mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Test Plan: revert-hammer
Differential Revision:
D30867266 (67ebde5645)
Original commit changeset: cbc073326151
fbshipit-source-id: 00234e01eafc45fb999f7c83a397f9d6b3e01e46
320 lines
14 KiB
Python
320 lines
14 KiB
Python
import torch
|
|
from copy import deepcopy
|
|
from functools import wraps, partial
|
|
from itertools import chain
|
|
from torch.testing import make_tensor
|
|
from torch.testing._internal.common_dtype import floating_types
|
|
from torch.testing._internal.common_device_type import (
|
|
_TestParametrizer, _dtype_test_suffix, _update_param_kwargs, skipIf)
|
|
from torch.testing._internal.common_nn import nllloss_reference, get_reduction
|
|
from torch.testing._internal.common_utils import freeze_rng_state
|
|
from types import ModuleType
|
|
from typing import List, Tuple, Type, Set, Dict
|
|
|
|
|
|
# List of all namespaces containing modules to test.
|
|
MODULE_NAMESPACES: List[ModuleType] = [
|
|
torch.nn.modules,
|
|
torch.nn.qat.modules,
|
|
torch.nn.quantizable.modules,
|
|
torch.nn.quantized.modules,
|
|
]
|
|
|
|
# Modules that shouldn't be tested for one reason or another.
|
|
MODULES_TO_SKIP: Set[Type] = {
|
|
torch.nn.Module, # abstract base class
|
|
torch.nn.Container, # deprecated
|
|
torch.nn.NLLLoss2d, # deprecated
|
|
torch.nn.quantized.modules._ConvNd, # abstract base class
|
|
torch.nn.quantized.MaxPool2d, # aliases to nn.MaxPool2d
|
|
}
|
|
|
|
# List of all module classes to test.
|
|
MODULE_CLASSES: List[Type] = list(chain(*[
|
|
[getattr(namespace, module_name) for module_name in namespace.__all__] # type: ignore[attr-defined]
|
|
for namespace in MODULE_NAMESPACES]))
|
|
MODULE_CLASSES = [cls for cls in MODULE_CLASSES if cls not in MODULES_TO_SKIP]
|
|
|
|
# Dict of module class -> common name. Useful for making test names more intuitive.
|
|
# Example: torch.nn.modules.linear.Linear -> "nn.Linear"
|
|
MODULE_CLASS_NAMES: Dict[Type, str] = {}
|
|
for namespace in MODULE_NAMESPACES:
|
|
for module_name in namespace.__all__: # type: ignore[attr-defined]
|
|
module_cls = getattr(namespace, module_name)
|
|
namespace_name = namespace.__name__.replace('torch.', '').replace('.modules', '')
|
|
MODULE_CLASS_NAMES[module_cls] = f'{namespace_name}.{module_name}'
|
|
|
|
|
|
class modules(_TestParametrizer):
|
|
""" PROTOTYPE: Decorator for specifying a list of modules over which to run a test. """
|
|
|
|
def __init__(self, module_info_list):
|
|
self.module_info_list = module_info_list
|
|
|
|
def _parametrize_test(self, test, generic_cls, device_cls):
|
|
for module_info in self.module_info_list:
|
|
# TODO: Factor some of this out since it's similar to OpInfo.
|
|
for dtype in floating_types():
|
|
# Construct the test name.
|
|
test_name = '{}_{}_{}{}'.format(test.__name__,
|
|
module_info.name.replace('.', '_'),
|
|
device_cls.device_type,
|
|
_dtype_test_suffix(dtype))
|
|
|
|
# Construct parameter kwargs to pass to the test.
|
|
param_kwargs = {'module_info': module_info}
|
|
_update_param_kwargs(param_kwargs, 'dtype', dtype)
|
|
|
|
try:
|
|
active_decorators = []
|
|
if module_info.should_skip(generic_cls.__name__, test.__name__, device_cls.device_type, dtype):
|
|
active_decorators.append(skipIf(True, "Skipped!"))
|
|
|
|
if module_info.decorators is not None:
|
|
for decorator in module_info.decorators:
|
|
# Can't use isinstance as it would cause a circular import
|
|
if decorator.__class__.__name__ == 'DecorateInfo':
|
|
if decorator.is_active(generic_cls.__name__, test.__name__,
|
|
device_cls.device_type, dtype):
|
|
active_decorators += decorator.decorators
|
|
else:
|
|
active_decorators.append(decorator)
|
|
|
|
@wraps(test)
|
|
def test_wrapper(*args, **kwargs):
|
|
return test(*args, **kwargs)
|
|
|
|
for decorator in active_decorators:
|
|
test_wrapper = decorator(test_wrapper)
|
|
|
|
yield (test_wrapper, test_name, param_kwargs)
|
|
except Exception as ex:
|
|
# Provides an error message for debugging before rethrowing the exception
|
|
print("Failed to instantiate {0} for module {1}!".format(test_name, module_info.name))
|
|
raise ex
|
|
|
|
|
|
def formatted_module_name(module_cls):
|
|
""" Returns the common name of the module class formatted for use in test names. """
|
|
return MODULE_CLASS_NAMES[module_cls].replace('.', '_')
|
|
|
|
|
|
class FunctionInput(object):
|
|
""" Contains args and kwargs to pass as input to a function. """
|
|
__slots__ = ['args', 'kwargs']
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
self.args = args
|
|
self.kwargs = kwargs
|
|
|
|
|
|
class ModuleInput(object):
|
|
""" Contains args / kwargs for module instantiation + forward pass. """
|
|
__slots__ = ['constructor_input', 'forward_input', 'desc', 'reference_fn']
|
|
|
|
def __init__(self, constructor_input, forward_input=None, desc='', reference_fn=None):
|
|
self.constructor_input = constructor_input # Inputs to pass during construction
|
|
self.forward_input = forward_input # Inputs to pass to forward()
|
|
self.desc = desc # Description for this set of inputs
|
|
self.reference_fn = reference_fn # Reference with signature: reference_fn(module, parameters, *args, **kwargs)
|
|
|
|
if reference_fn is not None:
|
|
|
|
@wraps(reference_fn)
|
|
def copy_reference_fn(m, *args, **kwargs):
|
|
# Copy inputs to avoid undesired side effects from calling the reference.
|
|
args, kwargs = deepcopy(args), deepcopy(kwargs)
|
|
|
|
# Note that module parameters are passed in for convenience.
|
|
return reference_fn(m, list(m.parameters()), *args, **kwargs)
|
|
|
|
self.reference_fn = copy_reference_fn
|
|
|
|
|
|
class ModuleInfo(object):
|
|
""" Module information to be used in testing. """
|
|
|
|
def __init__(self,
|
|
module_cls, # Class object for the module under test
|
|
*,
|
|
module_inputs_func, # Function to generate module inputs
|
|
skips=(), # Indicates which tests to skip
|
|
decorators=None, # Additional decorators to apply to generated tests
|
|
):
|
|
self.module_cls = module_cls
|
|
self.module_inputs_func = module_inputs_func
|
|
self.skips = skips
|
|
self.decorators = decorators
|
|
|
|
def should_skip(self, cls_name, test_name, device_type, dtype):
|
|
return any(si.is_active(cls_name, test_name, device_type, dtype) for si in self.skips)
|
|
|
|
@property
|
|
def name(self):
|
|
return formatted_module_name(self.module_cls)
|
|
|
|
|
|
def module_inputs_torch_nn_Linear(module_info, device, dtype, requires_grad, **kwargs):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
module_inputs = [
|
|
ModuleInput(constructor_input=FunctionInput(10, 8),
|
|
forward_input=FunctionInput(make_input((4, 10))),
|
|
reference_fn=lambda m, p, i: torch.mm(i, p[0].t()) + p[1].view(1, -1).expand(4, 8)),
|
|
ModuleInput(constructor_input=FunctionInput(10, 8, bias=False),
|
|
forward_input=FunctionInput(make_input((4, 10))),
|
|
desc='no_bias',
|
|
reference_fn=lambda m, p, i: torch.mm(i, p[0].t())),
|
|
ModuleInput(constructor_input=FunctionInput(3, 5),
|
|
forward_input=FunctionInput(make_input(3)),
|
|
desc='no_batch_dim',
|
|
reference_fn=lambda m, p, i: torch.mm(i.view(1, -1), p[0].t()).view(-1) + p[1])
|
|
]
|
|
|
|
return module_inputs
|
|
|
|
|
|
def module_inputs_torch_nn_NLLLoss(module_info, device, dtype, requires_grad, **kwargs):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
cases: List[Tuple[str, dict]] = [
|
|
('', {}),
|
|
('ignore_index', {'ignore_index': 2}),
|
|
('weights', {'weight': make_input(10)}),
|
|
('weights_ignore_index', {'weight': make_input(10), 'ignore_index': 2}),
|
|
('weights_ignore_index_neg', {'weight': make_input(10), 'ignore_index': -1})
|
|
]
|
|
module_inputs = []
|
|
for desc, constructor_kwargs in cases:
|
|
|
|
def reference_fn(m, p, i, t, constructor_kwargs=constructor_kwargs):
|
|
return nllloss_reference(i, t, **constructor_kwargs)
|
|
|
|
module_inputs.append(
|
|
ModuleInput(constructor_input=FunctionInput(**constructor_kwargs),
|
|
forward_input=FunctionInput(make_input((15, 10)).log_softmax(dim=1),
|
|
torch.empty(15, device=device).uniform_().mul(10).floor().long()),
|
|
desc=desc,
|
|
reference_fn=reference_fn)
|
|
)
|
|
|
|
return module_inputs
|
|
|
|
|
|
def no_batch_dim_reference_fn(m, p, *args, **kwargs):
|
|
"""Reference function for modules supporting no batch dimensions.
|
|
|
|
The module is passed the input and target in batched form with a single item.
|
|
The output is squeezed to compare with the no-batch input.
|
|
"""
|
|
single_batch_input_args = [input.unsqueeze(0) for input in args]
|
|
with freeze_rng_state():
|
|
return m(*single_batch_input_args).squeeze(0)
|
|
|
|
|
|
def no_batch_dim_reference_criterion_fn(m, *args, **kwargs):
|
|
"""Reference function for criterion supporting no batch dimensions."""
|
|
output = no_batch_dim_reference_fn(m, *args, **kwargs)
|
|
reduction = get_reduction(m)
|
|
if reduction == 'none':
|
|
return output.squeeze(0)
|
|
# reduction is 'sum' or 'mean' which results in a 0D tensor
|
|
return output
|
|
|
|
|
|
def generate_regression_criterion_inputs(make_input):
|
|
return [
|
|
ModuleInput(
|
|
constructor_input=FunctionInput(reduction=reduction),
|
|
forward_input=FunctionInput(make_input(shape=(4, )), make_input(shape=4,)),
|
|
reference_fn=no_batch_dim_reference_criterion_fn,
|
|
desc='no_batch_dim_{}'.format(reduction)
|
|
) for reduction in ['none', 'mean', 'sum']]
|
|
|
|
|
|
def module_inputs_torch_nn_AvgPool1d(module_info, device, dtype, requires_grad, **kwargs):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
return [
|
|
ModuleInput(constructor_input=FunctionInput(kernel_size=2),
|
|
forward_input=FunctionInput(make_input(shape=(3, 6))),
|
|
desc='no_batch_dim',
|
|
reference_fn=no_batch_dim_reference_fn)]
|
|
|
|
|
|
def module_inputs_torch_nn_ELU(module_info, device, dtype, requires_grad, **kwargs):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
return [
|
|
ModuleInput(constructor_input=FunctionInput(alpha=2.),
|
|
forward_input=FunctionInput(make_input(shape=(3, 2, 5))),
|
|
reference_fn=lambda m, p, i: torch.where(i >= 0, i, 2 * (i.exp() - 1))),
|
|
ModuleInput(constructor_input=FunctionInput(alpha=2.),
|
|
forward_input=FunctionInput(make_input(shape=())),
|
|
desc='scalar'),
|
|
ModuleInput(constructor_input=FunctionInput(),
|
|
forward_input=FunctionInput(make_input(shape=(3,))),
|
|
desc='no_batch_dim',
|
|
reference_fn=no_batch_dim_reference_fn)]
|
|
|
|
|
|
def module_inputs_torch_nn_CELU(module_info, device, dtype, requires_grad, **kwargs):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
return [
|
|
ModuleInput(constructor_input=FunctionInput(alpha=2.),
|
|
forward_input=FunctionInput(make_input(shape=(3, 2, 5))),
|
|
reference_fn=lambda m, p, i: torch.where(i >= 0, i, 2. * ((.5 * i).exp() - 1))),
|
|
ModuleInput(constructor_input=FunctionInput(alpha=2.),
|
|
forward_input=FunctionInput(make_input(shape=())),
|
|
reference_fn=lambda m, p, i: torch.where(i >= 0, i, 2 * (i.exp() - 1)),
|
|
desc='scalar'),
|
|
ModuleInput(constructor_input=FunctionInput(alpha=2.),
|
|
forward_input=FunctionInput(make_input(shape=(3,))),
|
|
desc='no_batch_dim',
|
|
reference_fn=no_batch_dim_reference_fn)]
|
|
|
|
def module_inputs_torch_nn_ReLU(module_info, device, dtype, requires_grad):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
module_inputs = [
|
|
ModuleInput(constructor_input=FunctionInput(),
|
|
forward_input=FunctionInput(make_input((2, 3, 4, 5)))),
|
|
ModuleInput(constructor_input=FunctionInput(),
|
|
forward_input=FunctionInput(make_input(4)),
|
|
desc='no_batch_dim'),
|
|
]
|
|
return module_inputs
|
|
|
|
|
|
def module_inputs_torch_nn_L1Loss(module_info, device, dtype, requires_grad, **kwargs):
|
|
make_input = partial(make_tensor, device=device, dtype=dtype, requires_grad=requires_grad)
|
|
|
|
return [
|
|
ModuleInput(constructor_input=FunctionInput(),
|
|
forward_input=FunctionInput(make_input(shape=(2, 3, 4)),
|
|
make_input(shape=(2, 3, 4))),
|
|
reference_fn=lambda m, p, i, t: 1. / i.numel() * sum((a - b).abs().sum()
|
|
for a, b in zip(i, t))),
|
|
ModuleInput(constructor_input=FunctionInput(),
|
|
forward_input=FunctionInput(make_input(shape=()), make_input(shape=())),
|
|
reference_fn=lambda m, p, i, t: 1. / i.numel() * (i - t).abs().sum(),
|
|
desc='scalar')] + generate_regression_criterion_inputs(make_input)
|
|
|
|
|
|
# Database of ModuleInfo entries in alphabetical order.
|
|
module_db: List[ModuleInfo] = [
|
|
ModuleInfo(torch.nn.AvgPool1d,
|
|
module_inputs_func=module_inputs_torch_nn_AvgPool1d),
|
|
ModuleInfo(torch.nn.ELU,
|
|
module_inputs_func=module_inputs_torch_nn_ELU),
|
|
ModuleInfo(torch.nn.L1Loss,
|
|
module_inputs_func=module_inputs_torch_nn_L1Loss),
|
|
ModuleInfo(torch.nn.Linear,
|
|
module_inputs_func=module_inputs_torch_nn_Linear),
|
|
ModuleInfo(torch.nn.NLLLoss,
|
|
module_inputs_func=module_inputs_torch_nn_NLLLoss),
|
|
ModuleInfo(torch.nn.ReLU,
|
|
module_inputs_func=module_inputs_torch_nn_ReLU),
|
|
]
|