mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Description:
- PR tries to fuse nodes with compatible sizes, for example `node1: (s0, s1, s2)` and `node2: (s0 * s1 * s2)`. On `main` these two nodes can be fused due to different sizes. With this PR we can recompute node2 size, body etc using node1 indexing constraint and thus be able to fuse two nodes.
- this should influence only cpu device
Example:
```python
from unittest.mock import patch
import torch
from torch._inductor.graph import GraphLowering
from torch._inductor import config
# Force multple scheduler nodes creation to fuse them
config.realize_opcount_threshold = 1
@torch.compile(fullgraph=True, dynamic=True)
def fn(x: torch.Tensor, w1: torch.Tensor, w2: torch.Tensor) -> torch.Tensor:
o1 = x * w1.view(1, 1, 1, -1)
o2 = x * w2.view(1, 1, 1, -1)
output = o1 + o2
return output
in_nodes = []
outputs = []
run_node = GraphLowering.run_node
graph_lowering_obj = None
def run_node_alt(self, n):
global graph_lowering_obj
graph_lowering_obj = self
in_nodes.append(n)
output = run_node(self, n)
outputs.append(output)
return output
x = torch.rand(1, 3, 32, 32)
w1 = torch.randn(32)
w2 = torch.randn(32)
with patch.object(GraphLowering, "run_node", run_node_alt):
fn(x, w1, w2)
print("graph_lowering_obj.buffers:", graph_lowering_obj.buffers)
print("graph_lowering_obj.scheduler:", graph_lowering_obj.scheduler.nodes)
```
Output on `main`:
```
graph_lowering_obj.buffers: [ComputedBuffer(name='buf0', layout=FixedLayout('cpu', torch.float32, size=[1, s1, s0, s0], stride=[s0**2*s1, s0**2, s0, 1]), data=Pointwise(
'cpu',
torch.float32,
def inner_fn(index):
_, i1, i2, i3 = index
tmp0 = ops.load(arg3_1, i3 + i1 * s0**2 + i2 * s0)
tmp1 = ops.load(arg1_1, i3)
tmp2 = tmp0 * tmp1
return tmp2
,
ranges=[1, s1, s0, s0],
origin_node=mul,
origins={mul}
)), ComputedBuffer(name='buf1', layout=FixedLayout('cpu', torch.float32, size=[1, s1, s0, s0], stride=[s0**2*s1, s0**2, s0, 1]), data=Pointwise(
'cpu',
torch.float32,
def inner_fn(index):
_, i1, i2, i3 = index
tmp0 = ops.load(arg3_1, i3 + i1 * s0**2 + i2 * s0)
tmp1 = ops.load(arg4_1, i3)
tmp2 = tmp0 * tmp1
return tmp2
,
ranges=[1, s1, s0, s0],
origin_node=mul_1,
origins={mul_1}
)), ComputedBuffer(name='buf2', layout=FixedLayout('cpu', torch.float32, size=[1, s1, s0, s0], stride=[s0**2*s1, s0**2, s0, 1]), data=Pointwise(
'cpu',
torch.float32,
def inner_fn(index):
_, i1, i2, i3 = index
tmp0 = ops.load(buf0, i3 + i1 * s0**2 + i2 * s0)
tmp1 = ops.load(buf1, i3 + i1 * s0**2 + i2 * s0)
tmp2 = tmp0 + tmp1
return tmp2
,
ranges=[1, s1, s0, s0],
origin_node=add,
origins={add}
))]
graph_lowering_obj.scheduler: [FusedSchedulerNode(nodes=buf0_buf1), SchedulerNode(name='buf2')]
```
Output on this PR:
```
graph_lowering_obj.buffers: [ComputedBuffer(name='buf0', layout=FixedLayout('cpu', torch.float32, size=[1, s1, s0, s0], stride=[s0**2*s1, s0**2, s0, 1]), data=Pointwise(
'cpu',
torch.float32,
def inner_fn(index):
_, i1, i2, i3 = index
tmp0 = ops.load(arg3_1, i3 + i1 * s0**2 + i2 * s0)
tmp1 = ops.load(arg1_1, i3)
tmp2 = tmp0 * tmp1
return tmp2
,
ranges=[1, s1, s0, s0],
origin_node=mul,
origins={mul}
)), ComputedBuffer(name='buf1', layout=FixedLayout('cpu', torch.float32, size=[1, s1, s0, s0], stride=[s0**2*s1, s0**2, s0, 1]), data=Pointwise(
'cpu',
torch.float32,
def inner_fn(index):
_, i1, i2, i3 = index
tmp0 = ops.load(arg3_1, i3 + i1 * s0**2 + i2 * s0)
tmp1 = ops.load(arg4_1, i3)
tmp2 = tmp0 * tmp1
return tmp2
,
ranges=[1, s1, s0, s0],
origin_node=mul_1,
origins={mul_1}
)), ComputedBuffer(name='buf2', layout=FixedLayout('cpu', torch.float32, size=[1, s1, s0, s0], stride=[s0**2*s1, s0**2, s0, 1]), data=Pointwise(
'cpu',
torch.float32,
def inner_fn(index):
_, i1, i2, i3 = index
tmp0 = ops.load(buf0, i3 + i1 * s0**2 + i2 * s0)
tmp1 = ops.load(buf1, i3 + i1 * s0**2 + i2 * s0)
tmp2 = tmp0 + tmp1
return tmp2
,
ranges=[1, s1, s0, s0],
origin_node=add,
origins={add}
))]
graph_lowering_obj.scheduler: [FusedSchedulerNode(nodes=buf0_buf1_buf2)]
```
Context:
While working on https://github.com/pytorch/pytorch/pull/120411, upsampling bicubic decomposition, I saw an extra for-loop in C++ generated code summing up two buffers. Exploring the cause, it happend due to buffer number of ops goes beyond `config.realize_opcount_threshold`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120077
Approved by: https://github.com/jgong5, https://github.com/lezcano, https://github.com/peterbell10
2438 lines
90 KiB
Python
2438 lines
90 KiB
Python
import collections
|
|
import dataclasses
|
|
import functools
|
|
import itertools
|
|
import logging
|
|
import math
|
|
import operator
|
|
import os
|
|
import pprint
|
|
import textwrap
|
|
from typing import (
|
|
Any,
|
|
Counter,
|
|
DefaultDict,
|
|
Dict,
|
|
Generic,
|
|
List,
|
|
Optional,
|
|
Sequence,
|
|
Set,
|
|
Tuple,
|
|
TypeVar,
|
|
Union,
|
|
)
|
|
|
|
import sympy
|
|
|
|
import torch
|
|
from torch._dynamo.utils import dynamo_timed
|
|
from torch._inductor.metrics import get_metric_table, is_metric_table_enabled
|
|
from torch.utils._triton import has_triton
|
|
|
|
from . import comms, config, dependencies, ir, metrics
|
|
from .codegen.common import get_scheduling_for_device, Kernel
|
|
from .comm_analysis import estimate_nccl_collective_runtime
|
|
from .dependencies import Dep, MemoryDep, StarDep, WeakDep
|
|
from .ir import ComputedBuffer, MultiOutput, MultiOutputLayout
|
|
from .sizevars import SimplifyIndexing
|
|
from .utils import (
|
|
cache_on_self,
|
|
cmp,
|
|
free_symbol_has,
|
|
get_device_tflops,
|
|
get_dtype_size,
|
|
get_gpu_dram_gbps,
|
|
green_text,
|
|
is_collective,
|
|
is_wait,
|
|
red_text,
|
|
sympy_product,
|
|
)
|
|
from .virtualized import V
|
|
|
|
|
|
log = logging.getLogger(__name__)
|
|
fusion_log = torch._logging.getArtifactLogger(__name__, "fusion")
|
|
|
|
|
|
class WhyNoFuse:
|
|
# TODO when we drop support for Python < 3.10, we can use
|
|
# @dataclass(slots=True) instead of manually specifying __slots__.
|
|
__slots__ = ["node1", "node2", "reason", "args"]
|
|
reason: str
|
|
args: Tuple[Any, ...]
|
|
|
|
def __init__(self, node1: "BaseSchedulerNode", node2: "BaseSchedulerNode"):
|
|
self.node1 = node1
|
|
self.node2 = node2
|
|
|
|
def __call__(self, reason, *args):
|
|
self.reason = reason
|
|
self.args = args
|
|
fusion_log.debug(self)
|
|
|
|
def __str__(self):
|
|
return f"cannot fuse {self.node1.get_name()} with {self.node2.get_name()}: " + (
|
|
self.reason % self.args
|
|
)
|
|
|
|
|
|
def pformat(obj):
|
|
if isinstance(obj, set):
|
|
# pformat has trouble with sets of sympy exprs
|
|
obj = sorted(obj, key=str)
|
|
result = pprint.pformat(obj, indent=4)
|
|
if "\n" in result:
|
|
return f"\n{textwrap.indent(result, ' '*4)}"
|
|
return result
|
|
|
|
|
|
class OutputNode:
|
|
def __init__(self, dep):
|
|
self.unmet_dependencies = {dep}
|
|
self.inverse_users = []
|
|
|
|
def is_reduction(self):
|
|
return False
|
|
|
|
def get_alias_names(self):
|
|
return ()
|
|
|
|
def get_name(self):
|
|
return "OUTPUT"
|
|
|
|
__repr__ = get_name
|
|
|
|
|
|
def _prune_redundant_deps(node, name_to_fused_node):
|
|
"""
|
|
Prunes weakdeps intended for mutation ordering
|
|
on an upstream fused node if after fusion there is another dependency
|
|
on the fused upstream node, making the weakdep redundant
|
|
|
|
In essence this enforces an ordering on fusions. As fusions occur, weakdeps will
|
|
be incrementally removed, enabling other fusions, ensuring they are fused in order.
|
|
"""
|
|
name_to_dep_count: Counter[str] = collections.Counter()
|
|
|
|
for dep in node.unmet_dependencies:
|
|
if not isinstance(dep, WeakDep):
|
|
name_to_dep_count[name_to_fused_node[dep.name].get_name()] += 1
|
|
|
|
def should_prune(dep):
|
|
if isinstance(dep, WeakDep):
|
|
is_redundant = (
|
|
name_to_dep_count[name_to_fused_node[dep.name].get_name()] > 0
|
|
)
|
|
# These can occur because fused nodes always gather deps from their snodes
|
|
# If B has a weakdep on A
|
|
# B gets fused with C, then any time BC is fused, the weakdep will reappear
|
|
is_self_dep = name_to_fused_node[dep.name] == node
|
|
return is_redundant or is_self_dep
|
|
else:
|
|
return False
|
|
|
|
deps_to_prune = {dep for dep in node.unmet_dependencies if should_prune(dep)}
|
|
|
|
if deps_to_prune:
|
|
node.unmet_dependencies = node.unmet_dependencies - deps_to_prune
|
|
node.set_read_writes(node.read_writes.remove_reads(deps_to_prune))
|
|
|
|
|
|
# TODO(xmfan): reuse an existing mapping for this if it exists, or formalize this into ir.py:ExternKernel
|
|
kernel_name_to_op = {
|
|
"extern_kernels.convolution": torch.ops.aten.convolution,
|
|
"extern_kernels.mm": torch.ops.aten.mm,
|
|
"extern_kernels.bmm": torch.ops.aten.bmm,
|
|
"extern_kernels.addmm": torch.ops.aten.addmm,
|
|
}
|
|
|
|
|
|
class BaseSchedulerNode:
|
|
def __init__(self, scheduler: "Scheduler", node: ir.Buffer):
|
|
self.scheduler: Scheduler = scheduler
|
|
self.node: ir.Buffer = node
|
|
self.users: List[NodeUser] = []
|
|
self.inverse_users: List[BaseSchedulerNode] = []
|
|
self.node_users: List[BaseSchedulerNode] = []
|
|
self.set_read_writes(node.get_read_writes())
|
|
self.ancestors: Set[str] = set()
|
|
self.min_order: int
|
|
self.max_order: int
|
|
self.last_usage: Set[
|
|
str
|
|
] = set() # buffers that won't be used after this kernel
|
|
self.written = False
|
|
|
|
def __repr__(self):
|
|
return f"{type(self).__name__}(name={self.get_name()!r})"
|
|
|
|
def debug_str(self) -> str:
|
|
"""Longer form printout for trace logs"""
|
|
name = self.get_name()
|
|
lines = [
|
|
f"{name}: {type(self).__name__}({type(getattr(self, 'node', None)).__name__})",
|
|
f"{name}.writes = {pformat(self.read_writes.writes)}",
|
|
f"{name}.unmet_dependencies = {pformat(self.unmet_dependencies)}",
|
|
f"{name}.met_dependencies = {pformat(self.read_writes.reads - self.unmet_dependencies)}",
|
|
f"{name}.users = {self.users}",
|
|
]
|
|
try:
|
|
lines += [
|
|
self.debug_str_extra(),
|
|
]
|
|
except Exception:
|
|
log.warning("Ignoring error in debug_str()", exc_info=True)
|
|
|
|
return "\n".join(lines).rstrip()
|
|
|
|
def debug_str_extra(self) -> str:
|
|
return ""
|
|
|
|
def log_details(self):
|
|
log.info(
|
|
"%s: unmet_dependencies = %s, writes = %s",
|
|
self,
|
|
self.unmet_dependencies,
|
|
self.read_writes.writes,
|
|
)
|
|
|
|
def update_mutated_names(self, renames: Dict[str, str]):
|
|
self.set_read_writes(self.read_writes.rename(renames))
|
|
|
|
def add_mutation_dep(self, dep):
|
|
self.set_read_writes(self.read_writes.with_read(dep))
|
|
|
|
def add_fake_dep(self, dep):
|
|
self.set_read_writes(self.read_writes.with_read(dep))
|
|
|
|
def set_users(self, users: List["NodeUser"]):
|
|
# deduplicate
|
|
result: Dict[int, NodeUser] = {}
|
|
for use in users:
|
|
if id(use.node) in result:
|
|
result[id(use.node)] = use.merge(result[id(use.node)])
|
|
else:
|
|
result[id(use.node)] = use
|
|
self.users = list(result.values())
|
|
|
|
def set_last_usage(
|
|
self, future_used_buffers: Set[str], mutation_real_name: Dict[str, str]
|
|
):
|
|
used_buffers = self.used_or_aliased_buffer_names()
|
|
used_buffers = {mutation_real_name.get(k, k) for k in used_buffers}
|
|
self.last_usage = used_buffers - future_used_buffers
|
|
|
|
def get_aliases(self):
|
|
return self.node.get_alias_names()
|
|
|
|
def get_mutations(self):
|
|
return self.node.get_mutation_names()
|
|
|
|
def has_aliasing_or_mutation(self):
|
|
return bool(self.get_aliases() or self.get_mutations())
|
|
|
|
def set_read_writes(self, rw: dependencies.ReadWrites):
|
|
self.read_writes: dependencies.ReadWrites = rw
|
|
self.unmet_dependencies = self.read_writes.reads
|
|
self.prune_deps()
|
|
|
|
def op_counts(self):
|
|
return self.read_writes.op_counts
|
|
|
|
def used_buffer_names(self) -> Set[str]:
|
|
return {
|
|
dep.name
|
|
for dep in itertools.chain(self.read_writes.reads, self.read_writes.writes)
|
|
}
|
|
|
|
def used_or_aliased_buffer_names(self) -> Set[str]:
|
|
used_names = set()
|
|
|
|
for dep in itertools.chain(self.read_writes.reads, self.read_writes.writes):
|
|
used_names.add(dep.name)
|
|
if V.graph.name_to_buffer.get(dep.name):
|
|
layout = V.graph.name_to_buffer[dep.name].get_layout()
|
|
# needed to avoid deallocating aliased buffer
|
|
# if there are still uses of aliases ahead
|
|
if isinstance(layout, ir.AliasedLayout):
|
|
used_names.add(layout.view.data.get_name())
|
|
return used_names
|
|
|
|
def prune_deps(self):
|
|
self.unmet_dependencies = {
|
|
dep
|
|
for dep in self.unmet_dependencies
|
|
if dep.name not in self.scheduler.available_buffer_names
|
|
}
|
|
|
|
def prune_weak_deps(self):
|
|
# Prune weak dependencies on buffers that have been removed
|
|
def should_prune(dep):
|
|
return isinstance(dep, WeakDep) and dep.name in V.graph.removed_buffers
|
|
|
|
to_remove = {dep for dep in self.read_writes.reads if should_prune(dep)}
|
|
self.set_read_writes(self.read_writes.remove_reads(to_remove))
|
|
|
|
def prune_redundant_deps(self, name_to_fused_node):
|
|
_prune_redundant_deps(self, name_to_fused_node)
|
|
|
|
def get_name(self) -> str:
|
|
return self.node.get_name()
|
|
|
|
def get_first_name(self) -> str:
|
|
return self.get_name()
|
|
|
|
def get_names(self) -> Set[str]:
|
|
return {self.get_name()}
|
|
|
|
def get_nodes(self) -> Sequence["BaseSchedulerNode"]:
|
|
return [self]
|
|
|
|
def get_device(self):
|
|
return self.node.get_device()
|
|
|
|
def is_reduction(self):
|
|
return False
|
|
|
|
def is_split_scan(self):
|
|
return False
|
|
|
|
def is_template(self):
|
|
return False
|
|
|
|
def is_extern(self):
|
|
return False
|
|
|
|
def is_foreach(self):
|
|
return False
|
|
|
|
def can_inplace(self, read_dep: dependencies.MemoryDep):
|
|
return False
|
|
|
|
def has_side_effects(self):
|
|
return False
|
|
|
|
def decide_inplace_update(self):
|
|
"""
|
|
Decide if there should be inplace updates for the node
|
|
and record the decision in the active kernel.
|
|
"""
|
|
if not self.node.should_allocate():
|
|
return
|
|
|
|
if isinstance(self, (SchedulerNode,)) and (
|
|
self.node.get_alias_names() or self.node.get_mutation_names()
|
|
):
|
|
return
|
|
|
|
if (
|
|
(
|
|
isinstance(self, (SchedulerNode,))
|
|
# o what have i done. lets make this an api
|
|
or (
|
|
isinstance(self, ExternKernelSchedulerNode)
|
|
and isinstance(self.node, (ir.AllReduce, ir.InPlaceHint))
|
|
)
|
|
)
|
|
and config.inplace_buffers
|
|
and (
|
|
not isinstance(V.kernel, torch._inductor.codegen.triton.TritonKernel)
|
|
or getattr(V.kernel, "mutations", None) is not None
|
|
)
|
|
):
|
|
from .codegen.wrapper import buffer_reuse_key
|
|
|
|
ordered_reads = sorted(self.read_writes.reads, key=lambda x: x.name)
|
|
|
|
for read in ordered_reads:
|
|
input_node: Optional[
|
|
BaseSchedulerNode
|
|
] = self.scheduler.name_to_node.get(read.name)
|
|
if input_node and V.graph.wrapper_code.can_reuse(input_node, self):
|
|
assert input_node.users is not None
|
|
remaining_uses = [
|
|
x
|
|
for x in input_node.users
|
|
if x.node.get_name()
|
|
not in self.scheduler.available_buffer_names
|
|
]
|
|
if (
|
|
len(remaining_uses) == 1
|
|
and remaining_uses[0].can_inplace
|
|
and remaining_uses[0].node is self
|
|
and not isinstance(
|
|
input_node.node.get_layout(),
|
|
(
|
|
ir.MultiOutputLayout,
|
|
ir.MutationLayout,
|
|
ir.AliasedLayout,
|
|
),
|
|
)
|
|
and not (
|
|
isinstance(
|
|
input_node.node, (ir.FallbackKernel, ir.MultiOutput)
|
|
)
|
|
and len(input_node.node.get_alias_names()) > 0
|
|
)
|
|
and buffer_reuse_key(input_node.node)
|
|
== buffer_reuse_key(self.node)
|
|
):
|
|
# hacky check for if V.kernel is a real kernel or NullHandler
|
|
if hasattr(V.kernel, "args"):
|
|
# if there isn't a triton kernel, then we don't need to call triton-specific things.
|
|
# but TODO this might be a convenient place to signal to the Collective kernels to inplace
|
|
# (and, can we make "kernel" less generic of a name?)
|
|
V.kernel.args.make_inplace(
|
|
input_node.get_name(), self.get_name()
|
|
)
|
|
# mutations not tracked in cpp kernels
|
|
if isinstance(
|
|
V.kernel, torch._inductor.codegen.triton.TritonKernel
|
|
):
|
|
V.kernel.mutations.add(input_node.get_name())
|
|
V.kernel.mutations.add(self.get_name())
|
|
|
|
# update last usage of reused node
|
|
self.last_usage.discard(input_node.get_name())
|
|
|
|
V.kernel.inplace_update_buffers[
|
|
self.get_name()
|
|
] = input_node.get_name()
|
|
break
|
|
|
|
def allocate(self):
|
|
if not self.node.should_allocate():
|
|
return
|
|
|
|
if isinstance(self, (SchedulerNode,)) and (
|
|
self.node.get_alias_names() or self.node.get_mutation_names()
|
|
):
|
|
V.graph.wrapper_code.codegen_allocation(self.node)
|
|
return
|
|
|
|
# hacky check for if V.kernel is a real kernel or NullHandler
|
|
if (
|
|
hasattr(V.kernel, "args")
|
|
and self.get_name() in V.kernel.inplace_update_buffers
|
|
):
|
|
V.graph.wrapper_code.codegen_inplace_reuse(
|
|
self.scheduler.name_to_node[
|
|
V.kernel.inplace_update_buffers[self.get_name()]
|
|
].node,
|
|
self.node,
|
|
)
|
|
else:
|
|
V.graph.wrapper_code.codegen_allocation(self.node)
|
|
|
|
def can_free(self):
|
|
# There's no real allocated buffer, no need to free it
|
|
if isinstance(self.node.layout, ir.NoneLayout):
|
|
return False
|
|
for use in self.users:
|
|
if isinstance(use.node, OutputNode):
|
|
return False
|
|
return True
|
|
|
|
def codegen_originating_info(self, buffer, only_once=True):
|
|
if not config.comment_origin:
|
|
return
|
|
|
|
if only_once and self.written:
|
|
return
|
|
origins = self.node.origins
|
|
out_lines = []
|
|
|
|
for o in origins:
|
|
if o.op == "output":
|
|
# These are boring and samey
|
|
continue
|
|
|
|
out_lines.append("")
|
|
# TODO(voz): Should the pragma be constant somewhere?
|
|
out_lines.append("#pragma CMT ORIGIN:")
|
|
op_info_str = f"#pragma CMT {o.op} {o.target}"
|
|
if "seq_nr" in o.meta:
|
|
op_info_str = op_info_str + f" seq_nr:{o.meta['seq_nr']}"
|
|
out_lines.append(op_info_str)
|
|
if "stack_trace" in o.meta:
|
|
stack_trace = f"{o.meta['stack_trace']}"
|
|
stack_trace_last_line = stack_trace.split("|")[-1]
|
|
out_lines.append(
|
|
"#pragma CMT "
|
|
+ stack_trace_last_line.replace("{", "{{")
|
|
.replace("}", "}}")
|
|
.replace("\n", "\\")
|
|
)
|
|
out_lines.append("#pragma CMT END ORIGIN")
|
|
out_lines.append("")
|
|
|
|
if len(out_lines) == 0:
|
|
return
|
|
|
|
# TODO(voz): Ostensibly, we should not need this. But there are cases where C++ codegen does
|
|
# not use BracesBuffer, so we have no good indicator of a C++ buffer atm.
|
|
buffer.writelines(out_lines)
|
|
self.written = True
|
|
|
|
def get_read_write_buffers_sizes(self) -> int:
|
|
"""
|
|
Counting the number of bytes accessed for a kernel is
|
|
surprisingly tricky. In particular, there is a differentiation
|
|
between 'theoretical' memory accesses and practical memory
|
|
accesses. For example, a layernorm kernel may actually access an
|
|
input 3 times, but in theory, it only needs to access its input
|
|
once (and may be optimized to do so through say, persistent
|
|
reductions)
|
|
|
|
Another example is that even though a buffer is passed in, we may
|
|
not access the entire buffer. This may occur if we are accessing
|
|
a slice of the buffer. Another tricky case is for indirect
|
|
indexing, where the amount of bytes accessed depends on the
|
|
values of the input.
|
|
|
|
What this function aims to compute is the memory accesses for
|
|
worst-case inputs, best-case optimization. What this means is
|
|
that for each buffer we compute the amount of potential accesses in two ways and take the minimum.
|
|
|
|
1. Numel in ranges multiplied by number of deps the buffer has
|
|
2. The buffer size
|
|
"""
|
|
if isinstance(self, NopKernelSchedulerNode):
|
|
return 0
|
|
if isinstance(self, ExternKernelSchedulerNode) and isinstance(
|
|
self.node, MultiOutput
|
|
):
|
|
return 0
|
|
|
|
if isinstance(self, SchedulerNode):
|
|
node_numel = V.graph.sizevars.size_hint(
|
|
sympy_product(self.get_ranges()[0])
|
|
* sympy_product(self.get_ranges()[1])
|
|
)
|
|
else:
|
|
node_numel = int(1e9)
|
|
buf_accesses = collections.defaultdict(list)
|
|
for dep in self.read_writes.reads | self.read_writes.writes:
|
|
buf_accesses[dep.name].append(dep)
|
|
|
|
reads = {dep.name for dep in self.read_writes.reads}
|
|
writes = {dep.name for dep in self.read_writes.writes}
|
|
|
|
def is_materialized(buf, snodes):
|
|
users = self.scheduler.name_to_node[buf].users
|
|
buf_uses = {user.node for user in users}
|
|
return len(buf_uses - set(snodes)) > 0
|
|
|
|
if isinstance(self, FusedSchedulerNode):
|
|
removed_buffers = {
|
|
dep for dep in writes if not is_materialized(dep, self.snodes)
|
|
}
|
|
writes = writes - removed_buffers
|
|
reads = reads - removed_buffers
|
|
node_bytes = 0
|
|
|
|
for buf_name in reads | writes:
|
|
buf_accessed_elems = sum([node_numel for dep in buf_accesses[buf_name]])
|
|
buf: Union[ir.Buffer, ir.TensorBox]
|
|
if buf_name in V.graph.name_to_buffer:
|
|
buf = V.graph.name_to_buffer[buf_name]
|
|
elif buf_name in V.graph.graph_inputs:
|
|
buf = V.graph.graph_inputs[buf_name]
|
|
else:
|
|
continue
|
|
|
|
def get_buf_elems(buf):
|
|
return V.graph.sizevars.size_hint(sympy_product(buf.get_size()))
|
|
|
|
# Kind of a lazy way to get the MultiOutput nodes corresponding to
|
|
# a MultiOutputLayout
|
|
if isinstance(buf.layout, MultiOutputLayout):
|
|
users = self.scheduler.name_to_node[buf.get_name()].users
|
|
buf_elems = sum(get_buf_elems(user.node.node) for user in users)
|
|
else:
|
|
buf_elems = get_buf_elems(buf)
|
|
|
|
node_bytes += min(buf_elems, buf_accessed_elems) * get_dtype_size(
|
|
buf.get_dtype()
|
|
)
|
|
|
|
return node_bytes
|
|
|
|
def get_estimated_runtime(self) -> float:
|
|
"""
|
|
Returns estimated op runtime in nanoseconds (ns)
|
|
"""
|
|
layout = None
|
|
dtype = None
|
|
if not hasattr(self, "node") or not self.node:
|
|
assert isinstance(
|
|
self, (FusedSchedulerNode, ForeachKernelSchedulerNode)
|
|
), f"{type(self)=}"
|
|
assert self.snodes
|
|
if not self.snodes[0].node:
|
|
return 0
|
|
layout = self.snodes[0].node.get_layout()
|
|
dtype = self.snodes[0].node.get_dtype()
|
|
else:
|
|
layout = self.node.get_layout()
|
|
dtype = self.node.get_dtype()
|
|
|
|
if "cuda" != layout.device.type:
|
|
# default to no reordering based on runtime
|
|
return 0
|
|
|
|
# Collective kernels
|
|
if is_collective(self.node):
|
|
return estimate_nccl_collective_runtime(self.node)
|
|
elif is_wait(self.node):
|
|
# ir.Wait is only used for collective ops.
|
|
# The time needed for the collective op is already estimated and considered
|
|
# when we are processing the collective op IR node, so ir.Wait takes 0 time
|
|
# since it doesn't take extra time to get the result after the collective is completed.
|
|
return 0
|
|
|
|
try:
|
|
gpu_memory_bandwidth = get_gpu_dram_gbps()
|
|
gpu_flops = get_device_tflops(dtype) * 10**12
|
|
except Exception:
|
|
return 0
|
|
|
|
if isinstance(self, ExternKernelSchedulerNode):
|
|
assert isinstance(self.node, ir.ExternKernel), f"{type(self.node)=}"
|
|
op = kernel_name_to_op.get(
|
|
getattr(self.node, "python_kernel_name", ""), None
|
|
)
|
|
|
|
# if there is a resolved op, dry-run using fake mode and record flop count
|
|
if op is not None:
|
|
from torch._subclasses.fake_tensor import FakeTensorMode
|
|
from torch.utils.flop_counter import FlopCounterMode
|
|
|
|
with FakeTensorMode(), FlopCounterMode(
|
|
display=False
|
|
) as flop_counter_mode:
|
|
from .ir import ir_node_to_tensor
|
|
|
|
fake_inputs = [
|
|
ir_node_to_tensor(input, guard_shape=False)
|
|
for input in self.node.inputs
|
|
]
|
|
cls = self.node.__class__
|
|
cls.process_kernel(op, *fake_inputs, **self.node.kwargs)
|
|
|
|
# TODO(xmfan): find a better heuristic to model FLOPS/latency relationship
|
|
factor = 1.0
|
|
counted_flops = flop_counter_mode.get_total_flops()
|
|
counted_bytes = self.get_read_write_buffers_sizes()
|
|
compute_time = (factor * counted_flops / gpu_flops) * 1e9
|
|
transfer_time = counted_bytes / gpu_memory_bandwidth
|
|
|
|
# Return estimated runtime in nanoseconds
|
|
return max(compute_time, transfer_time)
|
|
|
|
elif isinstance(self, FusedSchedulerNode) or isinstance(
|
|
self.node, ComputedBuffer
|
|
):
|
|
# Return estimated runtime in nanoseconds (bytes / gbps)
|
|
return self.get_read_write_buffers_sizes() / gpu_memory_bandwidth
|
|
|
|
return 0
|
|
|
|
|
|
class ExternKernelSchedulerNode(BaseSchedulerNode):
|
|
def debug_str_extra(self) -> str:
|
|
return f"{self.get_name()}.node.kernel = {getattr(self.node, 'python_kernel_name', None)}"
|
|
|
|
def is_extern(self):
|
|
return True
|
|
|
|
def has_side_effects(self):
|
|
return hasattr(self.node, "has_side_effects") and self.node.has_side_effects()
|
|
|
|
def can_inplace(self, read_dep: dependencies.MemoryDep):
|
|
if self.get_aliases() or self.is_template():
|
|
return False
|
|
|
|
if read_dep.name not in self.scheduler.name_to_node:
|
|
# don't allow reuse of an 'input' buffer, we don't own it
|
|
# (would this have been fixed if I tracked mutations properly above?)
|
|
return False
|
|
if not isinstance(
|
|
self.node, (torch._inductor.ir.AllReduce, torch._inductor.ir.InPlaceHint)
|
|
):
|
|
# TODO make this a property of the IR
|
|
return False
|
|
|
|
if len(self.read_writes.writes) == 1:
|
|
write_dep = next(iter(self.read_writes.writes))
|
|
numel_diff = read_dep.get_numel() - write_dep.get_numel()
|
|
return V.graph.sizevars.simplify(numel_diff) == 0
|
|
|
|
return False
|
|
|
|
|
|
class NopKernelSchedulerNode(BaseSchedulerNode):
|
|
pass
|
|
|
|
|
|
class SchedulerNode(BaseSchedulerNode):
|
|
def __init__(
|
|
self,
|
|
scheduler: "Scheduler",
|
|
node: Union[ir.ComputedBuffer, ir.TemplateBuffer],
|
|
):
|
|
super().__init__(scheduler, node)
|
|
self._compute_attrs()
|
|
|
|
def _compute_attrs(
|
|
self,
|
|
extra_indexing_constraints: Optional[Tuple[Dict[Any, Any], List[Any]]] = None,
|
|
):
|
|
assert isinstance(self.node, (ir.ComputedBuffer, ir.TemplateBuffer))
|
|
self._sizes, self._body = self.node.simplify_and_reorder(
|
|
extra_indexing_constraints=extra_indexing_constraints
|
|
)
|
|
|
|
group_fn = self.scheduler.get_backend(self.node.get_device()).group_fn
|
|
self.group = (self.node.get_device(), group_fn(self._sizes))
|
|
|
|
if isinstance(self.node, ir.TemplateBuffer):
|
|
self.set_read_writes(self.node.normalized_read_writes())
|
|
else:
|
|
self.set_read_writes(
|
|
dependencies.extract_read_writes(
|
|
self._body, *self._sizes, normalize=True
|
|
)
|
|
)
|
|
|
|
def recompute_size_and_body(
|
|
self, extra_indexing_constraints: Tuple[Dict[Any, Any], List[Any]]
|
|
):
|
|
self._compute_attrs(extra_indexing_constraints=extra_indexing_constraints)
|
|
|
|
def debug_str_extra(self) -> str:
|
|
name = self.get_name()
|
|
lines = [
|
|
f"{name}.group.device = {self.group[0]}",
|
|
f"{name}.group.iteration = {self.group[1]}",
|
|
f"{name}.sizes = {self._sizes}",
|
|
]
|
|
if self.get_aliases():
|
|
lines.append(f"{name}.aliases = {pformat(self.get_aliases())}")
|
|
if self.get_mutations():
|
|
lines.append(f"{name}.mutations = {pformat(self.get_mutations())}")
|
|
if isinstance(self._body, ir.LoopBody):
|
|
lines.append(f"class {name}_loop_body:")
|
|
lines.append(textwrap.indent(self._body.debug_str(), " "))
|
|
return "\n".join(lines)
|
|
|
|
def get_ranges(self):
|
|
return self._sizes
|
|
|
|
def is_reduction(self):
|
|
assert isinstance(
|
|
self.node, (ir.ComputedBuffer, ir.TemplateBuffer)
|
|
), f"{type(self.node)=}"
|
|
return bool(self.node.get_reduction_type())
|
|
|
|
def is_split_scan(self):
|
|
assert isinstance(
|
|
self.node, (ir.ComputedBuffer, ir.TemplateBuffer)
|
|
), f"{type(self.node)=}"
|
|
return isinstance(self.node, ir.ComputedBuffer) and isinstance(
|
|
self.node.data, ir.SplitScan
|
|
)
|
|
|
|
def is_template(self):
|
|
return isinstance(self.node, ir.TemplateBuffer)
|
|
|
|
def run(self, *index_vars):
|
|
self.decide_inplace_update()
|
|
self.mark_run()
|
|
self.codegen(index_vars)
|
|
|
|
def mark_run(self):
|
|
self.allocate()
|
|
|
|
def ranges_from_index_vars(self, index_vars):
|
|
sizes = self._sizes
|
|
assert sum(map(len, sizes)) == sum(map(len, index_vars))
|
|
var_ranges = dict(
|
|
zip(
|
|
itertools.chain.from_iterable(index_vars),
|
|
itertools.chain.from_iterable(sizes),
|
|
)
|
|
)
|
|
return var_ranges
|
|
|
|
def codegen(self, index_vars):
|
|
var_ranges = self.ranges_from_index_vars(index_vars)
|
|
try:
|
|
with V.set_ops_handler(
|
|
SimplifyIndexing(V.get_ops_handler(), var_ranges)
|
|
), V.kernel.set_current_node(self):
|
|
self._body(*index_vars)
|
|
except Exception:
|
|
log.fatal("Error in codegen for %s", self.node)
|
|
raise
|
|
|
|
def pointwise_read_writes(self):
|
|
"""
|
|
Get the memory dependencies in the non-reduction axis.
|
|
"""
|
|
sizes, reduction_sizes = self._sizes
|
|
|
|
def fn(index):
|
|
return self._body(index, [sympy.Integer(0) for _ in reduction_sizes])
|
|
|
|
return dependencies.extract_read_writes(fn, sizes)
|
|
|
|
def can_inplace(self, read_dep: dependencies.MemoryDep):
|
|
if self.get_aliases() or self.is_template():
|
|
return False
|
|
if len(self.read_writes.writes) == 1 and isinstance(
|
|
read_dep, dependencies.MemoryDep
|
|
):
|
|
write_dep = next(iter(self.read_writes.writes))
|
|
assert isinstance(write_dep, dependencies.MemoryDep), f"{type(write_dep)=}"
|
|
return read_dep.index == write_dep.index and read_dep.size == write_dep.size
|
|
return False
|
|
|
|
@cache_on_self
|
|
def _get_atomic_add_buffers(self) -> Set[str]:
|
|
buffers_store_as_atomic_add = set()
|
|
if isinstance(self._body, ir.LoopBody):
|
|
for node in self._body.get_nodes():
|
|
if (
|
|
node.op == "call_method"
|
|
and node.target == "store"
|
|
and (
|
|
("mode" in node.kwargs and node.kwargs["mode"] == "atomic_add")
|
|
or (len(node.args) == 5 and node.args[4] == "atomic_add")
|
|
)
|
|
):
|
|
buffers_store_as_atomic_add.add(
|
|
node.kwargs["name"]
|
|
if "name" in node.kwargs
|
|
else (node.args[1] if len(node.args) >= 2 else "")
|
|
)
|
|
return buffers_store_as_atomic_add
|
|
|
|
def has_atomic_add(self, check_buf):
|
|
return check_buf in self._get_atomic_add_buffers()
|
|
|
|
|
|
class FusedSchedulerNode(BaseSchedulerNode):
|
|
"""
|
|
This is a "fake" scheduler node that represents a group of scheduler nodes
|
|
that are meant to be fused together. The way it does this is by maintaining
|
|
its unmet dependencies as the union of its constituent nodes.
|
|
"""
|
|
|
|
@classmethod
|
|
def fuse(cls, node1: BaseSchedulerNode, node2: BaseSchedulerNode):
|
|
assert node1.scheduler is node2.scheduler
|
|
assert isinstance(node1, (SchedulerNode, FusedSchedulerNode)) and isinstance(
|
|
node2, (SchedulerNode, FusedSchedulerNode)
|
|
)
|
|
return cls(node1.scheduler, list(node1.get_nodes()) + list(node2.get_nodes())) # type: ignore[arg-type]
|
|
|
|
def __init__(self, scheduler: "Scheduler", snodes: List[SchedulerNode]):
|
|
# NB: No need to call super().__init__() because we don't need to re-use any of its logic.
|
|
self.snodes = snodes
|
|
self.scheduler = scheduler
|
|
self.node: ir.Buffer = None # type: ignore[assignment]
|
|
self.users: List[NodeUser] = []
|
|
self.inverse_users = []
|
|
self.node_users = []
|
|
self.group = max(snodes, key=lambda x: int(x.is_reduction())).group
|
|
self.ancestors = set.union(
|
|
*[x.ancestors for x in snodes if x.ancestors is not None]
|
|
)
|
|
|
|
self.set_read_writes(
|
|
dependencies.ReadWrites.merge_list([x.read_writes for x in snodes])
|
|
)
|
|
|
|
self.unmet_dependencies = {
|
|
dep
|
|
for dep in set.union(*[x.unmet_dependencies for x in snodes])
|
|
if dep.name not in self.get_names()
|
|
} - self.read_writes.writes
|
|
self.min_order = min([x.min_order for x in self.snodes])
|
|
self.max_order = max([x.max_order for x in self.snodes])
|
|
|
|
@cache_on_self
|
|
def get_name(self) -> str:
|
|
return "_".join([x.get_name() for x in self.snodes])
|
|
|
|
def get_first_name(self) -> str:
|
|
return self.snodes[0].get_name()
|
|
|
|
@cache_on_self
|
|
def get_names(self) -> Set[str]:
|
|
return set.union(*[x.get_names() for x in self.snodes])
|
|
|
|
def debug_str_extra(self) -> str:
|
|
lines = [
|
|
f"{self.get_name()}.snodes[{i}] =\n{node.debug_str()}"
|
|
for i, node in enumerate(self.snodes)
|
|
]
|
|
return textwrap.indent("\n".join(lines).rstrip(), " ")
|
|
|
|
def set_last_usage(
|
|
self, future_used_buffers: Set[str], mutation_real_name: Dict[str, str]
|
|
):
|
|
# Set self.last_usage using the global information
|
|
# This will be used for inter-kernel optimisations
|
|
super().set_last_usage(future_used_buffers, mutation_real_name)
|
|
# Set self.last_usage on the snodes
|
|
# This will be used for optimisations within the kernel
|
|
future_used_buffers: Set[str] = set()
|
|
for node in reversed(self.snodes):
|
|
node.set_last_usage(future_used_buffers, mutation_real_name)
|
|
future_used_buffers.update(node.last_usage) # type: ignore[arg-type]
|
|
|
|
@cache_on_self
|
|
def used_buffer_names(self) -> Set[str]:
|
|
return set.union(*[x.used_buffer_names() for x in self.snodes])
|
|
|
|
@cache_on_self
|
|
def used_or_aliased_buffer_names(self) -> Set[str]:
|
|
return set.union(*[x.used_or_aliased_buffer_names() for x in self.snodes])
|
|
|
|
def get_nodes(self) -> List[SchedulerNode]:
|
|
return self.snodes
|
|
|
|
def __repr__(self):
|
|
return f"{type(self).__name__}(nodes={self.get_name()})"
|
|
|
|
@cache_on_self
|
|
def is_reduction(self):
|
|
return any(x.is_reduction() for x in self.snodes)
|
|
|
|
@cache_on_self
|
|
def is_split_scan(self):
|
|
return any(x.is_split_scan() for x in self.snodes)
|
|
|
|
@cache_on_self
|
|
def is_template(self):
|
|
return any(x.is_template() for x in self.snodes)
|
|
|
|
@cache_on_self
|
|
def get_template_node(self):
|
|
for node in self.snodes:
|
|
if node.is_template():
|
|
return node
|
|
return None
|
|
|
|
def get_device(self):
|
|
return self.group[0]
|
|
|
|
@cache_on_self
|
|
def has_aliasing_or_mutation(self):
|
|
return any(x.has_aliasing_or_mutation() for x in self.snodes)
|
|
|
|
@cache_on_self
|
|
def op_counts(self):
|
|
op_counts: Counter[str] = collections.Counter()
|
|
for node in self.snodes:
|
|
op_counts.update(node.op_counts())
|
|
return op_counts
|
|
|
|
def has_atomic_add(self, check_buf):
|
|
return any(
|
|
(
|
|
isinstance(sub_schedule_node1, SchedulerNode)
|
|
and sub_schedule_node1.has_atomic_add(check_buf)
|
|
)
|
|
for sub_schedule_node1 in self.get_nodes()
|
|
)
|
|
|
|
# None of these need to be implemented, as a FusedSchedulerNode is just an
|
|
# abstraction for scheduling purposes
|
|
def update_mutated_names(self, renames: Dict[str, str]):
|
|
raise NotImplementedError
|
|
|
|
def add_mutation_dep(self, name):
|
|
raise NotImplementedError
|
|
|
|
def set_users(self, users: List["NodeUser"]):
|
|
raise NotImplementedError
|
|
|
|
def get_aliases(self):
|
|
raise NotImplementedError
|
|
|
|
def get_mutations(self):
|
|
raise NotImplementedError
|
|
|
|
def can_inplace(self, read_dep: dependencies.MemoryDep):
|
|
raise NotImplementedError
|
|
|
|
def allocate(self):
|
|
raise NotImplementedError
|
|
|
|
def can_free(self):
|
|
raise NotImplementedError
|
|
|
|
def debug_str(self) -> str:
|
|
"""Longer form printout for trace logs"""
|
|
name = self.get_name()
|
|
node_typestr = ",".join(type(n).__name__ for n in self.snodes)
|
|
lines = [
|
|
f"{name}: {type(self).__name__}({node_typestr})",
|
|
f"{name}.writes = {pformat(self.read_writes.writes)}",
|
|
f"{name}.unmet_dependencies = {pformat(self.unmet_dependencies)}",
|
|
f"{name}.met_dependencies = {pformat(self.read_writes.reads - self.unmet_dependencies)}",
|
|
f"{name}.users = {self.users}",
|
|
]
|
|
try:
|
|
lines += [
|
|
self.debug_str_extra(),
|
|
]
|
|
except Exception:
|
|
log.warning("Ignoring error in debug_str()", exc_info=True)
|
|
|
|
return "\n".join(lines).rstrip()
|
|
|
|
|
|
class ForeachKernelSchedulerNode(FusedSchedulerNode):
|
|
"""Scheduler node which consists of a list of scheduler nodes that each operate on a
|
|
distinct tensor in a list of tensors."""
|
|
|
|
def get_consumer_subnode_for(self, producer):
|
|
if producer.get_name() in self.read_to_node:
|
|
return self.read_to_node[producer.get_name()]
|
|
|
|
return None
|
|
|
|
def get_producer_subnode_for(self, consumer):
|
|
for rd in consumer.read_writes.reads:
|
|
if rd.name in self.name_to_node:
|
|
return self.name_to_node[rd.name]
|
|
|
|
return None
|
|
|
|
@classmethod
|
|
def can_fuse(cls, producer, consumer):
|
|
why = WhyNoFuse(producer, consumer)
|
|
if producer.is_foreach() and consumer.is_foreach():
|
|
foreach_match = len(producer.snodes) == len(consumer.snodes)
|
|
if not foreach_match:
|
|
why("foreach do not have same length")
|
|
return foreach_match and all(
|
|
producer.scheduler.can_fuse(l, r)
|
|
for l, r in zip(producer.snodes, consumer.snodes)
|
|
)
|
|
elif consumer.is_foreach():
|
|
consumer_subnode = consumer.get_consumer_subnode_for(producer)
|
|
if consumer_subnode is not None:
|
|
return consumer.scheduler.can_fuse(producer, consumer_subnode)
|
|
|
|
why("candidate producer is not dep of any foreach consumer")
|
|
return False
|
|
|
|
elif producer.is_foreach():
|
|
producer_subnode = producer.get_producer_subnode_for(consumer)
|
|
if producer_subnode is not None:
|
|
return producer.scheduler.can_fuse(producer_subnode, consumer)
|
|
|
|
why("candidate consumer has no dep in any foreach producer")
|
|
return False
|
|
|
|
raise AssertionError(
|
|
"At least one node passed to ForeachKernelSchedulerNode.can_fuse should be a foreach node"
|
|
)
|
|
|
|
@classmethod
|
|
def fuse(cls, producer, consumer):
|
|
assert producer.is_foreach() or consumer.is_foreach()
|
|
prev_node_1 = None
|
|
prev_node_2 = None
|
|
if producer.is_foreach() and consumer.is_foreach():
|
|
fused_nodes = [
|
|
FusedSchedulerNode.fuse(l, r)
|
|
for l, r in zip(producer.snodes, consumer.snodes)
|
|
]
|
|
elif producer.is_foreach():
|
|
producer_subnode = producer.get_producer_subnode_for(consumer)
|
|
fused_nodes = []
|
|
prev_node_1 = producer
|
|
prev_node_2 = None
|
|
for node in producer.snodes:
|
|
if node is producer_subnode:
|
|
new_node = FusedSchedulerNode.fuse(node, consumer)
|
|
prev_node_2 = new_node
|
|
fused_nodes.append(new_node)
|
|
else:
|
|
fused_nodes.append(node)
|
|
|
|
elif consumer.is_foreach():
|
|
consumer_subnode = consumer.get_consumer_subnode_for(producer)
|
|
fused_nodes = []
|
|
prev_node_1 = consumer
|
|
prev_node_2 = None
|
|
|
|
for node in consumer.snodes:
|
|
if node is consumer_subnode:
|
|
new_node = FusedSchedulerNode.fuse(producer, node)
|
|
prev_node_2 = new_node
|
|
fused_nodes.append(new_node)
|
|
else:
|
|
fused_nodes.append(node)
|
|
|
|
return cls(producer.scheduler, fused_nodes, prev_node_1, prev_node_2) # type: ignore[possibly-undefined]
|
|
|
|
def __init__(
|
|
self,
|
|
scheduler: "Scheduler",
|
|
nodes: List[SchedulerNode],
|
|
prev_node_1=None,
|
|
prev_node_2=None,
|
|
):
|
|
self.read_to_node = {}
|
|
self.name_to_node = {}
|
|
|
|
if prev_node_1 is None or prev_node_2 is None:
|
|
super().__init__(scheduler, nodes)
|
|
|
|
for node in nodes:
|
|
for read in node.read_writes.reads:
|
|
self.read_to_node[read.name] = node
|
|
|
|
for name in node.get_names():
|
|
self.name_to_node[name] = node
|
|
else:
|
|
self.scheduler = scheduler
|
|
self.snodes = nodes
|
|
self.node: ir.Buffer = None # type: ignore[assignment]
|
|
self.users: List[NodeUser] = []
|
|
|
|
self.set_read_writes(
|
|
dependencies.ReadWrites.merge_list(
|
|
[prev_node_1.read_writes, prev_node_2.read_writes]
|
|
)
|
|
)
|
|
|
|
self.unmet_dependencies = {
|
|
dep
|
|
for dep in set.union(
|
|
prev_node_1.unmet_dependencies, prev_node_2.unmet_dependencies
|
|
)
|
|
if dep.name not in self.get_names()
|
|
} - self.read_writes.writes
|
|
|
|
self.min_order = min([prev_node_1.min_order, prev_node_2.min_order])
|
|
self.max_order = max([prev_node_1.max_order, prev_node_2.max_order])
|
|
|
|
foreach_node = prev_node_1 if prev_node_1.is_foreach() else prev_node_2
|
|
other_node = prev_node_2 if prev_node_1.is_foreach() else prev_node_1
|
|
|
|
self.ancestors = foreach_node.ancestors
|
|
self.ancestors.update(other_node.ancestors)
|
|
|
|
self.name_to_node = foreach_node.name_to_node
|
|
for name in other_node.get_names():
|
|
self.name_to_node[name] = other_node
|
|
|
|
self.group = (nodes[0].get_device(), "foreach")
|
|
|
|
self.origins: Set[torch.fx.Node] = set()
|
|
|
|
def mark_run(self):
|
|
raise NotImplementedError
|
|
|
|
def codegen(self):
|
|
assert isinstance(self.node, ir.ComputedBuffer), f"{type(self.node)=}"
|
|
self.node.get_store_function()(self.node.make_loader()())
|
|
|
|
def can_free(self):
|
|
return NotImplementedError
|
|
|
|
def is_foreach(self):
|
|
return True
|
|
|
|
def get_subkernel_nodes(self):
|
|
"""Returns a list of nodes which comprise the foreach kernel, operating on corresponding elements of our input lists.
|
|
These nodes may be vertically fused."""
|
|
return list(self.snodes)
|
|
|
|
def get_nodes(self):
|
|
"""Returns all nodes contained in this kernel, unpacking fused nodes into their constituent scheduler nodes."""
|
|
return list(itertools.chain.from_iterable(x.get_nodes() for x in self.snodes))
|
|
|
|
def get_first_name(self):
|
|
return self.snodes[0].get_first_name()
|
|
|
|
def prune_redundant_deps(self, name_to_fused_node):
|
|
_prune_redundant_deps(self, name_to_fused_node)
|
|
|
|
for node in self.snodes:
|
|
node.prune_redundant_deps(name_to_fused_node)
|
|
|
|
|
|
def pick_loop_order(stride_lengths, sizes, priority_idx=()):
|
|
"""
|
|
A heuristic to decide loop iteration orders. This has not been well
|
|
tuned and may be something we should autotune.
|
|
"""
|
|
|
|
@functools.cmp_to_key
|
|
def index_cmp(a, b):
|
|
if sizes[a] == 1 or sizes[b] == 1:
|
|
# 1-sizes don't matter, just move them to the end
|
|
return cmp(sizes[a] == 1, sizes[b] == 1)
|
|
|
|
stride_len_a = [sl[a] for sl in stride_lengths]
|
|
stride_len_b = [sl[b] for sl in stride_lengths]
|
|
|
|
# equivalent to
|
|
# np.logical_or(stride_lengths[:, b] == 0, stride_lengths[:, a] < stride_lengths[:, b]).all()
|
|
a_first = sum(
|
|
sl_b == 0 or sl_a < sl_b for sl_a, sl_b in zip(stride_len_a, stride_len_b)
|
|
)
|
|
b_first = sum(
|
|
sl_a == 0 or sl_b < sl_a for sl_a, sl_b in zip(stride_len_a, stride_len_b)
|
|
)
|
|
if a_first > b_first:
|
|
return -1
|
|
if b_first > a_first:
|
|
return 1
|
|
|
|
# otherwise contiguous
|
|
return cmp(b, a)
|
|
|
|
order = list(reversed(range(len(stride_lengths[0]))))
|
|
if len(priority_idx) > 0:
|
|
# if we have priority node, only use that node's order
|
|
stride_lengths = [stride_lengths[pi] for pi in priority_idx]
|
|
if config.pick_loop_orders:
|
|
order.sort(key=index_cmp)
|
|
return order
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class NodeUser:
|
|
node: BaseSchedulerNode
|
|
can_inplace: bool = False
|
|
|
|
# A weak user must be scheduled after a given node, but doesn't actually
|
|
# use the result
|
|
is_weak: bool = False
|
|
|
|
def __hash__(self):
|
|
return hash((self.node.get_name(), self.can_inplace, self.is_weak))
|
|
|
|
def __eq__(self, other):
|
|
return (
|
|
self.get_name() == other.get_name()
|
|
and self.can_inplace == other.can_inplace
|
|
and self.is_weak == other.is_weak
|
|
)
|
|
|
|
def get_name(self):
|
|
return self.node.get_name()
|
|
|
|
def merge(self, other: "NodeUser") -> "NodeUser":
|
|
assert self.node is other.node
|
|
return NodeUser(
|
|
self.node,
|
|
self.can_inplace and other.can_inplace,
|
|
self.is_weak and other.is_weak,
|
|
)
|
|
|
|
|
|
_post_grad_graph_counter = itertools.count()
|
|
|
|
|
|
class Scheduler:
|
|
@dynamo_timed
|
|
def __init__(self, nodes):
|
|
super().__init__()
|
|
self.backends = {}
|
|
self.fuse_cache = {}
|
|
self.post_grad_graph_id = next(_post_grad_graph_counter)
|
|
|
|
self.nodes = []
|
|
self.available_buffer_names = {
|
|
*V.graph.graph_inputs.keys(),
|
|
*V.graph.constants.keys(),
|
|
}
|
|
|
|
self.nodes = [self.create_scheduler_node(n) for n in nodes]
|
|
|
|
# some new constants could have been created above
|
|
self.available_buffer_names.update(V.graph.constants.keys())
|
|
for node in self.nodes:
|
|
node.prune_deps()
|
|
|
|
self.name_to_node: Dict[str, BaseSchedulerNode] = {
|
|
n.get_name(): n for n in self.nodes
|
|
}
|
|
self.name_to_fused_node: Dict[
|
|
str, BaseSchedulerNode
|
|
] = dict() # set in fuse_nodes()
|
|
|
|
# mutation_real_name: Maps back to the original name for codegen
|
|
# Example:
|
|
# If you mutate buf0 inside of buf1's kernel, then:
|
|
# mutation_real_name = {"buf0" : "buf1"}
|
|
# all subsequent uses of buf0 become buf1's usage in dependency graph
|
|
self.mutation_real_name = {}
|
|
|
|
# We handle mutation by renaming modified versions of the same
|
|
# buffer in the dependency graph to prevent cycles.
|
|
# mutation_renames: tracks the current name for a given buffer
|
|
# (changed once per mutation)
|
|
# Example:
|
|
# If you mutate buf0 inside of buf1's kernel, then:
|
|
# mutation_renames = {"buf1" : "buf0"}
|
|
# in codegen we only use buf0, never buf1
|
|
self.mutation_renames = {}
|
|
|
|
self.compute_dependencies()
|
|
self.topological_sort_schedule()
|
|
self.dead_node_elimination()
|
|
if config.reorder_for_compute_comm_overlap:
|
|
comms.decide_global_ordering_of_comms(self.nodes)
|
|
self.compute_ancestors()
|
|
|
|
metrics.ir_nodes_pre_fusion += len(self.nodes)
|
|
V.debug.ir_pre_fusion(self.nodes)
|
|
self.num_orig_nodes = len(self.nodes)
|
|
self.name_to_fused_node = {n.get_name(): n for n in self.nodes}
|
|
self.create_foreach_nodes()
|
|
self.topological_sort_schedule()
|
|
self.logged_slow_fusion = set()
|
|
self.fuse_nodes()
|
|
if config.reorder_for_compute_comm_overlap:
|
|
# Refresh node_users and inverse_users to reflect fused nodes
|
|
self.compute_node_users()
|
|
self.nodes = comms.reorder_compute_and_comm_for_overlap(self.nodes)
|
|
self.compute_last_usage()
|
|
V.debug.ir_post_fusion(self.nodes)
|
|
V.debug.graph_diagram(self.nodes)
|
|
self.debug_draw_graph()
|
|
|
|
# used during codegen:
|
|
self.current_device: torch.device = None # type: ignore[assignment]
|
|
self.buffer_names_to_free = set()
|
|
|
|
# fx graph node to the position it appears in the graph
|
|
# for debug attribution
|
|
self.origin_to_index = {}
|
|
|
|
get_metric_table("graph_stats").add_row(
|
|
lambda: {
|
|
"graph_id": self.post_grad_graph_id,
|
|
"num_nodes_before_fusion": self.num_orig_nodes,
|
|
"num_nodes_after_fusion": len(self.nodes),
|
|
}
|
|
)
|
|
|
|
def debug_draw_graph(self):
|
|
"""Generate an image of the graph for debugging"""
|
|
if os.environ.get("INDUCTOR_WRITE_SCHEDULER_GRAPH", None) == "1":
|
|
from .debug import draw_buffers
|
|
|
|
draw_buffers(self.nodes, print_graph=True)
|
|
|
|
def debug_print_nodes(self, label):
|
|
if log.isEnabledFor(logging.INFO):
|
|
log.info("%s:", label)
|
|
for node in self.nodes:
|
|
node.log_details()
|
|
|
|
def create_scheduler_node(self, node):
|
|
assert (
|
|
node.origins is not None
|
|
), "All nodes passed to scheduling must have an origin"
|
|
if node.is_no_op():
|
|
return NopKernelSchedulerNode(self, node)
|
|
elif isinstance(node, (ir.ComputedBuffer, ir.TemplateBuffer)):
|
|
return SchedulerNode(self, node)
|
|
elif isinstance(node, ir.ExternKernel):
|
|
return ExternKernelSchedulerNode(self, node)
|
|
else:
|
|
raise NotImplementedError(node)
|
|
|
|
def create_foreach_nodes(self):
|
|
removed_node_names = set()
|
|
fe_nodes = []
|
|
kept_node_names = self.name_to_fused_node.keys()
|
|
|
|
for names in V.graph.lists.values():
|
|
names = [
|
|
name
|
|
for name in names
|
|
if name in kept_node_names
|
|
and not isinstance(self.name_to_node[name], NopKernelSchedulerNode)
|
|
]
|
|
if not names:
|
|
# All nodes eliminated
|
|
continue
|
|
|
|
removed_node_names.update(names)
|
|
snodes = [self.name_to_node[name] for name in names]
|
|
|
|
fe_node = ForeachKernelSchedulerNode(self, snodes) # type: ignore[arg-type]
|
|
|
|
fe_nodes.append(fe_node)
|
|
|
|
for name in names:
|
|
self.name_to_fused_node[name] = fe_node
|
|
|
|
self.nodes = [
|
|
node for node in self.nodes if node.get_name() not in removed_node_names
|
|
] + fe_nodes
|
|
|
|
def compute_dependencies(self):
|
|
"""
|
|
Create dependency edges between nodes, handling aliasing and
|
|
mutation properly.
|
|
"""
|
|
|
|
T = TypeVar("T")
|
|
|
|
class DedupList(Generic[T]):
|
|
"""
|
|
This data structure behaves like a list except it makes sure the
|
|
elements remain unique.
|
|
Normally one could use a set/dict for this purpose however
|
|
the list in question gets elements appended as it is being
|
|
iterated over which means that we need to keep the list
|
|
semantics.
|
|
"""
|
|
|
|
def __init__(self, items=None, membership=None):
|
|
self.items = items or list()
|
|
self.membership = membership or set()
|
|
|
|
def append(self, node_user: T) -> None:
|
|
if node_user in self.membership:
|
|
return
|
|
self.items.append(node_user)
|
|
self.membership.add(node_user)
|
|
|
|
def __add__(self, other: "DedupList[T]") -> "DedupList[T]":
|
|
new_membership = set.union(self.membership, other.membership)
|
|
new_items = self.items + [
|
|
x for x in other.items if x not in self.membership
|
|
]
|
|
return DedupList(new_items, new_membership)
|
|
|
|
name_to_users: DefaultDict[str, DedupList[NodeUser]] = collections.defaultdict(
|
|
DedupList
|
|
)
|
|
|
|
# handle aliasing by using python aliasing in name_to_users
|
|
# if foo aliases bar then we will make name_to_users["foo"] point
|
|
# to the same python list as name_to_users["bar"]
|
|
for node1 in self.nodes:
|
|
node1_name = node1.get_name()
|
|
for node2_name in node1.get_aliases():
|
|
if node1_name in name_to_users and node2_name in name_to_users:
|
|
# merge the two
|
|
list1 = name_to_users[node1_name]
|
|
list2 = name_to_users[node2_name]
|
|
combined = list1 + list2
|
|
for key in name_to_users.keys():
|
|
if name_to_users[key] is list1 or name_to_users[key] is list2:
|
|
name_to_users[key] = combined
|
|
elif node1_name in name_to_users:
|
|
name_to_users[node2_name] = name_to_users[node1_name]
|
|
else:
|
|
name_to_users[node1_name] = name_to_users[node2_name]
|
|
|
|
def rename(n):
|
|
if n in self.mutation_renames:
|
|
return rename(self.mutation_renames[n])
|
|
return n
|
|
|
|
def dep_closure(node_name):
|
|
reachable_names = {node_name}
|
|
node = self.name_to_node[node_name]
|
|
write_dep = next(iter(node.read_writes.writes))
|
|
for read_dep in node.read_writes.reads:
|
|
if (
|
|
read_dep.name in self.name_to_node
|
|
and isinstance(read_dep, dependencies.MemoryDep)
|
|
and isinstance(write_dep, dependencies.MemoryDep)
|
|
and read_dep.index == write_dep.index
|
|
and read_dep.size == write_dep.size
|
|
):
|
|
reachable_names.update(dep_closure(read_dep.name))
|
|
return reachable_names
|
|
|
|
def add_user(used_by_name, user_node, can_inplace=False, is_weak=False):
|
|
name_to_users[rename(used_by_name)].append(
|
|
NodeUser(user_node, can_inplace, is_weak)
|
|
)
|
|
|
|
unbacked_symbol_to_origin_node = {}
|
|
|
|
for node in self.nodes:
|
|
log.debug("scheduling %s", node.node)
|
|
|
|
# unbacked symbols don't follow ordinary buffer dependencies, so
|
|
# we track their def/uses separately
|
|
unbacked_symbol_defs = sorted(
|
|
node.node.get_unbacked_symbol_defs(), key=lambda x: x.name
|
|
)
|
|
for s in unbacked_symbol_defs:
|
|
assert isinstance(s, sympy.Symbol)
|
|
# Pick the first definer as canonical. There may be multiple
|
|
# because if a MultiOutputLayout buffer propagates an unbacked
|
|
# symint to multiple outputs, they will all claim to def it.
|
|
if s not in unbacked_symbol_to_origin_node:
|
|
unbacked_symbol_to_origin_node[s] = node
|
|
|
|
unbacked_symbol_uses = sorted(
|
|
node.node.get_unbacked_symbol_uses(), key=lambda x: x.name
|
|
)
|
|
# if a kernel takes unbacked symints, register dependencies
|
|
for s in unbacked_symbol_uses:
|
|
assert (
|
|
s in unbacked_symbol_to_origin_node
|
|
), f"{s} not in {unbacked_symbol_to_origin_node}"
|
|
node.add_fake_dep(StarDep(unbacked_symbol_to_origin_node[s].get_name()))
|
|
|
|
# a node will mutate either 0 or 1 buffers
|
|
assert len(node.get_mutations()) <= 1
|
|
for alt_name in node.get_mutations():
|
|
alt_name = rename(alt_name)
|
|
# this node must run after the prior writer
|
|
add_user(alt_name, node)
|
|
node.add_mutation_dep(StarDep(alt_name))
|
|
for other_node in name_to_users[alt_name].items:
|
|
# this node must run after all prior readers
|
|
other_name = rename(other_node.get_name())
|
|
known_dep_node_names = dep_closure(node.get_name())
|
|
if other_name not in known_dep_node_names:
|
|
# If this node already directly or indirectly depends on other_node,
|
|
# we don't need to insert an extra dep.
|
|
node.add_mutation_dep(WeakDep(other_name))
|
|
add_user(other_name, node, is_weak=True)
|
|
|
|
# add normal non-mutation dependencies
|
|
for read in node.read_writes.reads:
|
|
is_weak = isinstance(read, WeakDep)
|
|
add_user(read.name, node, node.can_inplace(read), is_weak)
|
|
|
|
node.update_mutated_names(self.mutation_renames)
|
|
|
|
# update our renaming scheme for the next iteration
|
|
for alt_name in node.get_mutations():
|
|
self.mutation_renames[rename(alt_name)] = node.get_name()
|
|
self.mutation_renames[alt_name] = node.get_name()
|
|
self.mutation_real_name[node.get_name()] = self.mutation_real_name.get(
|
|
alt_name, alt_name
|
|
)
|
|
|
|
# make sure outputs aren't dead-code-eliminated
|
|
for node_name in V.graph.get_output_names():
|
|
log.debug("scheduling output %s", node_name)
|
|
add_user(node_name, OutputNode(StarDep(node_name)))
|
|
|
|
# make sure unbacked symints aren't dead-code-eliminated
|
|
for node in V.graph.graph_outputs:
|
|
for s in node.get_unbacked_symbol_uses():
|
|
assert (
|
|
s in unbacked_symbol_to_origin_node
|
|
), f"{s} not in {unbacked_symbol_to_origin_node.keys()}"
|
|
node_name = unbacked_symbol_to_origin_node[s].node.name
|
|
log.debug("scheduling output %s for unbacked symint %s", node_name, s)
|
|
add_user(node_name, OutputNode(StarDep(node_name)))
|
|
|
|
# make sure input mutation isn't dead-code-eliminated
|
|
for name in self.mutation_renames:
|
|
if name in V.graph.graph_inputs:
|
|
add_user(name, OutputNode(StarDep(name)))
|
|
V.graph.mutated_inputs.add(name)
|
|
|
|
inp_names = {
|
|
name: index for index, name in enumerate(V.graph.graph_inputs.keys())
|
|
}
|
|
V.graph.mutated_input_idxs = [
|
|
inp_names[name] for name in V.graph.mutated_inputs
|
|
]
|
|
|
|
# copy users information onto the nodes
|
|
for node in self.nodes:
|
|
node.set_users(name_to_users[node.get_name()].items)
|
|
|
|
# populate inverse_users
|
|
for node in self.nodes:
|
|
for user in node.users:
|
|
user.node.inverse_users.append(node)
|
|
|
|
def compute_node_users(self):
|
|
# set up buffer name to (fused)snode mapping
|
|
buf_to_snode = {}
|
|
for node in self.nodes:
|
|
if isinstance(node, FusedSchedulerNode):
|
|
for x in node.snodes:
|
|
buf_to_snode[x.get_name()] = node
|
|
buf_to_snode[node.get_name()] = node
|
|
|
|
for node in self.nodes:
|
|
node.node_users = []
|
|
node.inverse_users = []
|
|
|
|
# compute inverse_users
|
|
for node in self.nodes:
|
|
inverse_users = []
|
|
for dep in node.unmet_dependencies:
|
|
assert dep.name in buf_to_snode
|
|
dep_node = buf_to_snode[dep.name]
|
|
inverse_users.append(dep_node)
|
|
node.inverse_users = inverse_users
|
|
|
|
# compute node_users
|
|
# TODO: ideally, we should deduplicate .users and .node_users,
|
|
# but currently .users contains extra information that's difficult to
|
|
# extract into a standalone container.
|
|
node_to_users: Dict[BaseSchedulerNode, List[BaseSchedulerNode]] = {}
|
|
for node in self.nodes:
|
|
for inverse_user in node.inverse_users:
|
|
node_to_users.setdefault(inverse_user, []).append(node)
|
|
for node, users in node_to_users.items():
|
|
node.node_users = users
|
|
|
|
def dead_node_elimination(self):
|
|
"""
|
|
Remove any nodes without users
|
|
"""
|
|
again = True # repeat until a fixed point
|
|
while again:
|
|
updated_nodes = []
|
|
for node in self.nodes:
|
|
|
|
def can_eliminate_user(user: NodeUser):
|
|
return user.is_weak or user.get_name() in V.graph.removed_buffers
|
|
|
|
can_eliminate = not node.has_side_effects() and all(
|
|
can_eliminate_user(u) for u in node.users
|
|
)
|
|
|
|
if not can_eliminate:
|
|
updated_nodes.append(node)
|
|
else:
|
|
# dead code
|
|
log.debug("removed dead node: %s", node.get_name())
|
|
V.graph.removed_buffers.add(node.get_name())
|
|
|
|
again = len(self.nodes) > len(updated_nodes)
|
|
self.nodes = updated_nodes
|
|
|
|
# Prune any WeakDeps no longer needed
|
|
for node in self.nodes:
|
|
node.prune_weak_deps()
|
|
|
|
def topological_sort_schedule(self):
|
|
"""
|
|
Ensure self.nodes is in topologically sorted order
|
|
"""
|
|
seen: Set[ir.Buffer] = set()
|
|
name_to_node: Dict[str, ir.Buffer] = dict()
|
|
result: List[ir.Buffer] = []
|
|
|
|
def visit(n):
|
|
if n not in seen:
|
|
seen.add(n)
|
|
for dep in sorted(n.unmet_dependencies, key=lambda d: d.name):
|
|
visit(name_to_node[dep.name])
|
|
result.append(n)
|
|
|
|
for node in self.nodes:
|
|
for name in node.get_names():
|
|
name_to_node[name] = node
|
|
for node in self.nodes:
|
|
visit(node)
|
|
self.nodes = result
|
|
|
|
def compute_ancestors(self):
|
|
"""
|
|
Populate each node.ancestors
|
|
"""
|
|
# note self.nodes is topologically sorted
|
|
name_to_ancestors: Dict[str, Set[str]] = {}
|
|
for node in self.nodes:
|
|
ancestors = set()
|
|
for dep in node.unmet_dependencies:
|
|
ancestors.add(dep.name)
|
|
ancestors |= name_to_ancestors[dep.name]
|
|
name_to_ancestors[node.get_name()] = ancestors
|
|
node.ancestors = ancestors
|
|
|
|
for order, node in enumerate(self.nodes):
|
|
node.min_order = order
|
|
node.max_order = order
|
|
|
|
def fuse_nodes(self):
|
|
"""
|
|
Mutates self.nodes to combine nodes into FusedSchedulerNodes.
|
|
"""
|
|
for i in range(10):
|
|
old_len = len(self.nodes)
|
|
fusion_log.debug(
|
|
"===== attempting fusion (%d/10): %d nodes =====", i + 1, old_len
|
|
)
|
|
self.fuse_nodes_once()
|
|
new_len = len(self.nodes)
|
|
fusion_log.debug(
|
|
"completed fusion round (%d/10): fused %d nodes into %d nodes\n",
|
|
i + 1,
|
|
old_len,
|
|
new_len,
|
|
)
|
|
if new_len == old_len or new_len == 1:
|
|
fusion_log.debug("===== fusion complete (%d iterations) =====", i + 1)
|
|
break
|
|
|
|
def benchmark_fused_nodes(self, nodes):
|
|
"""
|
|
Benchmark fused list of nodes and return the execution time
|
|
in milliseconds on randomly generated inputs.
|
|
"""
|
|
assert len(nodes) > 0
|
|
device = nodes[0].get_device()
|
|
V.graph.scheduler = self
|
|
self.current_device = device
|
|
backend = self.get_backend(device)
|
|
return backend.benchmark_fused_nodes(nodes)
|
|
|
|
def speedup_by_fusion(self, node1, node2):
|
|
"""
|
|
If config.benchmark_fusion is False, always return True.
|
|
Otherwise, return True if fusion can brings speedup.
|
|
"""
|
|
if not config.benchmark_fusion:
|
|
return True
|
|
|
|
if node1.is_template() or node1.is_foreach() or node2.is_foreach():
|
|
# TODO support benchmarking epilogue fusion
|
|
return True
|
|
|
|
node_list_1 = node1.get_nodes()
|
|
device = node_list_1[0].get_device()
|
|
|
|
# don't support benchmark fusion for CPU right now.
|
|
if device.type == "cpu":
|
|
return True
|
|
|
|
node_list_2 = node2.get_nodes()
|
|
node_list_fused = node_list_1 + node_list_2
|
|
|
|
# We can not accurately benchmark kernel using atomic_add
|
|
# due to how we generate random integer inputs.
|
|
# Skip benchmarking them by allowing fusion.
|
|
if any(
|
|
hasattr(n.node, "data")
|
|
and hasattr(n.node.data, "scatter_mode")
|
|
and n.node.data.scatter_mode == "atomic_add"
|
|
for n in node_list_fused
|
|
):
|
|
return True
|
|
|
|
from triton.compiler.errors import CompilationError
|
|
|
|
why = WhyNoFuse(node1, node2)
|
|
|
|
try:
|
|
ms1, path1 = self.benchmark_fused_nodes(node_list_1)
|
|
if math.isinf(ms1):
|
|
why("register spilling of the first kernel")
|
|
return False
|
|
ms2, path2 = self.benchmark_fused_nodes(node_list_2)
|
|
if math.isinf(ms2):
|
|
why("register spilling of the second kernel")
|
|
return False
|
|
ms_fused, path_fused = self.benchmark_fused_nodes(node_list_fused)
|
|
if math.isinf(ms_fused):
|
|
why("register spilling of the fused kernel")
|
|
return False
|
|
except CompilationError as e:
|
|
# workaround triton issue: https://github.com/openai/triton/issues/2151
|
|
if "Loop-carried variable" in str(e):
|
|
return True # allow fusion
|
|
else:
|
|
raise
|
|
|
|
if fusion_log.isEnabledFor(logging.DEBUG):
|
|
if ms_fused < ms1 + ms2:
|
|
fusion_log.debug(
|
|
"can fuse (benchmark): fusing %s with %s cause %sx speedup",
|
|
node1.get_names(),
|
|
node2.get_names(),
|
|
green_text(f"{(ms1 + ms2) / ms_fused:.3f}"),
|
|
)
|
|
else:
|
|
fusion_log.debug(
|
|
"cannot fuse (benchmark): fusing %s with %s cause %sx slowdown",
|
|
node1.get_names(),
|
|
node2.get_names(),
|
|
red_text(f"{ms_fused / (ms1 + ms2):.3f}"),
|
|
)
|
|
|
|
if (
|
|
is_metric_table_enabled("slow_fusion")
|
|
and ms_fused >= ms1 + ms2
|
|
and (path1, path2) not in self.logged_slow_fusion
|
|
):
|
|
self.logged_slow_fusion.add((path1, path2))
|
|
get_metric_table("slow_fusion").add_row(
|
|
lambda: {
|
|
"kernel1_path": path1,
|
|
"kernel1_latency": ms1,
|
|
"kernel2_path": path2,
|
|
"kernel2_latency": ms2,
|
|
"fused_kernel_path": path_fused,
|
|
"fused_kernel_latency": ms_fused,
|
|
"slow_down_ratio": ms_fused / (ms1 + ms2),
|
|
}
|
|
)
|
|
return ms_fused < ms1 + ms2
|
|
|
|
def fuse_nodes_once(self):
|
|
"""
|
|
Mutates self.nodes to combine nodes into FusedSchedulerNodes.
|
|
|
|
This relies on two key functions to control the logic:
|
|
- self.can_fuse(): checks if a fusion is legal
|
|
- self.score_fusion(): assigns priority to a given fusion
|
|
"""
|
|
fused_nodes = set(self.nodes)
|
|
for node1, node2 in self.get_possible_fusions():
|
|
node1 = self.name_to_fused_node[node1.get_first_name()]
|
|
node2 = self.name_to_fused_node[node2.get_first_name()]
|
|
if self.can_fuse(node1, node2) and not self.will_fusion_create_cycle(
|
|
node1, node2
|
|
):
|
|
if not self.speedup_by_fusion(node1, node2):
|
|
continue
|
|
fusion_log.debug(
|
|
"fusing %s with %s", node1.get_name(), node2.get_name()
|
|
)
|
|
|
|
# above can_fuse asserts that node2 has the same device
|
|
device = node1.get_device()
|
|
node3 = self.get_backend(device).fuse(node1, node2)
|
|
fused_nodes.remove(node1)
|
|
fused_nodes.remove(node2)
|
|
fused_nodes.add(node3)
|
|
self.name_to_fused_node.update(
|
|
{n.get_name(): node3 for n in node3.get_nodes()}
|
|
)
|
|
self.nodes = sorted(fused_nodes, key=lambda x: x.min_order)
|
|
self.topological_sort_schedule()
|
|
self.prune_redundant_deps()
|
|
|
|
def prune_redundant_deps(self):
|
|
for node in self.nodes:
|
|
node.prune_redundant_deps(self.name_to_fused_node)
|
|
|
|
def get_possible_fusions(self):
|
|
"""
|
|
Helper to find all legal fusion opportunities, sorted by self.score_fusion()
|
|
"""
|
|
possible_fusions = []
|
|
seen = set()
|
|
|
|
def check_all_pairs(nodes):
|
|
for node1_index, node1 in enumerate(nodes):
|
|
for node2 in nodes[node1_index + 1 :]:
|
|
key = (node1, node2)
|
|
if key in seen:
|
|
continue
|
|
seen.add(key)
|
|
|
|
if self.can_fuse(node1, node2):
|
|
possible_fusions.append(key)
|
|
elif (node2.is_template() or node2.is_foreach()) and self.can_fuse(
|
|
node2, node1
|
|
):
|
|
# foreach fusions and epilogue fusions are order dependent
|
|
possible_fusions.append((node2, node1))
|
|
|
|
buffer_names_grouping = collections.defaultdict(list)
|
|
for node in self.nodes:
|
|
for buf in node.used_buffer_names():
|
|
buffer_names_grouping[buf].append(node)
|
|
for node_grouping in buffer_names_grouping.values():
|
|
check_all_pairs(node_grouping)
|
|
|
|
if config.aggressive_fusion:
|
|
group_grouping = collections.defaultdict(list)
|
|
for node in self.nodes:
|
|
group = getattr(node, "group", None)
|
|
if group:
|
|
group_grouping[group].append(node)
|
|
for node_grouping in group_grouping.values():
|
|
check_all_pairs(node_grouping)
|
|
|
|
possible_fusions.sort(key=self.score_fusion_key, reverse=True)
|
|
fusion_log.debug("found %d possible fusions", len(possible_fusions))
|
|
return possible_fusions
|
|
|
|
def will_fusion_create_cycle(self, node1, node2):
|
|
"""
|
|
Finds whether there's a path from node1 to node2 (or vice-versa)
|
|
caused indirectly by other fusions.
|
|
"""
|
|
|
|
def found_path(node):
|
|
# only fused nodes can introduce new ancestors.
|
|
if isinstance(node, FusedSchedulerNode) and node not in visited:
|
|
visited.add(node)
|
|
if node.get_names().issubset(combined_ancestors):
|
|
# All fusion outputs are in ancestors of node1 and node2, thus
|
|
# cannot introduce new path:
|
|
#
|
|
# 1. if output is neither descendent of node1 or node2, the
|
|
# output cannot introduce a path
|
|
# 2. due to [can_fuse]: if WLOG output is descendent of node1, it cannot be
|
|
# on path(node1->node2), hence it cannot be ancestor of node2
|
|
# 3. due to [acyclic]: if WLOG output is descendent of node1, it cannot be
|
|
# ancestor of node1
|
|
return False
|
|
else:
|
|
# continue DFS of new ancestors introduced by the fusion
|
|
return bool(combined_names & node.ancestors) or any(
|
|
found_path(self.name_to_fused_node[n])
|
|
for n in node.ancestors - combined_ancestors
|
|
)
|
|
return False
|
|
|
|
visited = set()
|
|
combined_names = node1.get_names() | node2.get_names()
|
|
combined_ancestors = (node1.ancestors | node2.ancestors) - combined_names
|
|
cycle = any(found_path(self.name_to_fused_node[n]) for n in combined_ancestors)
|
|
if cycle:
|
|
WhyNoFuse(node1, node2)("will create cycle")
|
|
return cycle
|
|
|
|
def can_fusion_increase_peak_memory(
|
|
self, node1: BaseSchedulerNode, node2: BaseSchedulerNode
|
|
):
|
|
"""
|
|
This function prevents fusion for nodes that can increase memory
|
|
footprint. This problem is more common in horizontal fusion, where nodes
|
|
that are far apart in the original order get fused, lengthening the live
|
|
intervals of tensors. This is very evident in models with activation
|
|
checkpointing, where the recomputed nodes from different checkpointed
|
|
regions get fused and significantly increase the memory footprint.
|
|
|
|
The current attempt is a quick, possibly hacky, heuristic to prevent the
|
|
fusion of nodes that are far away in the original order.
|
|
|
|
A better but difficult to implement heurisitic would be to use live
|
|
intervals of the buffers, find region of peak pressure in the original
|
|
program and prevent fusion that crosses that peak region. We might need
|
|
special care or good approximation in this implementation, as fusion of
|
|
node changes live intervals, and re-computing live intervals and peak
|
|
memory after each fusion can introduce large compilation overhead.
|
|
"""
|
|
proximity_score = max(
|
|
abs(node1.min_order - node2.max_order),
|
|
abs(node2.min_order - node1.max_order),
|
|
)
|
|
return proximity_score > 64
|
|
|
|
def can_fuse(self, node1: BaseSchedulerNode, node2: BaseSchedulerNode):
|
|
"""
|
|
Determine if it is possible to combine node1 and node2 into a
|
|
single fused node.
|
|
"""
|
|
|
|
if node1 is node2:
|
|
return False
|
|
|
|
why = WhyNoFuse(node1, node2)
|
|
|
|
if (
|
|
isinstance(node1, (ExternKernelSchedulerNode, NopKernelSchedulerNode))
|
|
and not node1.is_template()
|
|
):
|
|
why("node1 is extern or nop")
|
|
return False
|
|
if (
|
|
isinstance(node2, (ExternKernelSchedulerNode, NopKernelSchedulerNode))
|
|
and not node2.is_template()
|
|
):
|
|
why("node2 is extern or nop")
|
|
return False
|
|
|
|
if node2.get_names() & node1.ancestors:
|
|
why("node1 must go before node2")
|
|
return False
|
|
|
|
if (
|
|
isinstance(node1, (FusedSchedulerNode, SchedulerNode))
|
|
and isinstance(node2, SchedulerNode)
|
|
and isinstance(node2._body, ir.LoopBody)
|
|
):
|
|
# Fix issue: https://github.com/pytorch/pytorch/issues/108963
|
|
# Check:
|
|
# If node2 reads a buf which is a mutation buf of node1(SchedulerNode) or among nodes in node1(FusedSchedulerNode),
|
|
# we will get the corresponding mutation buf and check if this mutation buf is stored by atomic_add mode.
|
|
# If True, we will disable the fusion of node1 and node2.
|
|
if any(
|
|
(
|
|
node2_used_buf in self.mutation_renames
|
|
and node1.has_atomic_add(self.mutation_renames[node2_used_buf])
|
|
)
|
|
for node2_used_buf in node2._body.reads_name2expr.keys()
|
|
):
|
|
return False
|
|
|
|
if node2.is_template():
|
|
why("templates can only fuse epilogues")
|
|
return False
|
|
if node1.is_template() and (
|
|
node2.has_aliasing_or_mutation()
|
|
or node2.is_reduction()
|
|
or not config.epilogue_fusion
|
|
):
|
|
why("template epilogue not satisfied")
|
|
return False
|
|
|
|
device = node1.get_device()
|
|
device2 = node2.get_device()
|
|
if device != device2:
|
|
why("device mismatch (%s vs %s)", device, device2)
|
|
return False
|
|
del device2
|
|
|
|
no_shared_data = self.score_fusion_memory(node1, node2) == 0
|
|
if no_shared_data and (
|
|
not config.aggressive_fusion or node1.is_reduction() or node2.is_reduction()
|
|
):
|
|
why("no shared data")
|
|
return False # heuristic not needed for correctness
|
|
|
|
if (
|
|
not node1.is_foreach()
|
|
and not node2.is_foreach()
|
|
and len(node1.get_nodes()) + len(node2.get_nodes()) > config.max_fusion_size
|
|
):
|
|
why("exceeds max fusion")
|
|
return False # heuristic not needed for correctness
|
|
|
|
if node1.get_names() & node2.ancestors:
|
|
# node2 depends on node1 outputs
|
|
if not self.can_fuse_vertical(node1, node2):
|
|
return False
|
|
return self.get_backend(device).can_fuse_vertical(node1, node2)
|
|
else: # nodes don't depend on each other, but may have common reads
|
|
if self.can_fusion_increase_peak_memory(node1, node2):
|
|
why("will increase peak memory")
|
|
return False
|
|
return self.get_backend(device).can_fuse_horizontal(node1, node2)
|
|
|
|
def can_fuse_vertical(self, node1, node2):
|
|
"""
|
|
Check if it is legal to fuse a consumer (node2) into a producer (node1).
|
|
|
|
We can fuse them if all the reads of node2 either match
|
|
corresponding writes in node1, or are written by nodes that can
|
|
be scheduled before the fusion of node1 and node2.
|
|
|
|
We also disable fusion of a write subsequent to a read if the reads
|
|
and writes do not align.
|
|
"""
|
|
node1_names = node1.get_names()
|
|
computed_deps = set()
|
|
why = WhyNoFuse(node1, node2)
|
|
|
|
# StarDep doesn't match MemoryDep, different indices don't match
|
|
# However, broadcasting sometimes strips dimensions, and if that's the case
|
|
# we still can match unmet dep
|
|
# if there's indirect indexing, don't match it
|
|
def fusable_read_and_write(read: Dep, write: Dep):
|
|
return (
|
|
self.mutation_renames.get(read.name, read.name) == write.name
|
|
and (isinstance(read, MemoryDep) and isinstance(write, MemoryDep))
|
|
and not free_symbol_has(read.index, "tmp")
|
|
and not free_symbol_has(write.index, "tmp")
|
|
and read.index == write.index
|
|
and len(read.size) >= len(write.size)
|
|
and read.size[: len(write.size)] == write.size
|
|
)
|
|
|
|
for rd in node2.unmet_dependencies:
|
|
for cd in node1.read_writes.writes:
|
|
if fusable_read_and_write(rd, cd):
|
|
computed_deps.add(rd)
|
|
|
|
remaining_deps = {dep.name for dep in node2.unmet_dependencies - computed_deps}
|
|
if remaining_deps & node1_names:
|
|
# MemoryDeps didn't match and read different locations of the same buffer.
|
|
# Examples here include:
|
|
# - MemoryDep("foo", x) != MemoryDep("foo", x + 1)
|
|
# - MemoryDep("foo", x) != StarDep("foo")
|
|
why("memory deps did not match")
|
|
return False
|
|
for name in remaining_deps:
|
|
if node1_names & self.name_to_fused_node[name].ancestors:
|
|
why("intermediate nodes between node1 & node2")
|
|
return False
|
|
|
|
# similar to can_inplace, if we are going to fuse a write subsequent to a read
|
|
# require that the indexing and size is the same
|
|
for write in node2.read_writes.writes:
|
|
for read in node1.read_writes.reads:
|
|
if write.name != self.mutation_renames.get(read.name, read.name):
|
|
continue
|
|
|
|
# bail on StarDep
|
|
if not fusable_read_and_write(read=read, write=write):
|
|
why("fusing a write into a read with different indexing formula")
|
|
return False
|
|
|
|
return True
|
|
|
|
def score_fusion(self, node1: BaseSchedulerNode, node2: BaseSchedulerNode):
|
|
"""
|
|
Assign a score (higher comes first) to the fusion of node1
|
|
and node2. When different fusions conflict with each other,
|
|
this is the way we decide what order to run them in.
|
|
|
|
Our current score is based on:
|
|
- Estimate of the saved memory operations
|
|
- Fusions closer together in original order
|
|
"""
|
|
memory_score = self.score_fusion_memory(node1, node2)
|
|
proximity_score = -max(
|
|
abs(node1.min_order - node2.max_order),
|
|
abs(node2.min_order - node1.max_order),
|
|
)
|
|
return (
|
|
node1.is_template() == config.epilogue_fusion_first and memory_score > 0,
|
|
node1.is_reduction() == node2.is_reduction() and memory_score > 0,
|
|
memory_score,
|
|
proximity_score,
|
|
)
|
|
|
|
def score_fusion_memory(self, node1, node2):
|
|
"""
|
|
The first term in our fusion score that estimates number of saved memory operations.
|
|
"""
|
|
common_memory_deps = (node1.read_writes.reads | node1.read_writes.writes) & (
|
|
node2.read_writes.reads | node2.read_writes.writes
|
|
)
|
|
common_memory_deps = {
|
|
dep for dep in common_memory_deps if not dep.has_unbacked_symbols()
|
|
}
|
|
return sum(dep.numbytes_hint() for dep in common_memory_deps)
|
|
|
|
def score_fusion_key(self, nodes):
|
|
"""
|
|
Shim for list.sort(key=...)
|
|
"""
|
|
node1, node2 = nodes
|
|
return self.score_fusion(node1, node2)
|
|
|
|
def compute_last_usage(self):
|
|
"""
|
|
Populate node.last_usage recursively (also for the nodes within a FusedSchedulerNode)
|
|
"""
|
|
|
|
future_used_buffers = set()
|
|
for node_name in V.graph.get_output_names():
|
|
future_used_buffers.add(node_name)
|
|
|
|
for node in reversed(self.nodes):
|
|
node.set_last_usage(future_used_buffers, self.mutation_real_name)
|
|
future_used_buffers.update(node.last_usage)
|
|
|
|
def free_buffers(self):
|
|
"""Free any buffers that are no longer needed"""
|
|
for name in sorted(
|
|
self.buffer_names_to_free
|
|
- V.graph.removed_buffers
|
|
- V.graph.wrapper_code.freed
|
|
):
|
|
if name in self.name_to_node:
|
|
node = self.name_to_node[name]
|
|
if node.can_free():
|
|
V.graph.wrapper_code.codegen_free(node.node)
|
|
elif name in V.graph.graph_inputs:
|
|
storage = V.graph.graph_inputs[name].data
|
|
assert isinstance(storage, ir.StorageBox) and storage.is_input_buffer()
|
|
V.graph.wrapper_code.codegen_free(storage.data)
|
|
|
|
self.buffer_names_to_free.clear()
|
|
|
|
def remove_kernel_local_buffers(self):
|
|
"""
|
|
Any buffers that are both created and have a last use in the
|
|
same kernel can be removed.
|
|
"""
|
|
|
|
# V.kernel.store_buffer_names should represent the set of nodes
|
|
# get fused
|
|
fused_node_names = V.kernel.store_buffer_names
|
|
names_to_remove = []
|
|
for out_buf in V.kernel.store_buffer_names:
|
|
users = self.name_to_node[out_buf].users
|
|
assert users is not None
|
|
users = {user.get_name() for user in users if not user.is_weak}
|
|
if users.issubset(fused_node_names):
|
|
names_to_remove.append(out_buf)
|
|
|
|
def remove_filter(n):
|
|
return (
|
|
n not in V.kernel.must_keep_buffers
|
|
and n not in V.kernel.args.input_buffers
|
|
and n not in self.mutation_renames
|
|
and n not in self.mutation_real_name
|
|
)
|
|
|
|
names_to_remove = list(filter(remove_filter, names_to_remove))
|
|
|
|
for name in names_to_remove:
|
|
if name in V.kernel.args.inplace_buffers:
|
|
buf = V.kernel.args.inplace_buffers[name]
|
|
if isinstance(buf, str) and buf.startswith("REMOVED"):
|
|
continue
|
|
remove = all(n in names_to_remove for n in buf.other_names)
|
|
if remove:
|
|
self.remove_inplace_buffer(name)
|
|
V.kernel.inplaced_to_remove.add(name)
|
|
else:
|
|
self.remove_buffer(name)
|
|
|
|
def remove_buffer(self, name):
|
|
# Assign a special value instead of deleting the entry
|
|
# because we still rely on output_buffers's length to
|
|
# generate unique arg name.
|
|
log.debug("remove_buffer(%r)", name)
|
|
V.kernel.args.output_buffers[name] = "REMOVED"
|
|
V.kernel.removed_buffers.add(name)
|
|
|
|
def remove_inplace_buffer(self, name):
|
|
log.debug("removing_inplace_buffer(%r)", name)
|
|
inner_name = V.kernel.args.inplace_buffers[name].inner_name
|
|
V.kernel.args.inplace_buffers[name] = inner_name.replace(
|
|
"in_out_ptr", "REMOVED"
|
|
)
|
|
V.kernel.removed_buffers.add(name)
|
|
|
|
def flush(self):
|
|
for backend in self.backends.values():
|
|
backend.flush()
|
|
self.free_buffers()
|
|
|
|
def codegen_extern_call(self, scheduler_node: ExternKernelSchedulerNode):
|
|
assert isinstance(scheduler_node, ExternKernelSchedulerNode)
|
|
# 'decide_inplace_update' stores the inplace update decisions in
|
|
# the current kernel from where 'allocate' retrieve those decisions.
|
|
# We have to make sure there is a non-NULL kernel handler to store
|
|
# those inplace update decisions.
|
|
with V.set_kernel_handler(Kernel(increase_kernel_count=False)):
|
|
scheduler_node.decide_inplace_update()
|
|
scheduler_node.allocate()
|
|
node = scheduler_node.node
|
|
assert isinstance(node, ir.ExternKernel), f"{type(node)=}"
|
|
node.codegen(V.graph.wrapper_code)
|
|
self.free_buffers()
|
|
|
|
def create_backend(self, device: torch.device):
|
|
assert (
|
|
device.type != "cuda" or device.index is not None
|
|
), f"{device} should have been normalized in lowering"
|
|
V.graph.add_device_info(device)
|
|
|
|
device_scheduling = get_scheduling_for_device(device.type)
|
|
if device_scheduling is None:
|
|
raise RuntimeError(f"Unsupported device type: {device.type}")
|
|
|
|
if device.type == "cuda" and not has_triton():
|
|
device_props = torch.cuda.get_device_properties(device)
|
|
if device_props.major < 7:
|
|
raise RuntimeError(
|
|
f"Found {device_props.name} which is too old to be supported by the triton GPU compiler, which is used as the backend. Triton only supports devices of CUDA Capability >= 7.0, but your device is of CUDA capability {device_props.major}.{device_props.minor}" # noqa: B950
|
|
)
|
|
else:
|
|
raise RuntimeError(
|
|
"Cannot find a working triton installation. More information on installing Triton can be found at https://github.com/openai/triton" # noqa: B950
|
|
)
|
|
|
|
return device_scheduling(self)
|
|
|
|
def get_backend(self, device: torch.device):
|
|
if device not in self.backends:
|
|
self.backends[device] = self.create_backend(device)
|
|
return self.backends[device]
|
|
|
|
def enter_context(self, node):
|
|
def get_order(n):
|
|
if n not in self.origin_to_index:
|
|
self.origin_to_index.update({n: i for i, n in enumerate(n.graph.nodes)})
|
|
return self.origin_to_index[n]
|
|
|
|
# Use a dict to have ordering
|
|
origins = {
|
|
(get_order(e), e): None for n in node.get_nodes() for e in n.node.origins
|
|
}
|
|
origins = list(origins.keys())
|
|
if origins:
|
|
_, last = max(origins, key=operator.itemgetter(0))
|
|
V.graph.wrapper_code.enter_context(last)
|
|
|
|
@dynamo_timed
|
|
def codegen(self):
|
|
for node in self.nodes:
|
|
try:
|
|
log.debug(
|
|
"Generating code for node %s with estimated runtime %f",
|
|
node.get_name(),
|
|
node.get_estimated_runtime(),
|
|
)
|
|
except Exception as e:
|
|
log.debug(
|
|
"Generating code for node %s with estimated runtime 0.0",
|
|
node.get_name(),
|
|
)
|
|
|
|
self.enter_context(node)
|
|
|
|
if not isinstance(node, NopKernelSchedulerNode):
|
|
device = node.get_device()
|
|
if (
|
|
device != self.current_device
|
|
or node.is_extern()
|
|
or node.is_template()
|
|
):
|
|
self.flush()
|
|
if device != self.current_device:
|
|
if device.type == "cuda":
|
|
if self.current_device and self.current_device.type == "cuda":
|
|
V.graph.wrapper_code.codegen_device_guard_exit()
|
|
assert device.index is not None, "device should have an index"
|
|
V.graph.wrapper_code.codegen_device_guard_enter(device.index)
|
|
elif self.current_device and self.current_device.type == "cuda":
|
|
V.graph.wrapper_code.codegen_device_guard_exit()
|
|
self.current_device = device
|
|
|
|
self.buffer_names_to_free.update(node.last_usage)
|
|
|
|
if node.is_template():
|
|
node, *epilogue = node.get_nodes()
|
|
self.get_backend(device).codegen_template(node, epilogue) # type: ignore[possibly-undefined]
|
|
elif node.is_extern():
|
|
self.codegen_extern_call(node)
|
|
elif node.is_foreach():
|
|
self.get_backend(device).codegen_foreach(node) # type: ignore[possibly-undefined]
|
|
elif isinstance(node, (FusedSchedulerNode, SchedulerNode)):
|
|
self.get_backend(device).codegen_nodes(node.get_nodes()) # type: ignore[possibly-undefined]
|
|
else:
|
|
assert isinstance(node, NopKernelSchedulerNode)
|
|
node.allocate()
|
|
|
|
if config.debug_check_inf_and_nan:
|
|
V.graph.wrapper_code.generate_inf_and_nan_checker(node)
|
|
|
|
if config.triton.debug_sync_kernel:
|
|
self.get_backend(device).codegen_sync() # type: ignore[possibly-undefined]
|
|
|
|
self.available_buffer_names.update(node.get_names())
|
|
|
|
if not isinstance(node, NopKernelSchedulerNode):
|
|
device = node.get_device()
|
|
if self.get_backend(device).ready_to_flush():
|
|
self.flush()
|
|
|
|
if self.current_device and self.current_device.type == "cuda":
|
|
# exit the outermost CUDA device guard. this is
|
|
# important for nested indentation codegen-ing.
|
|
V.graph.wrapper_code.codegen_device_guard_exit()
|
|
|
|
self.flush()
|
|
|
|
def is_unaligned_buffer(self, buf_name):
|
|
if buf_name in V.graph.graph_inputs or buf_name in V.graph.constants:
|
|
# all graph inputs or constants are assumed to be aligned
|
|
return False
|
|
node = self.name_to_node[buf_name]
|
|
layout = node.node.get_layout()
|
|
if isinstance(layout, ir.AliasedLayout):
|
|
return not layout.maybe_guard_aligned()
|
|
else:
|
|
return False
|
|
|
|
|
|
class BaseScheduling:
|
|
def can_fuse_vertical(self, node1: BaseSchedulerNode, node2: BaseSchedulerNode):
|
|
"""
|
|
Check whether node1 and node2 can be vertically fused or not.
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
def can_fuse_horizontal(self, node1: BaseSchedulerNode, node2: BaseSchedulerNode):
|
|
"""
|
|
Check whether node1 and node2 can be horizontally fused or not.
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
def fuse(self, node1: BaseSchedulerNode, node2: BaseSchedulerNode):
|
|
"""
|
|
Fuse two nodes
|
|
"""
|
|
if node1.is_foreach() or node2.is_foreach():
|
|
return ForeachKernelSchedulerNode.fuse(node1, node2)
|
|
else:
|
|
return FusedSchedulerNode.fuse(node1, node2)
|
|
|
|
def group_fn(self, sizes):
|
|
"""
|
|
Process the iteration sizes in case a transformation needs to be applied.
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
def codegen_template(
|
|
self, template_node: SchedulerNode, epilogue_nodes: List[SchedulerNode]
|
|
):
|
|
"""
|
|
Given a template node, generate a kernel.
|
|
|
|
This function is only available for triton now. If the third-party backend behaves as a sub-class
|
|
of TritonScheduling, it can override it or reuse it.
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
def codegen_nodes(self, nodes: List[SchedulerNode]):
|
|
"""
|
|
Generate a kernel given a list of pre-fused nodes.
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
def codegen_sync(self):
|
|
"""
|
|
Generate synchronization code for the kernel. This method depends on the hardware characteristics.
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
def ready_to_flush(self) -> bool:
|
|
"""
|
|
Check whether the backend is requesting the scheduler to flush the generated kernel.
|
|
If not supported, please return False.
|
|
"""
|
|
return False
|
|
|
|
def flush(self):
|
|
"""
|
|
Flush the generated kernel and python wrapper code to the source code file.
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
def benchmark_fused_nodes(self, nodes):
|
|
"""
|
|
Benchmark fused list of nodes and return the execution time
|
|
in milliseconds on randomly generated inputs.
|
|
"""
|
|
raise NotImplementedError()
|