pytorch/test/cpp/jit/test_lite_interpreter.cpp
Jacob Szwejbka 474d7ec43b [Pytorch Edge] Black Box Compatibility API (#61477)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61477

It would be nice if the compatibility api was just kinda plug and play with no care about the internals of the api at all. Thats what this diff aims to provide.

The general usage would be something like
  < On the Client >
  RuntimeCompatibilityInfo runtime_info = get_runtime_compatibility_info();

  .
  .
  .
  < On the Server >
  ModelCompatibilityInfo model_info = get_model_compatibility_info(<model_path>);
  bool compatible = is_compatible(runtime_info, model_info);

Currently RuntimeCompatibilityInfo and ModelCompatibilityInfo are exactly the same, but it seemed feasible to me that they may end up diverging as more information is added to the api (such as a min supported bytecode version being exposed from the runtime).

Test Plan: unit test and ci

Reviewed By: dhruvbird, raziel

Differential Revision: D29624080

fbshipit-source-id: 43c1ce15531f6f1a92f357f9cde4e6634e561700
2021-08-03 11:27:28 -07:00

1454 lines
43 KiB
C++

#include <test/cpp/jit/test_utils.h>
#include <gtest/gtest.h>
#include <c10/core/TensorOptions.h>
#include <torch/csrc/autograd/generated/variable_factories.h>
#include <torch/csrc/jit/api/module.h>
#include <torch/csrc/jit/frontend/resolver.h>
#include <torch/csrc/jit/mobile/backport.h>
#include <torch/csrc/jit/mobile/backport_manager.h>
#include <torch/csrc/jit/mobile/import.h>
#include <torch/csrc/jit/mobile/model_compatibility.h>
#include <torch/csrc/jit/mobile/module.h>
#include <torch/csrc/jit/mobile/runtime_compatibility.h>
#include <torch/csrc/jit/serialization/export.h>
#include <torch/csrc/jit/serialization/import.h>
#include <torch/custom_class.h>
#include <torch/torch.h>
#include <unordered_set>
// Tests go in torch::jit
namespace torch {
namespace jit {
TEST(LiteInterpreterTest, UpsampleNearest2d) {
Module m("m");
m.define(R"(
def forward(self, input: Tensor, scale:float):
return torch.upsample_nearest2d(input, [1, 1], float(scale), float(scale))
)");
std::vector<IValue> inputs;
inputs.emplace_back(torch::rand({1, 3, 128, 128}));
inputs.emplace_back(at::Scalar(2.0));
auto ref = m.forward(inputs);
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
IValue res;
res = bc.forward(inputs);
auto resd = res.toTensor();
auto refd = ref.toTensor();
ASSERT_TRUE(resd.equal(refd));
}
TEST(LiteInterpreterTest, CheckAttrAccess) {
Module m("m");
m.register_attribute("mobile_optimized", BoolType::get(), true);
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
bool mobile_optimized = bc.attr("mobile_optimized", false).toBool();
AT_ASSERT(mobile_optimized);
m.setattr("mobile_optimized", false);
ss = std::stringstream();
m._save_for_mobile(ss);
bc = _load_for_mobile(ss);
mobile_optimized = bc.attr("mobile_optimized", false).toBool();
AT_ASSERT(!mobile_optimized);
}
TEST(LiteInterpreterTest, MethodInvocation) { // NOLINT (use =delete in gtest)
const std::vector<std::string> test_programs{
// test invoking a method with default parameter
R"(
def test_func(self, x, b : int = 4):
return self.foo + x + b
)",
// inner method call with default parameter (gets inlined)
R"(
def add_with_default_arg(self, x, b : int = 4):
return self.foo + x + b
def test_func(self, x):
return self.add_with_default_arg(x) # invoke method w/ default arg
)",
// simple method call
R"(
def test_func(self, x):
b = 4
return self.foo + x + b
)",
};
for (const auto& test_program : test_programs) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(test_program);
const int fortyTwo = 42; // (keep linter happy)
auto minput = fortyTwo * torch::ones({});
auto ref = m.run_method("test_func", minput);
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
const auto& test_func = bc.get_method("test_func");
IValue res;
for (int i = 0; i < 3; ++i) {
res = test_func({minput});
}
auto resd = res.toTensor().item<float>();
auto refd = ref.toTensor().item<float>();
AT_ASSERT(resd == refd);
}
}
TEST(LiteInterpreterTest, Conv) {
auto s = std::getenv("PYTORCH_TEST_WITH_TSAN");
if (s && strcmp(s, "1") == 0)
return;
std::vector<torch::jit::IValue> inputs;
Module m("m");
m.register_parameter("weight", torch::ones({20, 1, 5, 5}), false);
m.register_parameter("bias", torch::ones({20}), false);
m.define(R"(
def forward(self, input):
return torch._convolution(input, self.weight, self.bias, [1, 1], [0, 0], [1, 1], False, [0, 0], 1, False, False, True, True)
)");
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers,modernize-use-emplace)
inputs.push_back(torch::ones({1, 1, 28, 28}));
auto outputref = m.forward(inputs).toTensor();
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
IValue res;
for (int i = 0; i < 3; ++i) {
res = bc.get_method("forward")(inputs);
}
auto output = res.toTensor();
AT_ASSERT(outputref.dim() == output.dim());
AT_ASSERT(
outputref[0][0][0][0].item<int>() == output[0][0][0][0].item<int>());
}
TEST(LiteInterpreterTest, Inline) {
Module m("m");
m.define(R"JIT(
def foo1(self, x):
return x + 1
def foo2(self, x):
return self.foo1(x) + 2
def foo3(self, x):
return self.foo2(x) + 3
)JIT");
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
std::vector<torch::jit::IValue> inputs({torch::ones({})});
auto output = bc.get_method("foo3")(inputs);
AT_ASSERT(output.toTensor().item<float>() == 7.0);
}
TEST(LiteInterpreterTest, Tuple) {
Module m("m");
m.define(R"JIT(
def foo(self, x):
return (1, 2, x + 3)
def forward(self, x):
tuple = self.foo(x)
return tuple
)JIT");
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
std::vector<torch::jit::IValue> inputs({torch::ones({})});
auto output = bc.get_method("forward")(inputs);
AT_ASSERT(output.toTuple()->elements()[1].toInt() == 2);
}
TEST(LiteInterpreterTest, Dict) {
Module m("m");
m.define(R"JIT(
def foo(self, x):
return {"result": x + 1}
def forward(self, x):
d = self.foo(x)
return d
)JIT");
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
std::vector<torch::jit::IValue> inputs({torch::ones({})});
auto output = bc.get_method("forward")(inputs);
AT_ASSERT(output.toGenericDict().at("result").toTensor().item().toInt() == 2);
}
TEST(LiteInterpreterTest, PrimOverload) {
/*
// temporarily disabled
script::Module m("m");
m.define(R"JIT(
def forward(self, x):
result = [1, 2]
result.append(3)
return result
)JIT");
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
std::vector<torch::jit::IValue> inputs({torch::ones({})});
auto output = bc.get_method("forward")(inputs);
AT_ASSERT(output.toIntList()[2] == 3);
*/
}
TEST(LiteInterpreterTest, Prim) {
Module m("m");
m.define(R"JIT(
def forward(self, x):
return int(x)
)JIT");
std::vector<IValue> inputs;
auto minput = 3.5 * torch::ones({});
inputs.emplace_back(minput);
auto ref = m.run_method("forward", minput);
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
IValue res;
for (int i = 0; i < 3; ++i) {
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
auto bcinputs = inputs;
res = bc.get_method("forward")(bcinputs);
}
auto resi = res.toInt();
auto refi = ref.toInt();
AT_ASSERT(resi == refi);
}
TEST(LiteInterpreterTest, PrimScalar) {
Module m("m");
m.define(R"JIT(
def forward(self, x):
return int(x.item())
)JIT");
std::vector<IValue> inputs;
auto minput = 3.5 * torch::ones({});
inputs.emplace_back(minput);
auto ref = m.run_method("forward", minput);
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
IValue res;
for (int i = 0; i < 3; ++i) {
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
auto bcinputs = inputs;
res = bc.get_method("forward")(bcinputs);
}
auto resi = res.toInt();
auto refi = ref.toInt();
AT_ASSERT(resi == refi);
}
TEST(LiteInterpreterTest, LoadOrigJit) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def forward(self, x):
b = 4
return self.foo + x + b
)");
std::stringstream ss;
m.save(ss);
ASSERT_THROWS_WITH_MESSAGE(_load_for_mobile(ss), "file not found");
}
TEST(LiteInterpreterTest, WrongMethodName) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def add(self, x):
b = 4
return self.foo + x + b
)");
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
std::vector<IValue> inputs;
auto minput = 5 * torch::ones({});
inputs.emplace_back(minput);
ASSERT_THROWS_WITH_MESSAGE(
bc.get_method("forward")(inputs), "is not defined");
}
TEST(LiteInterpreterTest, SetState) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def __getstate__(self):
return self.foo + self.foo
def __setstate__(self, a):
self.foo = a
def forward(self, x):
b = 4
return self.foo + x + b
)");
std::vector<IValue> inputs;
auto minput = 5 * torch::ones({});
inputs.emplace_back(minput);
std::stringstream ms;
m.save(ms);
auto loaded_m = load(ms);
auto ref = loaded_m.run_method("forward", minput);
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
IValue res;
for (int i = 0; i < 3; ++i) {
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
auto bcinputs = inputs;
res = bc.get_method("forward")(bcinputs);
}
auto resd = res.toTensor().item<float>();
auto refd = ref.toTensor().item<float>();
AT_ASSERT(resd == refd);
}
class TorchBindLiteInterpreterTestStruct
: public torch::jit::CustomClassHolder {
public:
std::string get(at::Tensor t) {
std::stringstream ss;
ss << "Hello! Your tensor has ";
ss << t.numel();
ss << " elements!";
return ss.str();
}
};
namespace {
struct ClassNamespaceValue : public SugaredValue {
explicit ClassNamespaceValue(c10::QualifiedName name)
: basename_(std::move(name)) {}
std::shared_ptr<SugaredValue> attr(
const SourceRange& loc,
Function& m,
const std::string& name) override {
const auto fullName = c10::QualifiedName(basename_, name);
// Check to see if it is a custom class.
if (auto custom_class = getCustomClass(fullName.qualifiedName())) {
return std::make_shared<ClassValue>(custom_class);
}
// If it's not a custom class, assume it's another namespace
// NOLINTNEXTLINE(performance-move-const-arg)
return std::make_shared<ClassNamespaceValue>(std::move(fullName));
}
std::string kind() const override {
return "Class Namespace";
}
private:
c10::QualifiedName basename_;
};
struct TestModuleResolver : public Resolver {
std::shared_ptr<SugaredValue> resolveValue(
const std::string& name,
Function& m,
const SourceRange& loc) override {
if (name == "torch") {
return std::make_shared<BuiltinModule>("aten");
} else if (name == "__torch__") {
return std::make_shared<ClassNamespaceValue>(c10::QualifiedName(name));
}
return nullptr;
}
TypePtr resolveType(const std::string& name, const SourceRange& loc)
override {
return nullptr;
}
};
} // namespace
TEST(LiteInterpreterTest, BuiltinClass) {
script::Module m("m");
auto cls = getCustomClass(
"__torch__.torch.classes._TorchScriptTesting._LiteInterpreterTest");
TORCH_INTERNAL_ASSERT(cls);
c10::intrusive_ptr<torch::CustomClassHolder> obj_holder;
m.register_attribute("my_obj", cls, IValue::make_capsule(obj_holder));
m.register_parameter("foo", torch::ones({}), false);
m.define(
R"(
def __getstate__(self):
return 1
def __setstate__(self, a):
self.my_obj = __torch__.torch.classes._TorchScriptTesting._LiteInterpreterTest()
def forward(self, x) -> str:
return self.my_obj.get(x)
)",
std::make_shared<TestModuleResolver>());
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
auto res =
bc.get_method("forward")(std::vector<IValue>{torch::zeros({3, 4})});
const auto& str = res.toStringRef();
std::string expected = "Hello! Your tensor has 12 elements!";
AT_ASSERT(str == expected);
}
TEST(LiteInterpreterTest, BuiltinFunction) {
script::Module m("m");
auto custom_class_obj =
make_custom_class<TorchBindLiteInterpreterTestStruct>();
m.register_attribute("my_obj", custom_class_obj.type(), custom_class_obj);
m.define(R"(
def forward(self, x) -> str:
return self.my_obj.get(x)
)");
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
auto res =
bc.get_method("forward")(std::vector<IValue>{torch::zeros({3, 4})});
// NOLINTNEXTLINE(performance-unnecessary-copy-initialization)
auto str = res.toStringRef();
std::string expected = "Hello! Your tensor has 12 elements!";
AT_ASSERT(str == expected);
}
#if !defined FB_XPLAT_BUILD
TEST(LiteInterpreterTest, ModuleInfoBasic) {
Module m("M");
m.define(R"JIT(
def forward(self, x):
return 2 * x
)JIT");
std::stringstream ss;
m._save_for_mobile(ss, {}, true);
mobile::Module bc = _load_for_mobile(ss);
std::unordered_set<std::string> module_debug_info_set;
size_t pc = 0;
while (true) {
try {
std::string module_info = bc.get_forward_method_debug_info(pc);
if (!module_info.empty() &&
(module_info.find("debug_handle") == std::string::npos)) {
module_debug_info_set.insert(module_info);
}
++pc;
} catch (const std::exception& e) {
break;
}
}
AT_ASSERT(module_debug_info_set.count("top(M).aten::mul"));
}
TEST(LiteInterpreterTest, NotSaveModuleInfo) {
Module m("M");
m.define(R"JIT(
def forward(self, x):
return x + 5
)JIT");
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
size_t pc = 0;
while (true) {
try {
std::string module_info = bc.get_forward_method_debug_info(pc);
AT_ASSERT(
module_info.empty() ||
(module_info.find("debug_handle") != std::string::npos));
++pc;
} catch (const std::exception& e) {
break;
}
}
}
TEST(LiteInterpreterTest, OneSubmoduleModuleInfo) {
Module a("A");
a.define(R"JIT(
def forward(self, x):
return 2 * x + 5
)JIT");
Module b("B");
b.register_module("A0", a);
b.define(R"JIT(
def forward(self, x):
return self.A0.forward(x) + 1
)JIT");
std::stringstream ss;
b._save_for_mobile(ss, {}, true);
mobile::Module bc = _load_for_mobile(ss);
std::set<std::string> module_debug_info_set;
size_t pc = 0;
while (true) {
try {
std::string module_info = bc.get_forward_method_debug_info(pc);
if (!module_info.empty() &&
(module_info.find("debug_handle") == std::string::npos)) {
module_debug_info_set.insert(module_info);
}
++pc;
} catch (const std::exception& e) {
break;
}
}
AT_ASSERT(module_debug_info_set.count("top(B).aten::add"));
AT_ASSERT(module_debug_info_set.count("top(B).A0(A).aten::add"));
AT_ASSERT(module_debug_info_set.count("top(B).A0(A).aten::mul"));
}
TEST(LiteInterpreterTest, TwoSubmodulesModuleInfo) {
Module a("A");
a.define(R"JIT(
def forward(self, x):
return x + 1
)JIT");
Module b("B");
b.define(R"JIT(
def forward(self, x):
return x + 2
)JIT");
Module c("C");
c.register_module("A0", a);
c.register_module("B0", b);
c.define(R"JIT(
def forward(self, x):
return self.A0.forward(x) + self.B0.forward(x)
)JIT");
std::stringstream ss;
c._save_for_mobile(ss, {}, true);
mobile::Module bc = _load_for_mobile(ss);
std::set<std::string> module_debug_info_set;
size_t pc = 0;
while (true) {
try {
std::string module_info = bc.get_forward_method_debug_info(pc);
if (!module_info.empty() &&
(module_info.find("debug_handle") == std::string::npos)) {
module_debug_info_set.insert(module_info);
}
++pc;
} catch (const std::exception& e) {
break;
}
}
AT_ASSERT(module_debug_info_set.count("top(C).aten::add"));
AT_ASSERT(module_debug_info_set.count("top(C).A0(A).aten::add"));
AT_ASSERT(module_debug_info_set.count("top(C).B0(B).aten::add"));
}
TEST(LiteInterpreterTest, GetRuntimeByteCodeVersion) {
auto runtime_bytecode_version = _get_runtime_bytecode_version();
AT_ASSERT(
runtime_bytecode_version ==
caffe2::serialize::kMaxSupportedBytecodeVersion);
}
/**
* The test below is disarmed for FB internal xplat builds since
* BUCK requires us to pass in the script_module_v4.ptl file in
* as a resource dependency of the build rule for this file, and
* we would need to access it via the C++ Resources API instead
* of directly reading from disk (which is what the open source
* build/run does).
*/
TEST(LiteInterpreterTest, GetByteCodeVersion) {
std::string filePath(__FILE__);
auto test_model_file_v4 =
filePath.substr(0, filePath.find_last_of("/\\") + 1);
test_model_file_v4.append("script_module_v4.ptl");
auto version_v4 = _get_model_bytecode_version(test_model_file_v4);
AT_ASSERT(version_v4 == 4);
}
#endif // !defined(FB_XPLAT_BUILD)
namespace {
void compareModelOutput(
const std::vector<IValue>& actual_result_list,
const std::vector<Tensor>& expect_result_list) {
AT_ASSERT(actual_result_list.size() == expect_result_list.size());
AT_ASSERT(actual_result_list[0].toTensor().equal(expect_result_list[0]));
AT_ASSERT(
actual_result_list[1].toTensor().dim() == expect_result_list[1].dim());
AT_ASSERT(actual_result_list[2].toTensor().equal(expect_result_list[2]));
}
void runAndCheckTorchScriptModel(
std::stringstream& input_model_stream,
const std::vector<IValue>& input_data,
const std::vector<Tensor>& expect_result_list,
const int64_t expect_version) {
auto actual_version = _get_model_bytecode_version(input_model_stream);
AT_ASSERT(actual_version == expect_version);
// Load and run the backport model, then compare the result with expect
// result
Module m_mobile = load(input_model_stream);
auto actual_result = m_mobile.forward(input_data);
std::vector<IValue> actual_result_list = actual_result.toTuple()->elements();
compareModelOutput(actual_result_list, expect_result_list);
}
void runAndCheckBytecodeModel(
std::stringstream& input_model_stream,
const std::vector<IValue>& input_data,
const std::vector<Tensor>& expect_result_list,
const int64_t expect_version) {
auto actual_version = _get_model_bytecode_version(input_model_stream);
AT_ASSERT(actual_version == expect_version);
// Load and run the backport model, then compare the result with expect
// result
Module m_mobile = load(input_model_stream);
auto actual_result = m_mobile.forward(input_data);
std::vector<IValue> actual_result_list = actual_result.toTuple()->elements();
compareModelOutput(actual_result_list, expect_result_list);
}
void backportAllVersionCheck(
std::stringstream& test_model_file_stream,
std::vector<IValue>& input_data,
std::vector<Tensor>& expect_result_list,
const int64_t expect_from_version) {
auto from_version = _get_model_bytecode_version(test_model_file_stream);
AT_ASSERT(from_version == expect_from_version);
// Backport script_module_v5.ptl to an older version
constexpr int64_t minimum_to_version = 4;
int64_t current_to_version = from_version - 1;
// Verify all candidate to_version work as expected. All backport to version
// larger than minimum_to_version should success.
while (current_to_version >= minimum_to_version) {
// Do not declare std::stringstream oss outside of the while loop as
// oss.clear() doesn't reset the stream content, only clears out error state
// flag in stringstream causing a problematic stream. Instead, it's cleaner
// and safer to just declare a new std::stringstream one and swap them.
std::stringstream oss;
bool backPortSuccess =
_backport_for_mobile(test_model_file_stream, oss, current_to_version);
AT_ASSERT(backPortSuccess);
// Check backport model version
auto backport_version = _get_model_bytecode_version(oss);
AT_ASSERT(backport_version == current_to_version);
// Load and run the backport model, then compare the result with expect
// result
runAndCheckBytecodeModel(
oss, input_data, expect_result_list, current_to_version);
runAndCheckTorchScriptModel(
oss, input_data, expect_result_list, current_to_version);
current_to_version--;
}
// backport to minimum version - 1 should fail
std::stringstream oss;
bool backPortSuccess =
_backport_for_mobile(test_model_file_stream, oss, minimum_to_version - 1);
AT_ASSERT(!backPortSuccess);
}
} // namespace
#if !defined FB_XPLAT_BUILD
TEST(LiteInterpreterTest, BackPortByteCodeModelAllVersions) {
torch::jit::Module module("m");
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
module.register_parameter("weight", torch::ones({20, 1, 5, 5}), false);
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
module.register_parameter("bias", torch::ones({20}), false);
module.define(R"(
def forward(self, input):
x1 = torch.zeros(2, 2)
x2 = torch.empty_like(torch.empty(2, 2))
x3 = torch._convolution(input, self.weight, self.bias, [1, 1], [0, 0], [1, 1], False, [0, 0], 1, False, False, True, True)
return (x1, x2, x3)
)");
torch::jit::Module module_freeze = freeze(module);
std::stringstream input_model_stream;
module_freeze._save_for_mobile(input_model_stream);
std::vector<IValue> input_data =
std::vector<IValue>({torch::ones({1, 1, 28, 28})});
std::vector<Tensor> expect_result_list;
expect_result_list.emplace_back(at::ones({2, 2}, ScalarType::Float) * 0);
expect_result_list.emplace_back(at::ones({2, 2}, ScalarType::Float));
expect_result_list.emplace_back(
at::ones({1, 20, 24, 24}, ScalarType::Float) * 26);
backportAllVersionCheck(
input_model_stream,
input_data,
expect_result_list,
caffe2::serialize::kProducedBytecodeVersion);
}
#endif // !defined(FB_XPLAT_BUILD)
TEST(LiteInterpreterTest, GetRuntimeOpsAndInfo) {
auto runtime_ops = _get_runtime_ops_and_info();
// Ballpark estimate of the minimal number of ops; just used to
// verify API returns a reasonably large number.
AT_ASSERT(runtime_ops.size() > 2900);
}
TEST(LiteInterpreterTest, isCompatibleSuccess) {
// test trivial success case
auto runtime_info = get_runtime_compatibility_info();
std::unordered_map<std::string, OperatorInfo> model_ops;
model_ops["aten::add.Scalar"] = OperatorInfo{2};
auto model_info = ModelCompatibilityInfo{
caffe2::serialize::kMaxSupportedBytecodeVersion, model_ops};
AT_ASSERT(
is_compatible(runtime_info, model_info).status ==
ModelCompatibilityStatus::OK);
}
TEST(LiteInterpreterTest, isCompatibleFail) {
// test trivial failure due to ops
std::unordered_map<std::string, OperatorInfo> model_ops;
model_ops["aten::add.Scalar"] = OperatorInfo{2};
auto model_info = ModelCompatibilityInfo{
caffe2::serialize::kMaxSupportedBytecodeVersion, model_ops};
std::unordered_map<std::string, OperatorInfo> runtime_ops;
runtime_ops["aten::add.Int"] = OperatorInfo{2};
auto runtime_info = RuntimeCompatibilityInfo{
caffe2::serialize::kMaxSupportedBytecodeVersion, runtime_ops};
auto result = is_compatible(runtime_info, model_info);
AT_ASSERT(result.status = ModelCompatibilityStatus::ERROR);
AT_ASSERT(
result.errors[0] ==
"Operator 'aten::add.Scalar' missing from runtime (not found)");
// test trivial failure due to bytecode
runtime_ops["aten::add.Scalar"] = OperatorInfo{2};
runtime_info = RuntimeCompatibilityInfo{
caffe2::serialize::kMaxSupportedBytecodeVersion, runtime_ops};
model_info.bytecode_version =
caffe2::serialize::kMaxSupportedBytecodeVersion + 1;
result = is_compatible(runtime_info, model_info);
AT_ASSERT(result.status = ModelCompatibilityStatus::ERROR);
}
#if !defined FB_XPLAT_BUILD
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(LiteInterpreterTest, SequentialModuleInfo) {
Module a("A");
a.define(R"JIT(
def forward(self, x):
return x + 1
)JIT");
Module b("B");
b.define(R"JIT(
def forward(self, x):
return x + 2
)JIT");
Module c("C");
c.register_module("A0", a);
c.register_module("B0", b);
c.define(R"JIT(
def forward(self, x):
return self.A0.forward(self.B0.forward(x))
)JIT");
std::stringstream ss;
c._save_for_mobile(ss, {}, true);
mobile::Module bc = _load_for_mobile(ss);
std::set<std::string> module_debug_info_set;
size_t pc = 0;
while (true) {
try {
std::string module_info = bc.get_forward_method_debug_info(pc);
if (!module_info.empty() &&
(module_info.find("debug_handle") == std::string::npos)) {
module_debug_info_set.insert(module_info);
}
++pc;
} catch (const std::exception& e) {
break;
}
}
// class A(nn.Module):
// def __init__(self):
// super(A, self).__init__()
// def forward(self, x):
// return x + 1
// class B(nn.Module):
// def __init__(self):
// super(B, self).__init__()
// def forward(self, x):
// return x + 2
// class C(nn.Module):
// def __init__(self):
// super(C, self).__init__()
// self.A0 = A()
// self.B0 = B()
// def forward(self, x):
// return self.A0.forward(self.B0.forward(x))
AT_ASSERT(module_debug_info_set.count("top(C).prim::Return"));
AT_ASSERT(module_debug_info_set.count("top(C).A0(A).aten::add"));
AT_ASSERT(module_debug_info_set.count("top(C).B0(B).aten::add"));
}
TEST(LiteInterpreterTest, HierarchyModuleInfo) {
Module a("A");
a.define(R"JIT(
def forward(self, x):
return x + 1
)JIT");
Module b("B");
b.register_module("A0", a);
b.define(R"JIT(
def forward(self, x):
return self.A0.forward(x) + 1
)JIT");
Module c("C");
c.register_module("B0", b);
c.define(R"JIT(
def forward(self, x):
return self.B0.forward(x) + 1
)JIT");
std::stringstream ss;
c._save_for_mobile(ss, {}, true);
mobile::Module bc = _load_for_mobile(ss);
std::set<std::string> module_debug_info_set;
size_t pc = 0;
while (true) {
try {
std::string module_info = bc.get_forward_method_debug_info(pc);
if (!module_info.empty() &&
(module_info.find("debug_handle") == std::string::npos)) {
module_debug_info_set.insert(module_info);
}
++pc;
} catch (const std::exception& e) {
break;
}
}
// There are 3 module information strings here.
// "top(C).forward": for the add operator in top.
// "top(C).B0(B).forward": for the add operator in B0.
// "top(C).B0(B).forward.A0(A).forward": for the add operator in A0.
AT_ASSERT(module_debug_info_set.count("top(C).aten::add"));
AT_ASSERT(module_debug_info_set.count("top(C).B0(B).aten::add"));
AT_ASSERT(module_debug_info_set.count("top(C).B0(B).A0(A).aten::add"));
}
TEST(LiteInterpreterTest, DuplicatedClassTypeModuleInfo) {
Module a("A");
a.define(R"JIT(
def forward(self, x):
return x + 5
)JIT");
Module b("B");
b.register_module("A0", a);
b.register_module("A1", a);
b.define(R"JIT(
def forward(self, x):
return self.A0.forward(x) + self.A1.forward(x)
)JIT");
std::stringstream ss;
b._save_for_mobile(ss, {}, true);
mobile::Module bc = _load_for_mobile(ss);
std::set<std::string> module_debug_info_set;
size_t pc = 0;
while (true) {
try {
std::string module_info = bc.get_forward_method_debug_info(pc);
if (!module_info.empty() &&
(module_info.find("debug_handle") == std::string::npos)) {
module_debug_info_set.insert(module_info);
}
++pc;
} catch (const std::exception& e) {
break;
}
}
// class A(nn.Module):
// def __init__(self):
// super(A, self).__init__()
// def forward(self, x):
// return x + 5
// class B(nn.Module):
// def __init__(self):
// super(B, self).__init__()
// self.A0 = A()
// self.A1 = A()
// def forward(self, x):
// return self.A0.forward(x) + self.A1.forward(x)
// There are 3 module information strings here.
// "top(B).forward": for the add operator in top.
// "top(B).A0(A).forward": for the add operator in A0.
// "top(B).A1(A).forward": for the add operator in A1.
AT_ASSERT(module_debug_info_set.count("top(B).aten::add"));
AT_ASSERT(module_debug_info_set.count("top(B).A0(A).aten::add"));
AT_ASSERT(module_debug_info_set.count("top(B).A1(A).aten::add"));
}
#endif // !defined(FB_XPLAT_BUILD)
TEST(LiteInterpreterTest, Eval) {
std::vector<torch::jit::IValue> inputs;
Module m("m");
m.define(R"(
def __init__(self, x):
self.training = True
def forward(self, input):
return torch.dropout(input, 1.0, self.training)
)");
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers,modernize-use-emplace)
inputs.push_back(torch::ones({1, 1, 28, 28}));
m.eval();
auto outputref = m.forward(inputs).toTensor();
// save m in training mode to make sure that mobile eval() will correctly
// change back to eval mode
m.train();
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
bc.eval();
IValue res;
for (int i = 0; i < 3; ++i) {
res = bc.get_method("forward")(inputs);
}
auto output = res.toTensor();
AT_ASSERT(outputref.dim() == output.dim());
AT_ASSERT(
outputref[0][0][0][0].item<int>() == output[0][0][0][0].item<int>());
}
TEST(LiteInterpreterTest, FindWrongMethodName) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def add(self, x):
b = 4
return self.foo + x + b
)");
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
ASSERT_TRUE(bc.find_method("forward") == c10::nullopt);
}
TEST(LiteInterpreterTest, FindAndRunMethod) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def add_it(self, x):
b = 4
return self.foo + x + b
)");
std::vector<IValue> inputs;
auto minput = 5 * torch::ones({});
inputs.emplace_back(minput);
auto ref = m.get_method("add_it")(inputs);
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
IValue res;
for (int i = 0; i < 3; ++i) {
auto bcinputs = inputs;
auto method = bc.find_method("add_it");
AT_ASSERT(method != c10::nullopt);
res = (*method)(std::move(bcinputs));
}
auto resd = res.toTensor().item<float>();
auto refd = ref.toTensor().item<float>();
AT_ASSERT(resd == refd);
}
TEST(LiteInterpreterTest, RunMethodVariadic) {
Module m("m");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def add_three(self, x, y):
return self.foo + x + y
)");
std::vector<IValue> inputs;
auto inputx = 5 * torch::ones({});
auto inputy = 4 * torch::ones({});
auto ref = m.run_method("add_three", inputx, inputy);
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
IValue res = bc.run_method("add_three", inputx, inputy);
auto resd = res.toTensor().item<float>();
auto refd = ref.toTensor().item<float>();
AT_ASSERT(resd == refd);
}
TEST(LiteInterpreterTest, DuplicateSetState) {
Module m("M");
m.register_parameter("foo", torch::ones({}), false);
m.define(R"(
def __getstate__(self):
return self.foo + self.foo
def __setstate__(self, a):
self.foo = a
def forward(self, x):
b = 4
return self.foo + x + b
)");
Module b("B");
b.register_module("M0", m);
b.register_module("M1", m);
b.define(R"(
def forward(self, x):
return self.M0.forward(x) + self.M1.forward(x)
)");
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
const auto methods = bc.get_methods();
const size_t expected_n = 3;
ASSERT_EQ(methods.size(), expected_n);
}
TEST(LiteInterpreterTest, ExtraFiles) {
const auto script = R"JIT(
def forward(self):
x = torch.rand(5, 5)
x = x.mm(x)
return x
)JIT";
auto module =
std::make_shared<Module>("Module", std::make_shared<CompilationUnit>());
module->define(script);
std::ostringstream oss;
std::unordered_map<std::string, std::string> extra_files;
extra_files["metadata.json"] = "abc";
extra_files["mobile_info.json"] = "{\"key\": 23}";
module->_save_for_mobile(oss, extra_files);
std::istringstream iss(oss.str());
caffe2::serialize::IStreamAdapter adapter{&iss};
std::unordered_map<std::string, std::string> loaded_extra_files;
loaded_extra_files["metadata.json"] = "";
torch::jit::_load_for_mobile(iss, torch::kCPU, loaded_extra_files);
ASSERT_EQ(loaded_extra_files["metadata.json"], "abc");
loaded_extra_files.clear();
std::vector<std::string> all_files =
caffe2::serialize::PyTorchStreamReader(&iss).getAllRecords();
for (auto& file_name : all_files) {
if (file_name.find("extra/") == 0) {
loaded_extra_files[file_name.substr(6)] = "";
}
}
torch::jit::_load_for_mobile(iss, torch::kCPU, loaded_extra_files);
ASSERT_EQ(loaded_extra_files["metadata.json"], "abc");
ASSERT_EQ(loaded_extra_files["mobile_info.json"], "{\"key\": 23}");
}
TEST(LiteInterpreterTest, OpNameExportFetchRootOperators) {
torch::jit::Module m("m");
m.register_parameter("weight", torch::ones({20, 1, 5, 5}), false);
m.register_parameter("bias", torch::ones({20}), false);
m.define(R"(
def forward(self, input):
x1 = torch.zeros(2, 2)
x2 = torch.empty_like(torch.empty(2, 2))
x3 = torch._convolution(input, self.weight, self.bias, [1, 1], [0, 0], [1, 1], False, [0, 0], 1, False, False, True, True)
return (x1, x2, x3)
)");
m.eval();
std::stringstream ss;
m._save_for_mobile(ss);
torch::jit::mobile::Module ptl_model = torch::jit::_load_for_mobile(ss);
std::set<std::string> operator_names =
torch::jit::mobile::_export_operator_list(ptl_model);
std::set<std::string> expected_operator_names = {
"aten::_convolution",
"aten::empty.memory_format",
"aten::empty_like",
"aten::zeros",
};
EXPECT_EQ(operator_names, expected_operator_names)
<< "Expected the root operator lists to be the same";
}
TEST(LiteInterpreterTest, DefaultArgsConv) {
auto s = std::getenv("PYTORCH_TEST_WITH_TSAN");
if (s && strcmp(s, "1") == 0)
return;
std::vector<torch::jit::IValue> inputs;
Module m("m");
m.register_parameter("weight", torch::ones({20, 1, 5, 5}), false);
m.register_parameter("bias", torch::ones({20}), false);
m.define(R"(
def forward(self, input):
return torch.conv2d(input, self.weight, self.bias, [1, 1], [0, 0], [1, 1], 1)
)");
inputs.push_back(torch::ones({1, 1, 28, 28}));
auto outputref = m.forward(inputs).toTensor();
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
IValue res;
for (int i = 0; i < 1; ++i) {
res = bc.get_method("forward")(inputs);
}
auto output = res.toTensor();
AT_ASSERT(outputref.dim() == output.dim());
AT_ASSERT(output.equal(outputref));
}
namespace {
void testLiteModuleCompareResultTensors(
Module& m,
const std::vector<torch::jit::IValue>& inputs,
const std::string& method_name = "forward") {
auto outputref = m.get_method(method_name)(inputs).toTensor();
std::stringstream ss;
m._save_for_mobile(ss);
mobile::Module bc = _load_for_mobile(ss);
IValue res;
for (int i = 0; i < 3; ++i) {
res = bc.get_method(method_name)(inputs);
}
auto output = res.toTensor();
AT_ASSERT(outputref.dim() == output.dim());
AT_ASSERT(output.equal(outputref));
}
void testDefaultArgsPinv(int num_args) {
Module m("m");
if (num_args == 1) {
m.define(R"(
def forward(self, input):
return torch.linalg_pinv(input)
)");
} else if (num_args == 2) {
m.define(R"(
def forward(self, input):
return torch.linalg_pinv(input, 1e-5)
)");
} else if (num_args == 3) {
m.define(R"(
def forward(self, input):
return torch.linalg_pinv(input, 1e-5, True)
)");
}
std::vector<torch::jit::IValue> inputs;
const int N = 28;
auto input = torch::range(1, N * N, 1);
input[0] = 1; // a more stable matrix
input = input.view({N, N});
inputs.push_back(input);
testLiteModuleCompareResultTensors(m, inputs);
}
} // namespace
#if !defined FB_XPLAT_BUILD
TEST(LiteInterpreterTest, DefaultArgsPinv) {
// Test with different number of specified arguments.
// Arguments not specified take default value.
for (int num_args = 1; num_args <= 3; ++num_args) {
testDefaultArgsPinv(num_args);
}
// bytecode with one specified argument:
// (6,
// ('__torch__.m.forward',
// (('instructions',
// (('STOREN', 1, 2),
// ('DROPR', 1, 0),
// ('MOVE', 2, 0),
// ('OP', 0, 0),
// ('RET', 0, 0))),
// ('operators', (('aten::linalg_pinv', '', 1),)),
// ('constants', (False, 1e-15)), # default constants are not
// used
// ('types', ()),
// ('register_size', 2)),
// (('arguments',
// ((('name', 'self'), ('type', '__torch__.m'), ('default_value',
// None)),
// (('name', 'input'), ('type', 'Tensor'), ('default_value',
// None)))),
// ('returns',
// ((('name', ''), ('type', 'Tensor'), ('default_value',
// None)),)))))
// bytecode with 2 specified argument:
// (6,
// ('__torch__.m.forward',
// (('instructions',
// (('STOREN', 1, 2),
// ('DROPR', 1, 0),
// ('MOVE', 2, 0),
// ('LOADC', 1, 0), # added LOADC for specified argument
// ('OP', 0, 0),
// ('RET', 0, 0))),
// ('operators', (('aten::linalg_pinv', '', 2),)),
// ('constants', (False, 1e-05)), # updated constant table
// ('types', ()),
// ('register_size', 2)),
// (('arguments',
// ((('name', 'self'), ('type', '__torch__.m'), ('default_value',
// None)),
// (('name', 'input'), ('type', 'Tensor'), ('default_value',
// None)))),
// ('returns',
// ((('name', ''), ('type', 'Tensor'), ('default_value',
// None)),)))))
// bytecode with 3 specified arguments:
// (6,
// ('__torch__.m.forward',
// (('instructions',
// (('STOREN', 1, 2),
// ('DROPR', 1, 0),
// ('MOVE', 2, 0),
// ('LOADC', 1, 0),
// ('LOADC', 0, 0),
// ('OP', 0, 0),
// ('RET', 0, 0))),
// ('operators', (('aten::linalg_pinv', '', 3),)),
// ('constants', (True, 1e-05)),
// ('types', ()),
// ('register_size', 2)),
// (('arguments',
// ((('name', 'self'), ('type', '__torch__.m'), ('default_value',
// None)),
// (('name', 'input'), ('type', 'Tensor'), ('default_value',
// None)))),
// ('returns',
// ((('name', ''), ('type', 'Tensor'), ('default_value',
// None)),)))))
}
TEST(LiteInterpreterTest, DefaultArgsPinvSpecifyDefault) {
// The second argument is specified, but the value is the same as the default
// value. It's treated as "not specified" since the value can be fetched from
// schema.
Module m("m");
m.define(R"(
def forward(self, input):
return torch.linalg_pinv(input, 1e-15)
)");
torch::jit::MobileCode code(m.get_method("forward").graph(), "forward");
auto arg_nums = code.op_to_num_specified_args();
ASSERT_EQ(arg_nums.size(), 1);
ASSERT_EQ(arg_nums["aten::linalg_pinv"], 1);
std::vector<torch::jit::IValue> inputs;
const int N = 28;
auto input = torch::range(1, N * N, 1);
input[0] = 1; // a more stable matrix
input = input.view({N, N});
inputs.push_back(input);
testLiteModuleCompareResultTensors(m, inputs);
}
TEST(LiteInterpreterTest, TestExceptionStackWithTwoLevelModuleHierarchy) {
Module a("A");
a.define(R"(
def bar(self, x, y):
return x + y
)");
Module b("B");
b.register_module("A0", a);
b.define(R"(
def foo(self, x, y):
return self.A0.bar(x, y) + 2
)");
Module c("C");
c.register_module("B0", b);
c.define(R"(
def forward(self, x, y):
return self.B0.foo(x, y) + 3
)");
std::vector<IValue> inputs;
inputs.emplace_back(torch::rand({2, 4}));
inputs.emplace_back(torch::rand({13, 9}));
std::stringstream ss;
c._save_for_mobile(ss, ExtraFilesMap(), true);
auto lite_m = _load_for_mobile(ss);
std::string error_pattern = R"(
Module hierarchy:top(C).B0(B).A0(A).aten::add
Traceback of TorchScript (most recent call last):
File "<string>", line 3, in FunctionName_UNKNOWN
def forward(self, x, y):
return self.B0.foo(x, y) + 3
~~~~~~~~~~~ <--- HERE
File "<string>", line 3, in foo
def foo(self, x, y):
return self.A0.bar(x, y) + 2
~~~~~~~~~~~ <--- HERE
File "<string>", line 3, in bar
def bar(self, x, y):
return x + y
~~~~~ <--- HERE
)";
ASSERT_THROWS_WITH_MESSAGE(lite_m.forward(inputs), error_pattern);
}
#endif // !defined(FB_XPLAT_BUILD)
namespace {
static auto reg =
torch::class_<TorchBindLiteInterpreterTestStruct>(
"_TorchScriptTesting",
"_LiteInterpreterTest")
.def(torch::init<>())
.def("get", &TorchBindLiteInterpreterTestStruct::get)
.def_pickle(
// __getattr__
[](const c10::intrusive_ptr<TorchBindLiteInterpreterTestStruct>&
self) -> int64_t { return 0; },
// __setattr__
[](int64_t state) {
return c10::make_intrusive<TorchBindLiteInterpreterTestStruct>();
});
} // namespace
TEST(LiteInterpreterTest, OperatorCacheDifferentiatesDefaultArgs) {
// Create 3 methods:
//
// 1. forward() returns a tensor with dtype=torch.int64 (4)
// 2. forward2() returns a tensor with dtype=torch.float32 (6)
// 3. forward3() returns a tensor with dtype=torch.float32 but
// the dtype is inferred by the input tensor's dtype
//
// If caching works correctly, then the result from the full-jit
// module and the lite module will be the same. Otherwise, it
// will be different if we don't correctly ignore the cache
// entry for an operator that has a different number of
// arguments.
Module m("m");
m.define(R"(
def forward(self):
ret1 = torch.new_empty(torch.zeros(10), [10], dtype=4)
return ret1.fill_(25)
)");
m.define(R"(
def forward2(self):
ret1 = torch.new_empty(torch.zeros(10), [10], dtype=6)
return ret1.fill_(32.0)
)");
m.define(R"(
def forward3(self):
ret1 = torch.new_empty(torch.zeros(10), [10])
return ret1.fill_(12.0)
)");
std::vector<torch::jit::IValue> inputs;
testLiteModuleCompareResultTensors(m, inputs, "forward");
testLiteModuleCompareResultTensors(m, inputs, "forward2");
testLiteModuleCompareResultTensors(m, inputs, "forward3");
}
} // namespace jit
} // namespace torch