mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: We generate specialized list operations for int, float, and Tensor lists so that small lists of integers like the arguments to conv do not involve tons of boxing code. This PR adds a fallback GenericList for List types that contain any other type. It does so by adding type variables to `jit::Type`, and machinery for matching/replacing the type variables during `tryMatchSchema` and operator lookup. It also modifies the builtin list ops to include a fallback that works on a GenericList object that simply holds IValues. This is distinguished from IValue's tuple type so that conversion to/from Python still happens losslessly. Pull Request resolved: https://github.com/pytorch/pytorch/pull/12040 Differential Revision: D10037098 Pulled By: zdevito fbshipit-source-id: 0c5f2864d12e7d33554bf34cc29e5fb700dde150
512 lines
17 KiB
C++
512 lines
17 KiB
C++
#include "torch/csrc/python_headers.h"
|
|
|
|
#include "torch/csrc/jit/ir.h"
|
|
#include "torch/csrc/jit/pybind.h"
|
|
#include "torch/csrc/jit/python_tracer.h"
|
|
#include "torch/csrc/utils/pybind.h"
|
|
#include "torch/csrc/jit/export.h"
|
|
#include "torch/csrc/jit/passes/shape_analysis.h"
|
|
#include "torch/csrc/jit/argument_spec.h"
|
|
#include "torch/csrc/utils/auto_gil.h"
|
|
#include "torch/csrc/utils/python_strings.h"
|
|
|
|
|
|
#include <iostream>
|
|
#include <sstream>
|
|
|
|
namespace torch { namespace jit {
|
|
|
|
std::string getPythonName(const PyObject* obj_) {
|
|
AutoGIL gil;
|
|
PyObject* obj = const_cast<PyObject*>(obj_);
|
|
auto v = py::getattr(obj, "__name__", py::str("<python_value>"));
|
|
// if this was a autograd.Function recover the name of the class
|
|
return py::str(v);
|
|
}
|
|
|
|
std::ostream& printPyObject(std::ostream & out, const THPObjectPtr& obj) {
|
|
AutoGIL gil;
|
|
auto pyobj = py::handle(const_cast<PyObject*>(obj.get()));
|
|
if (py::isinstance<py::tuple>(pyobj)) {
|
|
// This special-case for printing tuples handles a problem where
|
|
// str((2L, 3L)) outputs "(2L, 3L)" in Python 2 but "(2, 3)"
|
|
// in Python 3. In order to suppress the L-suffix, we must
|
|
// manually print the string ourselves, calling str() on the
|
|
// sub-elements.
|
|
//
|
|
// This is a fairly fragile fix (What if you have nested tuples
|
|
// in tuples? What if you have dictionaries?) but it seems to hit
|
|
// the cases that are triggered in practice in onnx-pytorch. Revisit
|
|
// this code if this is not the case.
|
|
//
|
|
// By the way, one non-solution for this problem is to monkeypatch
|
|
// tuple.__str__; this doesn't work because Python doesn't allow
|
|
// monkeypatching methods of built-in types.
|
|
auto pytuple = pyobj.cast<py::tuple>();
|
|
out << "(";
|
|
size_t i = 0;
|
|
for (const auto& o : pytuple) {
|
|
if (i > 0) {
|
|
out << ", ";
|
|
}
|
|
THPObjectPtr str(py::str(o).release().ptr());
|
|
out << THPUtils_unpackString(str.get());
|
|
i++;
|
|
}
|
|
if (i == 1) {
|
|
out << ",";
|
|
}
|
|
out << ")";
|
|
return out;
|
|
} else {
|
|
return out << THPUtils_unpackString(py::str(pyobj).ptr());
|
|
}
|
|
}
|
|
|
|
// execute a Python function, used for Ops we can't optimize but that we want to optimize around
|
|
struct ConcretePythonOp : public PythonOp {
|
|
ConcretePythonOp(Graph * graph)
|
|
: PythonOp(graph) {}
|
|
virtual std::string name() const override {
|
|
AutoGIL gil;
|
|
if(auto autograd = autogradFunction()) {
|
|
return getPythonName(autograd->get());
|
|
} else {
|
|
return getPythonName(pyobj.get());
|
|
}
|
|
}
|
|
virtual void cloneFrom(Node * other_) override {
|
|
Node::cloneFrom(other_);
|
|
auto other = other_->cast<PythonOp>();
|
|
this->cconv = other->cconv;
|
|
Py_INCREF(other->pyobj.get());
|
|
this->pyobj = THPObjectPtr(other->pyobj.get());
|
|
for(auto & sa : other->scalar_args) {
|
|
Py_INCREF(sa.get());
|
|
this->scalar_args.emplace_back(sa.get());
|
|
}
|
|
}
|
|
virtual Node * allocNewInstance(Graph * g) override {
|
|
return new ConcretePythonOp(g);
|
|
}
|
|
// recover the autograd.Function instance, if this PythonOp's function
|
|
// was originally SomeFunction.apply
|
|
// used in ONNX for discovering symbolics
|
|
virtual at::optional<THPObjectPtr> autogradFunction() const override {
|
|
AutoGIL gil;
|
|
py::handle obj = const_cast<PyObject*>(pyobj.get());
|
|
|
|
auto r = py::getattr(obj, "__self__", py::none());
|
|
if(r.is_none())
|
|
return at::nullopt;
|
|
|
|
auto apply = py::getattr(r, "apply", py::none());
|
|
if(apply.is_none())
|
|
return at::nullopt;
|
|
|
|
auto c = PyObject_RichCompareBool(apply.ptr(), obj.ptr(), Py_NE);
|
|
if(PyErr_Occurred())
|
|
throw py::error_already_set();
|
|
if(c)
|
|
return at::nullopt;
|
|
|
|
return THPObjectPtr(r.release().ptr());
|
|
}
|
|
|
|
virtual void writeScalars(std::ostream& out) const override {
|
|
out << "(";
|
|
int i = 0;
|
|
for (auto& scalar : scalar_args) {
|
|
if (i++ > 0)
|
|
out << ", ";
|
|
printPyObject(out, scalar);
|
|
}
|
|
out << ")";
|
|
}
|
|
|
|
};
|
|
|
|
PythonOp* pythonAllocPythonOp(Graph* g) {
|
|
return new ConcretePythonOp(g);
|
|
}
|
|
|
|
void initPythonIRBindings(PyObject * module_) {
|
|
setAllocPythonOp(pythonAllocPythonOp);
|
|
|
|
auto m = py::handle(module_).cast<py::module>();
|
|
#define GS(name) \
|
|
def(#name,&Graph :: name)
|
|
py::class_<Graph,std::shared_ptr<Graph>>(m,"Graph")
|
|
.def(py::init<>())
|
|
.def("__repr__",[](Graph & g) {
|
|
std::stringstream ss;
|
|
ss << g;
|
|
return ss.str();
|
|
})
|
|
.def("propagate_shapes", [](Graph& g, std::vector<at::Tensor> inputs, bool with_grad) {
|
|
setInputTypes(g, ArgumentSpec(with_grad, fmap<IValue>(inputs), inputs.size()));
|
|
PropagateInputShapes(g);
|
|
})
|
|
.def("export", [](const std::shared_ptr<Graph> g, const std::vector<at::Tensor>& initializers,
|
|
int64_t onnx_opset_version, bool defer_weight_export,
|
|
::torch::onnx::OperatorExportTypes operator_export_type) {
|
|
std::string graph;
|
|
RawDataExportMap export_map;
|
|
std::tie(graph, export_map) = ExportGraph(
|
|
g, initializers, onnx_opset_version, defer_weight_export, operator_export_type);
|
|
std::unordered_map<std::string, py::bytes> python_serialized_export_map;
|
|
for (auto& kv : export_map) {
|
|
auto t = kv.second;
|
|
size_t copy_bytes = t.type().elementSizeInBytes() * t.numel();
|
|
// TODO: this is an unecessary copy. In theory we can directly return
|
|
// the map from identifier to Tensor, but we need some API in Python
|
|
// to get raw `bytes` containing the raw tensor data.
|
|
python_serialized_export_map[kv.first] = py::bytes(static_cast<const char*>(t.data_ptr()), copy_bytes);
|
|
}
|
|
return std::make_tuple(py::bytes(graph), python_serialized_export_map);
|
|
}, py::arg("initializers"),
|
|
py::arg("onnx_opset_version")=0,
|
|
py::arg("defer_weight_export")=false,
|
|
py::arg("operator_export_type")=::torch::onnx::OperatorExportTypes::ONNX)
|
|
.def("prettyPrintExport", [](const std::shared_ptr<Graph> g,
|
|
const std::vector<at::Tensor>& initializers,
|
|
int64_t onnx_opset_version, bool defer_weight_export,
|
|
::torch::onnx::OperatorExportTypes operator_export_type,
|
|
bool google_printer) {
|
|
return PrettyPrintExportedGraph(
|
|
g, initializers, onnx_opset_version, defer_weight_export, operator_export_type,
|
|
google_printer);
|
|
}, py::arg("initializers"),
|
|
py::arg("onnx_opset_version")=0,
|
|
py::arg("defer_weight_export")=false,
|
|
py::arg("operator_export_type")=::torch::onnx::OperatorExportTypes::ONNX,
|
|
py::arg("google_printer")=false)
|
|
.def("inputs",[](Graph &g) {
|
|
return py::make_iterator(g.inputs().begin(), g.inputs().end());
|
|
})
|
|
.def("outputs",[](Graph &g) {
|
|
return py::make_iterator(g.outputs().begin(), g.outputs().end());
|
|
})
|
|
// TODO: Iterator invalidation might make this hazardous
|
|
.def("nodes",[](Graph &g) {
|
|
return py::make_iterator(g.nodes().begin(), g.nodes().end());
|
|
})
|
|
.def("addInput",[](Graph &g) { return g.addInput(); })
|
|
.def("copy",[](Graph &g) {
|
|
return g.copy();
|
|
})
|
|
.GS(advanceStage)
|
|
.GS(stage)
|
|
.GS(eraseInput)
|
|
.GS(registerOutput)
|
|
.def("create",[](Graph & g, const char * str) {
|
|
return g.create(Symbol::fromQualString(str));
|
|
})
|
|
.def("create",[](Graph & g, const char * str, size_t noutputs) {
|
|
return g.create(Symbol::fromQualString(str), noutputs);
|
|
})
|
|
.def("create",[](Graph & g, const char * str, const std::vector<Value*> & inputs) {
|
|
return g.create(Symbol::fromQualString(str),inputs);
|
|
})
|
|
.def("create",[](Graph & g, const char * str, const std::vector<Value*> & inputs, size_t noutputs) {
|
|
return g.create(Symbol::fromQualString(str),inputs, noutputs);
|
|
})
|
|
.def("param_node", [](Graph &g) {
|
|
return g.block()->param_node();
|
|
})
|
|
.def("return_node", [](Graph &g) {
|
|
return g.block()->return_node();
|
|
})
|
|
.def("pretty_print", [](Graph &g) {
|
|
std::ostringstream oss;
|
|
g.prettyPrint(oss);
|
|
return oss.str();
|
|
})
|
|
.GS(createFusionGroup)
|
|
.def("createClone",[](Graph & g, Node * n, py::object fn) {
|
|
return g.createClone(n, [&](Value * e) {
|
|
return fn(e).cast<Value*>();
|
|
});
|
|
})
|
|
.GS(appendNode)
|
|
.GS(prependNode)
|
|
.GS(lint)
|
|
.GS(insertNode)
|
|
;
|
|
#undef GS
|
|
|
|
#define VS(name) \
|
|
def(#name,&Value :: name)
|
|
py::class_<Value,std::unique_ptr<Value, py::nodelete>>(m,"Value")
|
|
.def("__repr__",[](Value & n) {
|
|
std::stringstream ss;
|
|
ss << n.uniqueName() << " defined in (" << *n.node() << ")";
|
|
return ss.str();
|
|
})
|
|
.VS(type)
|
|
.VS(setType)
|
|
.VS(inferTypeFrom)
|
|
// skip owningGraph because it returns a raw pointer to a otherwise
|
|
// std::shared_ptr stored graph object, and would cause a double free
|
|
.VS(unique)
|
|
.VS(uniqueName)
|
|
.VS(setUniqueName)
|
|
.VS(setStage)
|
|
.VS(stage)
|
|
.VS(offset)
|
|
.VS(uses)
|
|
.VS(replaceAllUsesWith)
|
|
.def("node",[](Value &v) { return v.node(); })
|
|
.def("setTypeAs", [](Value * node, Value * other) {
|
|
node->setType(other->type());
|
|
return node;
|
|
})
|
|
.VS(copyMetadata)
|
|
.VS(isTensor)
|
|
;
|
|
|
|
#undef VS
|
|
|
|
py::class_<Block, std::unique_ptr<Block, py::nodelete>>(m, "Block")
|
|
.def("nodes",[](Block &b) {
|
|
return py::make_iterator(b.nodes().begin(), b.nodes().end());
|
|
});
|
|
|
|
#define NS(name) \
|
|
def(#name,&Node :: name)
|
|
py::class_<Node,std::unique_ptr<Node, py::nodelete>>(m,"Node")
|
|
.def("__repr__",[](Node & n) {
|
|
std::stringstream ss;
|
|
ss << n;
|
|
return ss.str();
|
|
})
|
|
.def("getSourceLocation", [](Node & n) -> py::object {
|
|
std::stringstream ss;
|
|
if (auto sl = n.getSourceLocation()) {
|
|
sl->highlight(ss);
|
|
return py::str(ss.str());
|
|
} else {
|
|
return py::none();
|
|
}
|
|
})
|
|
.def("hasMultipleOutputs",[](Node&n) {
|
|
return n.outputs().size() > 1;
|
|
})
|
|
.def("outputsSize",[](Node &n) {
|
|
return n.outputs().size();
|
|
})
|
|
.NS(kind)
|
|
.NS(stage)
|
|
.NS(setStage)
|
|
.def("inputs",[](Node &n) {
|
|
return py::make_iterator(n.inputs().begin(), n.inputs().end());
|
|
})
|
|
.def("outputs",[](Node &n) {
|
|
return py::make_iterator(n.outputs().begin(), n.outputs().end());
|
|
})
|
|
.def("output", [](Node &n) {
|
|
return n.output();
|
|
})
|
|
.NS(addInput)
|
|
.NS(replaceInput)
|
|
.NS(replaceInputWith)
|
|
.NS(replaceAllUsesWith)
|
|
.NS(insertBefore)
|
|
.NS(insertAfter)
|
|
.NS(moveAfter)
|
|
.NS(moveBefore)
|
|
.NS(removeInput)
|
|
.NS(removeAllInputs)
|
|
.NS(destroy)
|
|
.NS(hasUses)
|
|
.NS(eraseOutput)
|
|
.NS(addOutput)
|
|
.NS(scopeName)
|
|
.NS(isNondeterministic)
|
|
.def("blocks", [](Node& n) {
|
|
return py::make_iterator(n.blocks().begin(), n.blocks().end());
|
|
})
|
|
.NS(addBlock)
|
|
|
|
#define AS(name) def(#name,&Attributes<Node> :: name)
|
|
// methods from Attributes
|
|
.AS(copyAttributes)
|
|
.AS(hasAttributes)
|
|
#undef AS
|
|
#define AS(name) def(#name,&Attributes<Node> :: name ## S)
|
|
// The default method names take Symbol, but the string conversion for
|
|
// Symbol you to qualify with attr::. This is not very user friendly
|
|
// for attributes, so expose the string variants instead.
|
|
.AS(hasAttribute)
|
|
.AS(kindOf)
|
|
.AS(removeAttribute)
|
|
.AS(attributeNames)
|
|
#undef AS
|
|
#define CREATE_ACCESSOR(Kind,method) \
|
|
def(#method "_",[](Node & n, const char * name, Kind##Attr::ValueType v) { \
|
|
return n . method ## _(Symbol::attr(name), std::move(v)); \
|
|
}) \
|
|
.def(#method, [](Node & n, const char * name) { \
|
|
return n.method(Symbol::attr(name)); \
|
|
})
|
|
.CREATE_ACCESSOR(Float,f)
|
|
.CREATE_ACCESSOR(Floats,fs)
|
|
.CREATE_ACCESSOR(String,s)
|
|
.CREATE_ACCESSOR(Strings,ss)
|
|
.CREATE_ACCESSOR(Int,i)
|
|
.CREATE_ACCESSOR(Ints,is)
|
|
.CREATE_ACCESSOR(Graph,g)
|
|
.CREATE_ACCESSOR(Graphs,gs)
|
|
#undef CREATE_ACCESSOR
|
|
// Tensor (t_) -- manually written to unwrap the variable into a tensor.
|
|
.def("t_",[](Node & n, const char * name, torch::autograd::Variable v) {
|
|
return n.t_(Symbol::attr(name), std::move(v.data()));
|
|
})
|
|
.def("t", [](Node & n, const char * name) {
|
|
return torch::autograd::make_variable(n.t(Symbol::attr(name)), /*requires_grad=*/false);
|
|
})
|
|
// Tensors (ts_) -- manually written to unwrap variables into tensors.
|
|
.def("ts_",[](Node & n, const char * name, std::vector<torch::autograd::Variable> vs) {
|
|
std::vector<at::Tensor> tensors;
|
|
tensors.reserve(vs.size());
|
|
for (auto& variable : vs) {
|
|
tensors.push_back(std::move(variable.data()));
|
|
}
|
|
return n.ts_(Symbol::attr(name), std::move(tensors));
|
|
})
|
|
.def("ts", [](Node & n, const char * name) {
|
|
auto tensors = n.ts(Symbol::attr(name));
|
|
std::vector<torch::autograd::Variable> variables;
|
|
variables.reserve(tensors.size());
|
|
for (auto& tensor : tensors) {
|
|
variables.push_back(torch::autograd::make_variable(
|
|
std::move(tensor), /*requires_grad=*/false));
|
|
}
|
|
return variables;
|
|
})
|
|
.def("z_",[](Node & n, const char * name, at::Tensor v) {
|
|
return n.t_(Symbol::attr(name), autograd::Variable(v.view({})).data());
|
|
})
|
|
.def("z",[](Node & n, const char * name) {
|
|
return n.t(Symbol::attr(name));
|
|
})
|
|
.def("zs_",[](Node & n, const char * name, TensorsAttr::ValueType v) {
|
|
for (size_t i = 0; i < v.size(); ++ i) {
|
|
v[i] = autograd::Variable(v[i].view({})).data();
|
|
}
|
|
return n.ts_(Symbol::attr(name), std::move(v));
|
|
})
|
|
.def("zs",[](Node & n, const char * name) {
|
|
return n.ts(Symbol::attr(name));
|
|
})
|
|
.def("pyobj",[](Node & n) {
|
|
return py::handle(n.expect<PythonOp>()->pyobj.get()).cast<py::object>();
|
|
})
|
|
.def("cconv",[](Node & n) {
|
|
return n.expect<PythonOp>()->cconv;
|
|
})
|
|
.def("pyname",[](Node & n) {
|
|
return n.expect<PythonOp>()->name();
|
|
})
|
|
.def("scalar_args",[](Node & n) {
|
|
auto op = n.expect<PythonOp>();
|
|
auto scalars = py::list();
|
|
auto append = scalars.attr("append");
|
|
for(auto & arg : op->scalar_args) {
|
|
append(py::handle(arg.get()));
|
|
}
|
|
return scalars;
|
|
})
|
|
;
|
|
|
|
py::class_<Type,std::shared_ptr<Type>>(m,"Type")
|
|
.def("__repr__",[](Type & t) {
|
|
return t.python_str();
|
|
})
|
|
.def("str",[](Type & t) {
|
|
std::ostringstream s;
|
|
s << t;
|
|
return s.str();
|
|
})
|
|
.def("kind",[](Type& t_) {
|
|
Type * t = &t_;
|
|
switch(t->kind()) {
|
|
case TypeKind::DynamicType:
|
|
return "DynamicType";
|
|
case TypeKind::TensorType:
|
|
return "TensorType";
|
|
case TypeKind::NumberType:
|
|
return "NumberType";
|
|
case TypeKind::NoneType:
|
|
return "NoneType";
|
|
case TypeKind::UndefinedTensorType:
|
|
return "UndefinedTensorType";
|
|
case TypeKind::CompleteTensorType:
|
|
return "CompleteTensorType";
|
|
case TypeKind::TupleType:
|
|
return "TupleType";
|
|
case TypeKind::ListType:
|
|
return "ListType";
|
|
case TypeKind::IntType:
|
|
return "IntType";
|
|
case TypeKind::FloatType:
|
|
return "FloatType";
|
|
case TypeKind::StringType:
|
|
return "StringType";
|
|
case TypeKind::GeneratorType:
|
|
return "GeneratorType";
|
|
case TypeKind::VarType:
|
|
return "VarType";
|
|
}
|
|
// not reachable, but some compilers complain
|
|
AT_ERROR("Unknown Type Kind");
|
|
})
|
|
.def("sizes",[](Type& t) {
|
|
return t.expect<CompleteTensorType>()->sizes();
|
|
})
|
|
.def("strides",[](Type& t) {
|
|
return t.expect<CompleteTensorType>()->strides();
|
|
})
|
|
.def("contiguous",[](Type& t) {
|
|
return std::static_pointer_cast<Type>(t.expect<CompleteTensorType>()->contiguous());
|
|
})
|
|
.def("scalarType",[](Type& t) {
|
|
return at::toString(t.expect<TensorType>()->scalarType());
|
|
})
|
|
.def("__eq__", [](std::shared_ptr<Type>& self, std::shared_ptr<Type>& other) {
|
|
return *self == *other;
|
|
})
|
|
.def("isSubtypeOf", [](std::shared_ptr<Type>& self, std::shared_ptr<Type> other) {
|
|
return self->isSubtypeOf(other);
|
|
})
|
|
.def_static("inferFrom", inferTypeFrom);
|
|
|
|
py::class_<NumberType, Type, std::shared_ptr<NumberType>>(m, "NumberType")
|
|
.def_static("get", &NumberType::get);
|
|
py::class_<IntType, Type, std::shared_ptr<IntType>>(m, "IntType")
|
|
.def_static("get", &IntType::get);
|
|
py::class_<FloatType, Type, std::shared_ptr<FloatType>>(m, "FloatType")
|
|
.def_static("get", &FloatType::get);
|
|
py::class_<DynamicType, Type, std::shared_ptr<DynamicType>>(m, "DynamicType")
|
|
.def_static("get", &DynamicType::get);
|
|
|
|
py::class_<TupleType, Type, std::shared_ptr<TupleType>>(m, "TupleType")
|
|
.def(py::init([](std::vector<TypePtr> a){ return TupleType::create(a); }))
|
|
.def("elements", [](TupleType &self){
|
|
std::vector<TypePtr> types;
|
|
for (auto type : self.elements()) {
|
|
types.push_back(type);
|
|
}
|
|
return types;
|
|
});
|
|
py::class_<ListType, Type, std::shared_ptr<ListType>>(m, "ListType")
|
|
.def_static("ofInts", &ListType::ofInts)
|
|
.def_static("ofTensors", &ListType::ofTensors)
|
|
.def("getElementType", &ListType::getElementType);
|
|
|
|
py::class_<Use>(m,"Use")
|
|
.def_readonly("user",&Use::user)
|
|
.def_readonly("offset",&Use::offset);
|
|
}
|
|
}}
|