mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
The main concept behind this refactor is this: if we know that a size/stride/etc is constant, do NOT trace it into the graph, EXCEPT for any preexisting special cases that applied for static shapes. The refactor unfolds like this: 1. Delete the `dynamic_shapes` branches in torch/_dynamo/variables/builder.py which accept int/float/bool outputs. This is over-aggressive and we don't want to allow this (because if the operator returns a constant, we shouldn't have called wrap_fx_proxy in the first place.) This causes a bunch of failures because we are blindly feeding the result of size() call to wrap_fx_proxy when dynamic shapes is enabled. 2. Modify TensorVariable.call_method in torch/_dynamo/variables/tensor.py to avoid sending constant ints to wrap_fx_proxy. After normal specialization (which should be deleted, see https://github.com/pytorch/pytorch/pull/103434) we consult the fake tensor to see if the values in question have free variables or not. If they don't we short circuit tracing into graph. We only trace into graph if the operation in question is truly symbolic. Note that there is a near miss here: it's OK to trace x.size() call entirely into the graph, even if it doesn't have all dynamic shapes, because operator.getitem with int output is special cased in builder.py. This is a preexisting special case and I don't try to get rid of it. 3. It turns out that the change here also breaks torch_np compatibility layer. So I completely rewrite getattr handling in torch/_dynamo/variables/tensor.py to follow the same pattern (only trace into graph if truly dynamic). There's some minor housekeeping in torch/fx/experimental/symbolic_shapes.py and some test files. Signed-off-by: Edward Z. Yang <ezyang@meta.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/103438 Approved by: https://github.com/larryliu0820
898 lines
33 KiB
Python
898 lines
33 KiB
Python
import inspect
|
|
import operator
|
|
import types
|
|
from typing import Dict, List
|
|
|
|
import sympy
|
|
|
|
import torch.fx
|
|
import torch.random
|
|
from torch.fx.experimental.symbolic_shapes import free_symbols, guard_scalar, SymTypes
|
|
|
|
from .. import config, variables
|
|
|
|
from ..exc import unimplemented
|
|
from ..guards import GuardBuilder
|
|
from ..source import AttrSource
|
|
from ..utils import (
|
|
fqn,
|
|
get_fake_value,
|
|
get_real_value,
|
|
HAS_NUMPY_TORCH_INTEROP,
|
|
product,
|
|
proxy_args_kwargs,
|
|
tensortype_to_dtype,
|
|
)
|
|
from .base import VariableTracker
|
|
from .constant import ConstantVariable
|
|
from .lists import ShapeVariable, SizeVariable
|
|
|
|
supported_tensor_comparison_ops = {
|
|
">": operator.gt,
|
|
"<": operator.lt,
|
|
">=": operator.ge,
|
|
"<=": operator.le,
|
|
"==": operator.eq,
|
|
"!=": operator.ne,
|
|
}
|
|
supported_const_comparison_ops = {
|
|
"is": operator.is_,
|
|
"is not": operator.is_not,
|
|
"==": operator.eq,
|
|
"!=": operator.ne,
|
|
}
|
|
|
|
|
|
class TensorVariable(VariableTracker):
|
|
"""A torch.Tensor input or an intermediate value in the FX graph"""
|
|
|
|
_nonvar_fields = [
|
|
"proxy",
|
|
"dtype",
|
|
"device",
|
|
"layout",
|
|
"ndim",
|
|
"size",
|
|
"stride",
|
|
"requires_grad",
|
|
"is_quantized",
|
|
"is_contiguous",
|
|
]
|
|
|
|
def get_real_value(self):
|
|
"""
|
|
Get the actual value represented by this variable if computation is run
|
|
using the user-provided inputs.
|
|
NOTE: this runs actual tensor computation and may be
|
|
slow and memory-intensive.
|
|
"""
|
|
return get_real_value(self.proxy.node, self.proxy.tracer)
|
|
|
|
def __init__(
|
|
self,
|
|
proxy: torch.fx.Proxy,
|
|
dtype=None,
|
|
device=None,
|
|
layout=None,
|
|
ndim=None,
|
|
size=None,
|
|
stride=None,
|
|
requires_grad=None,
|
|
is_quantized=None,
|
|
is_contiguous=None,
|
|
is_sparse=None,
|
|
class_type=torch.Tensor,
|
|
specialized_value=None,
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs)
|
|
self.proxy = proxy
|
|
self.dtype = dtype
|
|
self.device = device
|
|
self.layout = layout
|
|
self.ndim = ndim
|
|
self.size = size
|
|
self.stride = stride
|
|
self.requires_grad = requires_grad
|
|
self.is_quantized = is_quantized
|
|
self.is_contiguous = is_contiguous
|
|
self.is_sparse = is_sparse
|
|
self.class_type = class_type
|
|
self.specialized_value = specialized_value
|
|
|
|
def as_proxy(self):
|
|
return self.proxy
|
|
|
|
def python_type(self):
|
|
return self.class_type
|
|
|
|
def call_isinstance(self, tensor_type):
|
|
def check_type(ty):
|
|
if ty not in tensortype_to_dtype:
|
|
return issubclass(self.python_type(), ty)
|
|
|
|
dtypes = tensortype_to_dtype[ty]
|
|
return self.dtype in dtypes
|
|
|
|
if type(tensor_type) is tuple:
|
|
return any(check_type(ty) for ty in tensor_type)
|
|
else:
|
|
return check_type(tensor_type)
|
|
|
|
@staticmethod
|
|
def specialize(value: torch.Tensor):
|
|
props = {
|
|
"dtype": value.dtype,
|
|
"device": value.device,
|
|
"layout": value.layout,
|
|
"ndim": int(value.ndim),
|
|
"requires_grad": value.requires_grad,
|
|
"is_quantized": value.is_quantized,
|
|
"is_sparse": value.is_sparse,
|
|
"class_type": type(value),
|
|
}
|
|
if not free_symbols(value):
|
|
# this is a fully static shape, and the keys on props here inform specialization.
|
|
# We have to cast to int here, because these might get accessed as ConstantVariable, which has
|
|
# a strict no-symint policy. If we got here due to not having free symbols, this is a known constant
|
|
# already. We could remove the discrepancy here, by having ConstantVariable be more permissive for
|
|
# constant backed SymInts, but that assert being strict has led to some good signal in hunting bugs, and
|
|
# I'd like to keep it around for now.
|
|
props["size"] = tuple([int(s) for s in value.size()])
|
|
props["stride"] = tuple(value.stride())
|
|
props["is_contiguous"] = tuple(
|
|
[
|
|
x
|
|
for x in torch._prims_common._memory_formats
|
|
if value.is_contiguous(memory_format=x)
|
|
]
|
|
)
|
|
return props
|
|
|
|
def var_getattr(self, tx, name):
|
|
from . import ConstantVariable, TorchVariable
|
|
|
|
if tx.strict_checks_enabled:
|
|
if name in self._strict_mode_banned_ops():
|
|
unimplemented(f"Illegal getattr invocation {name} in strict mode")
|
|
|
|
result = None
|
|
options = VariableTracker.propagate(self)
|
|
if name == "ndim" and self.ndim is not None:
|
|
result = ConstantVariable(self.ndim, **options)
|
|
elif name == "dtype" and self.dtype is not None:
|
|
result = TorchVariable(self.dtype, **options)
|
|
elif name == "device" and self.device is not None:
|
|
result = TorchVariable(self.device, **options)
|
|
elif name == "layout" and self.layout is not None:
|
|
result = TorchVariable(self.layout, **options)
|
|
elif name == "is_cuda" and self.device is not None:
|
|
result = ConstantVariable(self.device.type == "cuda", **options)
|
|
elif name == "shape" and self.size is not None:
|
|
sizes = [variables.ConstantVariable(x) for x in self.size]
|
|
result = ShapeVariable(sizes, **options)
|
|
elif name == "requires_grad" and self.requires_grad is not None:
|
|
result = ConstantVariable(self.requires_grad, **options)
|
|
elif name == "is_quantized" and self.is_quantized is not None:
|
|
result = ConstantVariable(self.is_quantized, **options)
|
|
elif name == "is_sparse" and self.is_sparse is not None:
|
|
result = ConstantVariable(self.is_sparse, **options)
|
|
elif name == "shape" and self.size is None:
|
|
result = self.call_method(tx, "size", [], {})
|
|
elif name == "ndim" and self.ndim is None:
|
|
result = self.call_method(tx, "dim", [], {})
|
|
elif name == "data":
|
|
result = self.call_method(tx, "detach", [], {})
|
|
if name == "__class__":
|
|
return TorchVariable(self.python_type(), **options)
|
|
|
|
# Add a guard for type matching, these guards are checked before tensor guards
|
|
# In some cases, a <tensor>.<attr> guard can be evaluated first, and break if
|
|
# <tensor> is later changed to another type
|
|
if result is not None and self.source is not None:
|
|
result = result.add_guard(self.make_guard(GuardBuilder.TYPE_MATCH))
|
|
|
|
# It's hard to get inplace view (metadata mutation) on graph input work properly across
|
|
# dynamo/aot/inductor, just fall back.
|
|
if self.source is not None and hasattr(torch.ops.aten, name):
|
|
fn = getattr(torch.ops.aten, name)
|
|
if (
|
|
hasattr(fn, "overloads")
|
|
and hasattr(fn, fn.overloads()[0])
|
|
and torch.Tag.inplace_view in getattr(fn, fn.overloads()[0]).tags
|
|
):
|
|
# Delay the graph break to the actual call of unsqueeze_/resize_/resize_as_ etc.
|
|
return variables.misc.DelayGraphBreakVariable()
|
|
|
|
# For attributes (not methods) that were not caught in the special handling above,
|
|
# (e.g. tensor.real), we handle these generically, assuming that the output type is
|
|
# a tensor.
|
|
if result is None:
|
|
|
|
def try_generic_attr_handling():
|
|
from .builder import wrap_fx_proxy
|
|
from .misc import GetAttrVariable
|
|
|
|
try:
|
|
static_attr = inspect.getattr_static(torch.Tensor, name)
|
|
except AttributeError:
|
|
return None
|
|
|
|
# Make sure this is an attribute, not a method.
|
|
# type(torch.Tensor.H) should be "getset_descriptor"
|
|
# This is a because of CPython implementation, see THPVariableType:
|
|
# these attributes are implemented under tp_getset, which appear
|
|
# as `getset_descriptor`s, (compared to, say, methods which appear
|
|
# as `method_descriptor`s)
|
|
if type(static_attr) != types.GetSetDescriptorType:
|
|
return None
|
|
|
|
return wrap_fx_proxy(
|
|
tx=tx,
|
|
proxy=GetAttrVariable.create_getattr_proxy(self.as_proxy(), name),
|
|
**options,
|
|
)
|
|
|
|
result = try_generic_attr_handling()
|
|
|
|
if result is None:
|
|
raise NotImplementedError()
|
|
|
|
return result
|
|
|
|
def has_unpack_var_sequence(self, tx):
|
|
return self.ndim > 0
|
|
|
|
def unpack_var_sequence(self, tx, idxes=None):
|
|
from .builder import wrap_fx_proxy
|
|
|
|
options = VariableTracker.propagate(self)
|
|
if idxes is None:
|
|
if self.size:
|
|
length = self.size[0]
|
|
else:
|
|
dyn_length = self.call_method(tx, "size", [ConstantVariable(0)], {})
|
|
# SymNodeVariable for symbolic sizes, ConstantVariable for constants OR values prouced through
|
|
# symbolic_shapes, but that end up as int/sympy.Integer
|
|
assert isinstance(dyn_length, (SymNodeVariable, ConstantVariable))
|
|
if isinstance(dyn_length, SymNodeVariable):
|
|
length = dyn_length.evaluate_expr(tx.output)
|
|
else:
|
|
length = dyn_length.value
|
|
idxes = range(length)
|
|
return [wrap_fx_proxy(tx, self.as_proxy()[i], **options) for i in idxes]
|
|
|
|
def _strict_mode_banned_ops(self):
|
|
return torch._dynamo.config._autograd_backward_strict_mode_banned_ops
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
if tx.strict_checks_enabled:
|
|
if name in self._strict_mode_banned_ops():
|
|
unimplemented(f"Illegal method invocation {name} in strict mode")
|
|
from . import ConstantVariable, TorchVariable, TupleVariable
|
|
from .builder import wrap_fx_proxy
|
|
|
|
kwargs = dict(kwargs)
|
|
options = VariableTracker.propagate(self, args, kwargs.values())
|
|
|
|
if name in ("stride", "size"):
|
|
dim_var = None
|
|
if len(args) == 1:
|
|
dim_var = args[0]
|
|
elif "dim" in kwargs:
|
|
dim_var = kwargs["dim"]
|
|
else:
|
|
assert not args and not kwargs, f"Tensor.{name}() unhandled args/kwargs"
|
|
|
|
dim = None
|
|
if isinstance(dim_var, SymNodeVariable):
|
|
# This is because SymNodeVariable intentionally doesn't define
|
|
# as_python_constant to avoid shunting down some codepaths
|
|
# that expect consts. In this case, we know we definitely
|
|
# want to specialize though.
|
|
dim = dim_var.evaluate_expr()
|
|
elif dim_var is not None:
|
|
dim = dim_var.as_python_constant()
|
|
|
|
def make_const_size_variable(x, **options):
|
|
return SizeVariable(
|
|
[ConstantVariable(y, **options) for y in x], **options
|
|
)
|
|
|
|
RetVariable = (
|
|
make_const_size_variable if name == "size" else ConstantVariable
|
|
)
|
|
|
|
# Technically, this should not be necessary, but I'm including it
|
|
# for enhanced BC, in case example_value is sometimes not set
|
|
# (it really should always be set though!)
|
|
if (r := getattr(self, name)) is not None:
|
|
if dim is None:
|
|
return RetVariable(r, **options)
|
|
else:
|
|
return ConstantVariable(r[dim], **options)
|
|
|
|
# It might still be constant! Consult the fake tensor and see
|
|
if (fake := self.proxy.node.meta.get("example_value")) is not None:
|
|
if dim is None:
|
|
fake_r = getattr(fake, name)()
|
|
if not free_symbols(fake_r):
|
|
# int conversion for safety, in case a SymInt refined
|
|
# to constant
|
|
return RetVariable(tuple(int(r) for r in fake_r), **options)
|
|
else:
|
|
fake_r = getattr(fake, name)(dim)
|
|
if not free_symbols(fake_r):
|
|
return ConstantVariable(int(fake_r), **options)
|
|
|
|
# Oops, it's not constant. Do the dynamic shapes path.
|
|
return wrap_fx_proxy(
|
|
tx,
|
|
tx.output.create_proxy(
|
|
"call_method",
|
|
name,
|
|
*proxy_args_kwargs([self] + list(args), kwargs),
|
|
),
|
|
**options,
|
|
)
|
|
|
|
elif name in ("numel", "nelement"):
|
|
if self.size is not None:
|
|
return ConstantVariable(product(self.size), **options)
|
|
|
|
# It might still be constant! Consult the fake tensor and see
|
|
if (fake := self.proxy.node.meta.get("example_value")) is not None:
|
|
fake_r = fake.numel()
|
|
if not free_symbols(fake_r):
|
|
return ConstantVariable(int(fake_r), **options)
|
|
|
|
assert not kwargs, f"Tensor.{name}() unhandled kwargs"
|
|
|
|
# Oops, it's not constant. Do the dynamic shapes path.
|
|
return wrap_fx_proxy(
|
|
tx,
|
|
tx.output.create_proxy(
|
|
"call_method",
|
|
"numel",
|
|
*proxy_args_kwargs([self] + list(args), kwargs),
|
|
),
|
|
**options,
|
|
)
|
|
|
|
elif name in ("ndimension", "dim") and self.ndim is not None:
|
|
constant_result = ConstantVariable(self.ndim, **options)
|
|
elif name == "is_floating_point" and self.dtype is not None:
|
|
constant_result = ConstantVariable(self.dtype.is_floating_point, **options)
|
|
elif name == "is_contiguous" and self.is_contiguous is not None:
|
|
if "memory_format" in kwargs:
|
|
memory_format = kwargs.pop("memory_format").as_python_constant()
|
|
else:
|
|
memory_format = torch.contiguous_format
|
|
constant_result = ConstantVariable(
|
|
memory_format in self.is_contiguous, **options
|
|
)
|
|
elif (
|
|
name == "type"
|
|
and self.dtype is not None
|
|
and len(args) == 0
|
|
and isinstance(self.device, torch.device)
|
|
):
|
|
tensortype = [k for k, v in tensortype_to_dtype.items() if self.dtype in v][
|
|
0
|
|
]
|
|
if self.device.type == "cuda":
|
|
constant_result = ConstantVariable(
|
|
f"torch.cuda.{tensortype.__name__}", **options
|
|
)
|
|
else:
|
|
constant_result = ConstantVariable(
|
|
f"torch.{tensortype.__name__}", **options
|
|
)
|
|
elif (
|
|
name == "type"
|
|
and len(args) == 1
|
|
and fqn(type(args[0].as_python_constant())) == "torch.tensortype"
|
|
):
|
|
# torch.FloatTensor, etc. are all of type "torch.tensortype".
|
|
# torch.fx's tracer fails on these types, because it doesn't support arguments of torch.tensortype type.
|
|
# So, we pass it in as a string (which is also supported, see above implementation for .type() with 0 args)
|
|
tensor_type = args[0].as_python_constant()
|
|
tensor_type_const = ConstantVariable(fqn(tensor_type), **options)
|
|
return wrap_fx_proxy(
|
|
tx,
|
|
tx.output.create_proxy(
|
|
"call_method",
|
|
name,
|
|
*proxy_args_kwargs([self, tensor_type_const], kwargs),
|
|
),
|
|
**options,
|
|
)
|
|
elif name == "get_device" and isinstance(self.device, torch.device):
|
|
index = self.device.index if self.device.type != "cpu" else -1
|
|
constant_result = ConstantVariable(index, **options)
|
|
else:
|
|
constant_result = None
|
|
|
|
if constant_result:
|
|
assert not kwargs, f"Tensor.{name}() unhandled kwargs"
|
|
# TODO: I think this branch is dead
|
|
if len(args) == 1:
|
|
return constant_result.getitem_const(args[0])
|
|
elif args:
|
|
return TupleVariable(
|
|
[constant_result.getitem_const(a) for a in args], **options
|
|
)
|
|
return constant_result
|
|
elif name == "numpy":
|
|
if not config.numpy_ndarray_as_tensor or not HAS_NUMPY_TORCH_INTEROP:
|
|
unimplemented(
|
|
f"Tensor.{name}. Turn on config.numpy_ndarray_as_tensor and install torch_np to support "
|
|
f"tensor.numpy(). "
|
|
)
|
|
from .builder import wrap_fx_proxy_cls
|
|
|
|
assert not args, "Tensor.numpy() doesn't take args."
|
|
# TODO: support force
|
|
if kwargs and "force" in kwargs:
|
|
unimplemented(f"Tensor.numpy(force={kwargs['force']})")
|
|
return wrap_fx_proxy_cls(
|
|
target_cls=NumpyNdarrayVariable,
|
|
tx=tx,
|
|
proxy=tx.output.create_proxy(
|
|
"call_function",
|
|
torch.detach,
|
|
*proxy_args_kwargs([self], {}),
|
|
),
|
|
example_value=None,
|
|
**options,
|
|
)
|
|
elif name in ("tolist", "backward", "data_ptr"):
|
|
unimplemented(f"Tensor.{name}")
|
|
elif name == "item" and not config.capture_scalar_outputs:
|
|
unimplemented(f"Tensor.{name}")
|
|
elif name == "__len__":
|
|
return self.call_method(tx, "size", [ConstantVariable(0, **options)], {})
|
|
elif name == "__setitem__":
|
|
key, value = args
|
|
|
|
def has_bool_key(v):
|
|
if isinstance(v, TensorVariable):
|
|
return v.dtype in (torch.bool, torch.int8)
|
|
elif isinstance(v, TupleVariable):
|
|
return any(has_bool_key(item) for item in v.items)
|
|
else:
|
|
return False
|
|
|
|
if (
|
|
not config.capture_dynamic_output_shape_ops
|
|
and has_bool_key(key)
|
|
and isinstance(value, TensorVariable)
|
|
and value.requires_grad
|
|
):
|
|
unimplemented(
|
|
"boolean masking setitem backwards requires dynamic shapes"
|
|
)
|
|
tx.output.guards.update(options["guards"])
|
|
tx.output.create_proxy(
|
|
"call_function",
|
|
operator.setitem,
|
|
*proxy_args_kwargs([self] + list(args), kwargs),
|
|
)
|
|
return ConstantVariable(None, **options)
|
|
elif name in ("resize_", "resize_as_"):
|
|
if "memory_format" in kwargs:
|
|
memory_format = kwargs["memory_format"].as_python_constant()
|
|
else:
|
|
memory_format = torch.contiguous_format
|
|
|
|
if name == "resize_":
|
|
self.size = args[0].as_python_constant()
|
|
self.is_contiguous = (memory_format,)
|
|
else:
|
|
assert isinstance(args[0], TensorVariable)
|
|
if self.size and args[0].size:
|
|
if (
|
|
self.size == args[0].size
|
|
or memory_format is torch.preserve_format
|
|
):
|
|
self.is_contiguous = args[0].is_contiguous
|
|
else:
|
|
self.size = args[0].size
|
|
self.stride = args[0].stride
|
|
self.ndim = args[0].ndim
|
|
self.is_contiguous = (memory_format,)
|
|
|
|
return wrap_fx_proxy(
|
|
tx,
|
|
tx.output.create_proxy(
|
|
"call_method",
|
|
name,
|
|
*proxy_args_kwargs([self] + list(args), kwargs),
|
|
),
|
|
**options,
|
|
)
|
|
elif (
|
|
name == "add_" and len(args) == 1 and len(kwargs) == 1 and "alpha" in kwargs
|
|
):
|
|
result = TorchVariable(torch.mul, **options).call_function(
|
|
tx, args + [kwargs["alpha"]], {}
|
|
)
|
|
return self.call_method(tx, "add_", [result], {})
|
|
elif (
|
|
name == "addcdiv_"
|
|
and len(args) == 2
|
|
and len(kwargs) == 1
|
|
and "value" in kwargs
|
|
):
|
|
result = TorchVariable(torch.div, **options).call_function(tx, args, {})
|
|
result = TorchVariable(torch.mul, **options).call_function(
|
|
tx, [result, kwargs["value"]], {}
|
|
)
|
|
return self.call_method(tx, "add_", [result], {})
|
|
elif name == "__contains__":
|
|
# Rewrite __contains__ here so that downstream passes can trace through
|
|
# without dealing with unbacked symbool. Roughly the code we translate is:
|
|
# def __contains__(self, x):
|
|
# return (x == self).any().item()
|
|
result = TorchVariable(torch.eq, **options).call_function(
|
|
tx, [self, args[0]], {}
|
|
)
|
|
result = TorchVariable(torch.any, **options).call_function(tx, [result], {})
|
|
return result.call_method(tx, "item", [], {})
|
|
else:
|
|
# Convert x.new(torch.Size) into x.new_empty(torch.Size),
|
|
# as Tensor.new acts differently with a Size input versus a tuple input.
|
|
if (
|
|
name == "new"
|
|
and len(args) == 1
|
|
and isinstance(args[0], (SizeVariable, ShapeVariable))
|
|
and not config.dynamic_shapes
|
|
):
|
|
name = "new_empty"
|
|
return wrap_fx_proxy(
|
|
tx,
|
|
tx.output.create_proxy(
|
|
"call_method",
|
|
name,
|
|
*proxy_args_kwargs([self] + list(args), kwargs),
|
|
),
|
|
**options,
|
|
)
|
|
|
|
|
|
class SymNodeVariable(VariableTracker):
|
|
"""
|
|
Represents a symbolic size, e.g., as returned by tensor.size(0)
|
|
"""
|
|
|
|
@classmethod
|
|
def create(cls, tx, proxy, sym_num, **options):
|
|
if "example_value" in proxy.node.meta:
|
|
assert proxy.node.meta["example_value"] == sym_num
|
|
if sym_num is None:
|
|
sym_num = get_fake_value(proxy.node, tx)
|
|
proxy.node.meta["example_value"] = sym_num
|
|
|
|
if isinstance(sym_num, (sympy.Integer, int)):
|
|
return ConstantVariable(int(sym_num))
|
|
|
|
return SymNodeVariable(proxy, sym_num, **options)
|
|
|
|
def __init__(self, proxy, sym_num, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.proxy = proxy
|
|
# TODO: Should we allow non SymTypes here? Today it is allowed
|
|
self.sym_num = sym_num
|
|
|
|
def python_type(self):
|
|
if isinstance(self.sym_num, SymTypes):
|
|
return self.sym_num.node.pytype
|
|
else:
|
|
return type(self.sym_num)
|
|
|
|
def unpack_var_sequence(self, tx):
|
|
super().unpack_var_sequence(tx)
|
|
|
|
def as_proxy(self):
|
|
return self.proxy
|
|
|
|
def evaluate_expr(self, output_graph=None):
|
|
return guard_scalar(self.sym_num)
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
from .builder import wrap_fx_proxy
|
|
|
|
options = VariableTracker.propagate(self, args, kwargs.values())
|
|
|
|
return wrap_fx_proxy(
|
|
tx,
|
|
tx.output.create_proxy(
|
|
"call_method",
|
|
name,
|
|
*proxy_args_kwargs([self] + list(args), kwargs),
|
|
),
|
|
**options,
|
|
)
|
|
|
|
|
|
class TensorWithTFOverrideVariable(VariableTracker):
|
|
"""
|
|
Represents a tensor subclass instance with a __torch_function__ override.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
tensor_variable,
|
|
orig_tensor_variable_source,
|
|
subclass_torch_function__func,
|
|
subclass_type,
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs)
|
|
self.tensor_variable = tensor_variable
|
|
self.orig_tensor_variable_source = orig_tensor_variable_source
|
|
self.subclass_torch_function__func = subclass_torch_function__func
|
|
self.subclass_type = subclass_type
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
# This code block implements inlining the __torch_function__ override
|
|
# of `call_method`.
|
|
from . import GetAttrVariable
|
|
|
|
options = VariableTracker.propagate(self, args, kwargs.values())
|
|
# insert unwrapped version of self as the first argument
|
|
# TODO: This is wrong! When you call the internal __torch_function__,
|
|
# you still get the wrapped version of self, and if you call functions
|
|
# inside __torch_function__, they should come back here. If we unwrap
|
|
# the tensor immediately, that will not happen.
|
|
# See https://github.com/pytorch/torchdynamo/issues/1951
|
|
args = list(args)
|
|
args.insert(0, self.tensor_variable)
|
|
func_var = GetAttrVariable(self.tensor_variable, name)
|
|
|
|
unwrapped = TensorWithTFOverrideVariable.inline_torch_function_unwrapped(
|
|
tx,
|
|
func_var,
|
|
self.orig_tensor_variable_source,
|
|
self.subclass_torch_function__func,
|
|
self.subclass_type,
|
|
options,
|
|
args,
|
|
kwargs,
|
|
)
|
|
|
|
# TODO(future PR): implement rewrapping conditional on method presence
|
|
# in `torch.overrides.get_default_nowrap_function()`. It's unclear how
|
|
# to do this easily in the current codebase since the resolution of
|
|
# `GetAttrVariable` depends on the type of the underlying object.
|
|
|
|
return TensorWithTFOverrideVariable(
|
|
unwrapped,
|
|
self.orig_tensor_variable_source,
|
|
self.subclass_torch_function__func,
|
|
self.subclass_type,
|
|
)
|
|
|
|
@staticmethod
|
|
def inline_torch_function_unwrapped(
|
|
tx,
|
|
original_func_var,
|
|
tensor_with_tf_override_source,
|
|
tf_func,
|
|
subclass_type,
|
|
options,
|
|
args,
|
|
kwargs,
|
|
):
|
|
"""
|
|
This function inlines the `__torch_function__` override for `original_func_var`.
|
|
For example, if the user code is
|
|
|
|
x1 = torch.sigmoid(x0)
|
|
|
|
And `x0` has an override, then:
|
|
* `original_func_var` will be a `VariableTracker` object wrapping `torch.sigmoid`
|
|
* `tensor_with_tf_override_source` will be the `Source` object from
|
|
the original tensor override instance in the beginning of the program
|
|
* `tf_func` will be the custom `__torch_function__` function
|
|
* `subclass_type` will be `type(x0)`
|
|
|
|
The caller is expected to properly massage args and kwargs before
|
|
passing them into this function.
|
|
|
|
The caller is responsible for wrapping the return value, if needed.
|
|
"""
|
|
from . import UserDefinedClassVariable
|
|
from .builder import TupleVariable, VariableBuilder
|
|
|
|
source = AttrSource(
|
|
AttrSource(tensor_with_tf_override_source, "__torch_function__"),
|
|
"__func__",
|
|
)
|
|
tf_func_var = VariableBuilder(tx, source)(tf_func)
|
|
type_var = UserDefinedClassVariable(subclass_type, **options)
|
|
|
|
# signature:
|
|
# def __torch_function__(cls, func, types, args=(), kwargs=None):
|
|
tf_args = (
|
|
type_var, # cls
|
|
original_func_var, # func
|
|
(type_var,), # types
|
|
TupleVariable(args), # args
|
|
kwargs, # kwargs
|
|
)
|
|
|
|
# Disable __torch_function__ here to prevent the clone of the
|
|
# example tensor from going into the override.
|
|
with torch._C.DisableTorchFunctionSubclass():
|
|
return tx.inline_user_function_return(tf_func_var, tf_args, {})
|
|
|
|
|
|
class NumpyNdarrayVariable(TensorVariable):
|
|
"""
|
|
Represents a torch_np.ndarray, but backed by torch Tensor. Use this for Tensor.numpy() call.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
proxy: torch.fx.Proxy,
|
|
**kwargs,
|
|
):
|
|
super().__init__(proxy, **kwargs)
|
|
|
|
def var_getattr(self, tx, name):
|
|
# NB: This INTENTIONALLY does not call super(), because there is
|
|
# no intrinsic reason ndarray properties are related to Tensor
|
|
# properties. The inheritance here is for implementation sharing.
|
|
|
|
from ..utils import numpy_attr_wrapper
|
|
from .builder import wrap_fx_proxy, wrap_fx_proxy_cls
|
|
|
|
result = None
|
|
options = VariableTracker.propagate(self)
|
|
|
|
import torch_np
|
|
|
|
example_value = self.proxy.node.meta["example_value"]
|
|
example_ndarray = torch_np.ndarray(example_value)
|
|
|
|
def insert_into_graph():
|
|
return wrap_fx_proxy(
|
|
tx,
|
|
tx.output.create_proxy(
|
|
"call_function", numpy_attr_wrapper, (self.as_proxy(), name), {}
|
|
),
|
|
**options,
|
|
)
|
|
|
|
if name in ["T", "real", "imag"]:
|
|
result = wrap_fx_proxy_cls(
|
|
target_cls=NumpyNdarrayVariable,
|
|
tx=tx,
|
|
proxy=tx.output.create_proxy(
|
|
"call_function",
|
|
numpy_attr_wrapper,
|
|
(self.as_proxy(), name),
|
|
{},
|
|
),
|
|
**options,
|
|
)
|
|
# These are awkward to implement. The standard playbook for torch_np
|
|
# interop is to trace a call into the torch_np wrapper which works for
|
|
# Tensor operations. However, we don't want to do this for calls
|
|
# that don't return Tensors, because in those cases we may not want
|
|
# to trace the attribute access into the graph at all (it is sort
|
|
# of harmless to do so, because AOTAutograd will eliminate them,
|
|
# but it's best not to trace them in to begin with.) But in any
|
|
# case, tracing these into the graph is like trying to fit a square
|
|
# peg into a round hole; best not to do it. So instead we
|
|
# painstakingly implement these by hand
|
|
#
|
|
# NB: only ALWAYS specialized attributes can go here; notably,
|
|
# size/shape not allowed!
|
|
elif name in ("ndim", "itemsize"):
|
|
return ConstantVariable(getattr(example_ndarray, name), **options)
|
|
elif name in ("shape", "stride"):
|
|
if not free_symbols(r := getattr(example_ndarray, name)):
|
|
return ConstantVariable(tuple(int(r) for r in r), **options)
|
|
return insert_into_graph()
|
|
elif name == "size":
|
|
if not free_symbols(r := example_ndarray.size):
|
|
return ConstantVariable(int(r), **options)
|
|
return insert_into_graph()
|
|
elif name in ["base", "flags", "dtype"]:
|
|
unimplemented(f"TODO: add support for ndarray.{name}")
|
|
if result is None:
|
|
raise NotImplementedError()
|
|
return result
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
options = VariableTracker.propagate([[self]], [args], [list(kwargs.values())])
|
|
from torch._dynamo.variables.builder import wrap_fx_proxy_cls
|
|
from ..utils import numpy_method_wrapper
|
|
|
|
result = wrap_fx_proxy_cls(
|
|
target_cls=NumpyNdarrayVariable,
|
|
tx=tx,
|
|
proxy=tx.output.create_proxy(
|
|
"call_function",
|
|
numpy_method_wrapper(name),
|
|
*proxy_args_kwargs([self] + list(args), kwargs),
|
|
),
|
|
example_value=None,
|
|
**options,
|
|
)
|
|
|
|
return result
|
|
|
|
|
|
class UnspecializedPythonVariable(TensorVariable):
|
|
"""
|
|
This is a 1-element tensor represents unspecialized python float/int.
|
|
"""
|
|
|
|
def __init__(self, proxy: torch.fx.Proxy, **kwargs):
|
|
raw_value = kwargs.pop("raw_value", None)
|
|
need_unwrap = kwargs.pop("need_unwrap", True)
|
|
super().__init__(proxy, **kwargs)
|
|
self.raw_value = raw_value
|
|
self.need_unwrap = need_unwrap
|
|
|
|
@classmethod
|
|
def from_tensor_variable(cls, tensor_variable, raw_value, need_unwrap=True):
|
|
# Convert a `TensorVariable` instance into an `UnspecializedPythonVariable` instance.
|
|
return UnspecializedPythonVariable(
|
|
**dict(tensor_variable.__dict__),
|
|
raw_value=raw_value,
|
|
need_unwrap=need_unwrap,
|
|
)
|
|
|
|
def as_specialized(self, tx):
|
|
for graph_arg in tx.output.graphargs:
|
|
if graph_arg.source is self.source:
|
|
graph_arg.erase()
|
|
|
|
for g in self.guards:
|
|
if g.is_volatile:
|
|
g.create_fn = GuardBuilder.CONSTANT_MATCH
|
|
|
|
return ConstantVariable(value=self.raw_value, guards=self.guards)
|
|
|
|
|
|
class FakeItemVariable(TensorVariable):
|
|
"""An unspecialized python variable which prevents access to the underlying raw value.
|
|
This is needed if item is called on a FakeTensor."""
|
|
|
|
def __init__(self, proxy: torch.fx.Proxy, **kwargs):
|
|
need_unwrap = kwargs.pop("need_unwrap", False)
|
|
super().__init__(proxy, **kwargs)
|
|
self.need_unwrap = need_unwrap
|
|
|
|
@classmethod
|
|
def from_tensor_variable(cls, tensor_variable):
|
|
return FakeItemVariable(**dict(tensor_variable.__dict__))
|