type() const {
|
|
TORCH_INTERNAL_ASSERT(type_);
|
|
return type_->type;
|
|
}
|
|
|
|
std::string BackendDevice::toString() const {
|
|
TORCH_INTERNAL_ASSERT(type_);
|
|
return c10::str(type_->toString(), ordinal_);
|
|
}
|
|
|
|
int BackendDevice::compare(const BackendDevice& rhs) const {
|
|
if (type() != rhs.type()) {
|
|
return type() < rhs.type() ? -1 : +1;
|
|
}
|
|
return ordinal_ < rhs.ordinal_ ? -1 : (ordinal_ > rhs.ordinal_ ? +1 : 0);
|
|
}
|
|
|
|
std::ostream& operator<<(std::ostream& os, const BackendDevice& device) {
|
|
os << device.toString();
|
|
return os;
|
|
}
|
|
|
|
BackendDevice atenDeviceToBackendDevice(const c10::Device& device) {
|
|
TORCH_CHECK(device.type() == at::kLazy, device);
|
|
int64_t ordinal = device.has_index()
|
|
? device.index()
|
|
: getBackend()->GetDefaultDeviceOrdinal();
|
|
return BackendDevice(getBackend()->GetDefaultDeviceType(), ordinal);
|
|
}
|
|
|
|
// TODO(whc) refactor this: we need to support non 1 on 1 mapping for torch/XLA.
|
|
c10::Device backendDeviceToAtenDevice(const BackendDevice& device) {
|
|
return c10::Device(at::kLazy, device.ordinal());
|
|
}
|
|
|
|
c10::optional<BackendDevice> GetBackendDevice(at::ITensorListRef tensors) {
|
|
for (auto& tensor : tensors) {
|
|
if (auto lt = TryGetLtcTensor(tensor)) {
|
|
return lt->GetDevice();
|
|
}
|
|
}
|
|
return c10::nullopt;
|
|
}
|
|
|
|
c10::optional<BackendDevice> GetBackendDevice(at::TensorList tensors) {
|
|
return GetBackendDevice(at::ITensorListRef(tensors));
|
|
}
|
|
|
|
c10::optional<BackendDevice> GetBackendDevice(const at::Tensor& tensor) {
|
|
if (auto lt = TryGetLtcTensor(tensor)) {
|
|
return lt->GetDevice();
|
|
}
|
|
return c10::nullopt;
|
|
}
|
|
|
|
c10::optional<BackendDevice> GetBackendDevice(
|
|
const c10::optional<c10::Device> device) {
|
|
if (device) {
|
|
return c10::make_optional(atenDeviceToBackendDevice(*device));
|
|
}
|
|
return c10::nullopt;
|
|
}
|
|
|
|
c10::optional<BackendDevice> GetBackendDevice() {
|
|
return c10::nullopt;
|
|
}
|
|
|
|
} // namespace lazy
|
|
} // namespace torch
|