mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: By default freeze_module pass, invoked from optimize_for_mobile, preserves only forward method. There is an option to specify a list of methods that can be preserved during freeze_module. This PR exposes that to optimize_for_module pass. Pull Request resolved: https://github.com/pytorch/pytorch/pull/40629 Test Plan: python test/test_mobile_optimizer.py Reviewed By: dreiss Differential Revision: D22260972 Pulled By: kimishpatel fbshipit-source-id: 452c653269da8bb865acfb58da2d28c23c66e326
208 lines
9.6 KiB
Python
208 lines
9.6 KiB
Python
import unittest
|
|
import torch
|
|
import torch.backends.xnnpack
|
|
import torch.utils.bundled_inputs
|
|
from torch.testing._internal.jit_utils import get_forward, get_forward_graph
|
|
from torch.utils.mobile_optimizer import *
|
|
from torch.nn import functional as F
|
|
from torch._C import MobileOptimizerType
|
|
|
|
FileCheck = torch._C.FileCheck
|
|
|
|
class TestOptimizer(unittest.TestCase):
|
|
|
|
@unittest.skipUnless(torch.backends.xnnpack.enabled,
|
|
" XNNPACK must be enabled for these tests."
|
|
" Please build with USE_XNNPACK=1.")
|
|
def test_optimize_for_mobile(self):
|
|
batch_size = 2
|
|
input_channels_per_group = 6
|
|
height = 16
|
|
width = 16
|
|
output_channels_per_group = 6
|
|
groups = 4
|
|
kernel_h = kernel_w = 3
|
|
stride_h = stride_w = 1
|
|
pad_h = pad_w = 1
|
|
dilation = 1
|
|
input_channels = input_channels_per_group * groups
|
|
output_channels = output_channels_per_group * groups
|
|
kernels = (kernel_h, kernel_w)
|
|
strides = (stride_h, stride_w)
|
|
paddings = (pad_h, pad_w)
|
|
dilations = (dilation, dilation)
|
|
conv_weight_shape = (output_channels, input_channels_per_group, kernel_h, kernel_w)
|
|
conv_bias_shape = (output_channels)
|
|
|
|
input_data = torch.rand((batch_size, input_channels, height, width))
|
|
conv_weight = torch.rand((output_channels, input_channels_per_group, kernel_h, kernel_w))
|
|
conv_bias = torch.rand((output_channels))
|
|
result = F.conv2d(input_data, conv_weight, conv_bias, strides, paddings, dilations, groups)
|
|
weight_output_dim = 24
|
|
linear_input_shape = result.shape[1]
|
|
linear_weight_shape = (weight_output_dim, linear_input_shape)
|
|
|
|
class MyTestModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyTestModule, self).__init__()
|
|
self.conv_weight = torch.nn.Parameter(torch.Tensor(torch.rand(conv_weight_shape)))
|
|
self.conv_bias = torch.nn.Parameter(torch.Tensor(torch.rand((conv_bias_shape))))
|
|
self.linear_weight = torch.nn.Parameter(torch.Tensor(torch.rand(linear_weight_shape)))
|
|
self.linear_bias = torch.nn.Parameter(torch.Tensor(torch.rand((weight_output_dim))))
|
|
self.strides = strides
|
|
self.paddings = paddings
|
|
self.dilations = dilations
|
|
self.groups = groups
|
|
|
|
def forward(self, x):
|
|
o = F.conv2d(x, self.conv_weight, self.conv_bias,
|
|
self.strides, self.paddings, self.dilations, self.groups)
|
|
o = F.relu(o)
|
|
o = o.permute([0, 2, 3, 1])
|
|
o = F.linear(o, self.linear_weight, self.linear_bias)
|
|
return F.relu(o)
|
|
|
|
class BNTestModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super(BNTestModule, self).__init__()
|
|
self.conv = torch.nn.Conv2d(1, 20, 5, 1)
|
|
self.bn = torch.nn.BatchNorm2d(num_features=20)
|
|
self.bn.eps = 0.0023
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = self.bn(x)
|
|
return x
|
|
|
|
data_shape = (batch_size, input_channels, height, width)
|
|
input_data = torch.normal(1, 20, size=data_shape)
|
|
|
|
scripted_model = torch.jit.script(MyTestModule())
|
|
scripted_model.eval()
|
|
initial_result = scripted_model(input_data)
|
|
|
|
optimized_scripted_model = optimize_for_mobile(scripted_model)
|
|
optimized_result = optimized_scripted_model(input_data)
|
|
|
|
FileCheck().check_not("Tensor = aten::conv2d") \
|
|
.check_not("Tensor = prim::CallFunction") \
|
|
.check_not("prepacked::conv2d_clamp_prepack") \
|
|
.check_count("prepacked::conv2d_clamp_run", 1, exactly=True) \
|
|
.check_not("prepacked::linear_clamp_prepack") \
|
|
.check_count("prepacked::linear_clamp_run", 1, exactly=True) \
|
|
.run(optimized_scripted_model.graph)
|
|
torch.testing.assert_allclose(initial_result, optimized_result, rtol=1e-2, atol=1e-3)
|
|
|
|
|
|
optimization_blacklist_no_prepack = {MobileOptimizerType.INSERT_FOLD_PREPACK_OPS}
|
|
optimized_scripted_model_no_prepack = optimize_for_mobile(scripted_model, optimization_blacklist_no_prepack)
|
|
optimized_result_no_prepack = optimized_scripted_model_no_prepack(input_data)
|
|
|
|
FileCheck().check_count("Tensor = aten::conv2d", 1, exactly=True) \
|
|
.check_not("prepacked::linear_clamp_run") \
|
|
.check_not("prepacked::conv2d_clamp_run") \
|
|
.run(optimized_scripted_model_no_prepack.graph)
|
|
torch.testing.assert_allclose(initial_result, optimized_result_no_prepack, rtol=1e-2, atol=1e-3)
|
|
|
|
|
|
bn_test_module = BNTestModule()
|
|
bn_scripted_module = torch.jit.script(bn_test_module)
|
|
bn_scripted_module.eval()
|
|
self.assertEqual(len(torch.jit.export_opnames(bn_scripted_module)), 13)
|
|
FileCheck().check_count("prim::CallMethod[name=\"forward\"]", 2, exactly=True) \
|
|
.run(str(get_forward(bn_scripted_module._c).graph))
|
|
|
|
optimization_blacklist_no_prepack = {MobileOptimizerType.INSERT_FOLD_PREPACK_OPS}
|
|
bn_fold_scripted_module = optimize_for_mobile(bn_scripted_module, optimization_blacklist_no_prepack)
|
|
self.assertEqual(len(torch.jit.export_opnames(bn_fold_scripted_module)), 1)
|
|
FileCheck().check_count("prim::CallMethod[name=\"forward\"]", 1, exactly=True) \
|
|
.run(str(get_forward_graph(bn_fold_scripted_module._c)))
|
|
bn_input = torch.rand(1, 1, 6, 6)
|
|
torch.testing.assert_allclose(bn_scripted_module(bn_input), bn_fold_scripted_module(bn_input), rtol=1e-2, atol=1e-3)
|
|
|
|
optimization_blacklist_no_fold_bn = {MobileOptimizerType.CONV_BN_FUSION}
|
|
no_bn_fold_scripted_module = optimize_for_mobile(bn_scripted_module, optimization_blacklist_no_fold_bn)
|
|
FileCheck().check_count("aten::batch_norm", 1, exactly=True) \
|
|
.run(str(get_forward_graph(no_bn_fold_scripted_module._c)))
|
|
bn_input = torch.rand(1, 1, 6, 6)
|
|
torch.testing.assert_allclose(bn_scripted_module(bn_input), no_bn_fold_scripted_module(bn_input), rtol=1e-2, atol=1e-3)
|
|
|
|
class MyPreserveMethodsTest(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyPreserveMethodsTest, self).__init__()
|
|
self.linear_weight = torch.nn.Parameter(torch.Tensor(torch.rand(linear_weight_shape)))
|
|
self.linear_bias = torch.nn.Parameter(torch.Tensor(torch.rand((weight_output_dim))))
|
|
|
|
def forward(self, x):
|
|
o = F.linear(x, self.linear_weight, self.linear_bias)
|
|
return F.relu(o)
|
|
|
|
@torch.jit.export
|
|
def preserveThis(self):
|
|
pass
|
|
|
|
preserve_method_module = MyPreserveMethodsTest()
|
|
m = torch.jit.script(preserve_method_module)
|
|
m.eval()
|
|
opt_m = optimize_for_mobile(m)
|
|
no_preserveThis = getattr(opt_m, "preserveThis", None)
|
|
self.assertEqual(no_preserveThis, None)
|
|
opt_m = optimize_for_mobile(m, preserved_methods=["preserveThis"])
|
|
preserveThis = getattr(opt_m, "preserveThis", None)
|
|
self.assertNotEqual(preserveThis, None)
|
|
|
|
|
|
def test_generate_mobile_module_lints(self):
|
|
class MyTestModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyTestModule, self).__init__()
|
|
self.fc = torch.nn.Linear(4, 4)
|
|
self.dropout = torch.nn.Dropout(p=0.5)
|
|
|
|
def forward(self, inputs):
|
|
out = self.fc(inputs)
|
|
out = self.dropout(out)
|
|
return out
|
|
|
|
class MyBNModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyBNModule, self).__init__()
|
|
self.bn = torch.nn.BatchNorm2d(4, affine=True)
|
|
|
|
def forward(self, inputs):
|
|
bn = self.bn(inputs)
|
|
return bn
|
|
|
|
class MyBundledInputModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super(MyBundledInputModule, self).__init__()
|
|
|
|
def forward(self, inputs):
|
|
return inputs
|
|
|
|
def get_lint_count_by_type(lint_type, module_lint_List):
|
|
return len([lint_dict for lint_dict in module_lint_List if lint_dict['name'] == lint_type.name])
|
|
|
|
test_module = torch.jit.script(MyTestModule())
|
|
test_module_lint_list = generate_mobile_module_lints(test_module)
|
|
self.assertEqual(len(test_module_lint_list), 4)
|
|
self.assertEqual(get_lint_count_by_type(LintCode.BUNDLED_INPUT, test_module_lint_list), 1)
|
|
self.assertEqual(get_lint_count_by_type(LintCode.DROPOUT, test_module_lint_list), 1)
|
|
self.assertEqual(get_lint_count_by_type(LintCode.REQUIRES_GRAD, test_module_lint_list), 2)
|
|
|
|
bn_module = torch.jit.script(MyBNModule())
|
|
bn_module_lint_list = generate_mobile_module_lints(bn_module)
|
|
self.assertEqual(len(bn_module_lint_list), 4)
|
|
self.assertEqual(get_lint_count_by_type(LintCode.BUNDLED_INPUT, bn_module_lint_list), 1)
|
|
self.assertEqual(get_lint_count_by_type(LintCode.BATCHNORM, bn_module_lint_list), 1)
|
|
self.assertEqual(get_lint_count_by_type(LintCode.REQUIRES_GRAD, bn_module_lint_list), 2)
|
|
|
|
bi_module = torch.jit.script(MyBundledInputModule())
|
|
torch.utils.bundled_inputs.augment_model_with_bundled_inputs(
|
|
bi_module, [(torch.tensor([1]),)], [])
|
|
bi_module_lint_list = generate_mobile_module_lints(bi_module)
|
|
self.assertEqual(len(bi_module_lint_list), 0)
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|