mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/47391 Current Numeric Suite will fail if it's collecting for multiple inputs and each input is of not same size. This fix adds support for varying size input in numeric suite. ghstack-source-id: 117058862 Test Plan: buck test mode/dev caffe2/test:quantization -- 'test_shadow_logger' buck test mode/dev caffe2/test:quantization -- 'test_output_logger' buck test mode/dev caffe2/test:quantization -- 'test_compare_weights_lstm_dynamic' buck test mode/dev caffe2/test:quantization -- 'test_compare_model_stub_lstm_dynamic' buck test mode/dev caffe2/test:quantization -- 'test_compare_model_outputs_lstm_dynamic' buck test mode/dev caffe2/test:quantization -- 'test_compare_weights_conv_static' buck test mode/dev caffe2/test:quantization -- 'test_compare_weights_linear_static' buck test mode/dev caffe2/test:quantization -- 'test_compare_weights_linear_dynamic' buck test mode/dev caffe2/test:quantization -- 'test_compare_model_stub_conv_static' buck test mode/dev caffe2/test:quantization -- 'test_compare_model_stub_linear_static' buck test mode/dev caffe2/test:quantization -- 'test_compare_model_stub_submodule_static' buck test mode/dev caffe2/test:quantization -- 'test_compare_model_stub_functional_static' buck test mode/dev caffe2/test:quantization -- 'test_compare_model_stub_linear_dynamic' buck test mode/dev caffe2/test:quantization -- 'test_compare_model_outputs_conv_static' buck test mode/dev caffe2/test:quantization -- 'test_compare_model_outputs_linear_static' buck test mode/dev caffe2/test:quantization -- 'test_compare_model_outputs_functional_static' buck test mode/dev caffe2/test:quantization -- 'test_compare_model_outputs_linear_dynami Reviewed By: hx89 Differential Revision: D24662271 fbshipit-source-id: 6908169ee448cbb8f33beedbd26104633632896a
459 lines
16 KiB
Python
459 lines
16 KiB
Python
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.quantized as nnq
|
|
import torch.nn.quantized.dynamic as nnqd
|
|
from torch.quantization import prepare
|
|
from typing import Dict
|
|
|
|
from .quantization_mappings import (
|
|
get_default_compare_output_module_list,
|
|
)
|
|
|
|
NON_LEAF_MODULE_TO_ADD_OBSERVER_ALLOW_LIST = {
|
|
nnqd.Linear,
|
|
nnq.Linear,
|
|
nnqd.LSTM,
|
|
nn.LSTM,
|
|
}
|
|
|
|
|
|
def _find_match(str_list, key_str, postfix):
|
|
split_str = key_str.split(".")
|
|
if split_str[-1] == postfix:
|
|
match_string = "".join(key_str.split(".")[0:-1])
|
|
for s2 in str_list:
|
|
pattern1 = "".join(s2.split(".")[0:-1])
|
|
pattern2 = "".join(s2.split(".")[0:-2])
|
|
if match_string == pattern1:
|
|
return s2
|
|
if match_string == pattern2:
|
|
return s2
|
|
|
|
# For matching "fc.weight" and "fc._packed_params._packed_params"
|
|
if postfix == "_packed_params":
|
|
match_string = "".join(key_str.split(".")[0:-2])
|
|
if len(match_string) == 0:
|
|
return None
|
|
for s2 in str_list:
|
|
pattern1 = "".join(s2.split(".")[0:-1])
|
|
pattern2 = "".join(s2.split(".")[0:-2])
|
|
if match_string == pattern1:
|
|
return s2
|
|
if match_string == pattern2:
|
|
return s2
|
|
else:
|
|
return None
|
|
|
|
|
|
def compare_weights(float_dict, quantized_dict):
|
|
r"""Compare the weights of the float module with its corresponding quantized
|
|
module. Return a dict with key corresponding to module names and each entry being
|
|
a dictionary with two keys 'float' and 'quantized', containing the float and
|
|
quantized weights. This dict can be used to compare and compute the quantization
|
|
error of the weights of float and quantized models.
|
|
|
|
Example usage:
|
|
wt_compare_dict = compare_weights(float_model.state_dict(), qmodel.state_dict())
|
|
for key in wt_compare_dict:
|
|
print(key, compute_error(wt_compare_dict[key]['float'], wt_compare_dict[key]['quantized'].dequantize()))
|
|
|
|
Args:
|
|
float_dict: state dict of the float model
|
|
quantized_dict: state dict of the quantized model
|
|
|
|
Return:
|
|
weight_dict: dict with key corresponding to module names and each entry being
|
|
a dictionary with two keys 'float' and 'quantized', containing the float and
|
|
quantized weights
|
|
"""
|
|
torch._C._log_api_usage_once("quantization_api._numeric_suite.compare_weights")
|
|
weight_dict: Dict[str, Dict] = {}
|
|
for key in quantized_dict:
|
|
match_key = _find_match(float_dict, key, "weight")
|
|
if match_key is not None:
|
|
weight_dict[key] = {}
|
|
weight_dict[key]["float"] = float_dict[match_key]
|
|
weight_dict[key]["quantized"] = quantized_dict[key]
|
|
continue
|
|
|
|
# For matching "fc.weight" and "fc._packed_params._packed_params"
|
|
match_key = _find_match(float_dict, key, "_packed_params")
|
|
if match_key is not None:
|
|
weight_dict[key] = {}
|
|
weight_dict[key]["float"] = float_dict[match_key]
|
|
weight_dict[key]["quantized"] = quantized_dict[key][0]
|
|
|
|
# For LSTM
|
|
split_str = key.split(".")
|
|
if split_str[-1] == "param" and split_str[-3] == "_all_weight_values":
|
|
layer = split_str[-2]
|
|
module_name = ".".join(split_str[:-3])
|
|
float_weight_ih_key = module_name + ".weight_ih_l" + layer
|
|
float_weight_hh_key = module_name + ".weight_hh_l" + layer
|
|
if float_weight_ih_key in float_dict and float_weight_hh_key in float_dict:
|
|
weight_dict[key] = {}
|
|
weight_dict[key]["float"] = float_dict[float_weight_ih_key]
|
|
weight_dict[key]["quantized"] = (
|
|
quantized_dict[key].__getstate__()[0][4][0].__getstate__()[0][0]
|
|
)
|
|
weight_dict[key]["float"] = float_dict[float_weight_hh_key]
|
|
weight_dict[key]["quantized"] = (
|
|
quantized_dict[key].__getstate__()[0][4][1].__getstate__()[0][0]
|
|
)
|
|
|
|
return weight_dict
|
|
|
|
|
|
def _get_logger_dict_helper(mod, target_dict, prefix=""):
|
|
r"""This is the helper function for get_logger_dict
|
|
|
|
Args:
|
|
mod: module we want to save all logger stats
|
|
prefix: prefix for the current module
|
|
target_dict: the dictionary used to save all logger stats
|
|
"""
|
|
|
|
def get_prefix(prefix):
|
|
return prefix if prefix == "" else prefix + "."
|
|
|
|
for name, child in mod.named_children():
|
|
if isinstance(child, Logger):
|
|
target_dict[get_prefix(prefix) + "stats"] = child.stats
|
|
break
|
|
|
|
for name, child in mod.named_children():
|
|
module_prefix = get_prefix(prefix) + name if prefix else name
|
|
_get_logger_dict_helper(child, target_dict, module_prefix)
|
|
|
|
|
|
def get_logger_dict(mod, prefix=""):
|
|
r"""Traverse the modules and save all logger stats into target dict.
|
|
This is mainly used for quantization accuracy debug.
|
|
|
|
Type of loggers supported:
|
|
ShadowLogger: used to log the outputs of the quantized module and its
|
|
matching float shadow module,
|
|
OutputLogger: used to log the outputs of the modules
|
|
|
|
Args:
|
|
mod: module we want to save all logger stats
|
|
prefix: prefix for the current module
|
|
|
|
Return:
|
|
target_dict: the dictionary used to save all logger stats
|
|
"""
|
|
torch._C._log_api_usage_once("quantization_api._numeric_suite.get_logger_dict")
|
|
|
|
target_dict: Dict[str, Dict] = {}
|
|
_get_logger_dict_helper(mod, target_dict, prefix)
|
|
return target_dict
|
|
|
|
|
|
class Logger(nn.Module):
|
|
r"""Base class for stats logging
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(Logger, self).__init__()
|
|
self.stats = {}
|
|
|
|
def forward(self, x):
|
|
pass
|
|
|
|
|
|
class ShadowLogger(Logger):
|
|
r"""Class used in Shadow module to record the outputs of the original and
|
|
shadow modules.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(ShadowLogger, self).__init__()
|
|
self.stats["float"] = []
|
|
self.stats["quantized"] = []
|
|
|
|
def forward(self, x, y):
|
|
if len(x) > 1:
|
|
x = x[0]
|
|
if len(y) > 1:
|
|
y = y[0]
|
|
self.stats["quantized"].append(x.detach())
|
|
self.stats["float"].append(y.detach())
|
|
|
|
|
|
class OutputLogger(Logger):
|
|
r"""Class used to log the outputs of the module
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(OutputLogger, self).__init__()
|
|
self.stats["tensor_val"] = []
|
|
|
|
|
|
def forward(self, x):
|
|
self.stats["tensor_val"].append(x)
|
|
return x
|
|
|
|
|
|
def _convert_tuple_to_list(t):
|
|
return list(_convert_tuple_to_list(x) for x in t) if type(t) is tuple else t
|
|
|
|
|
|
def _dequantize_tensor_list(t):
|
|
return (
|
|
list(_dequantize_tensor_list(x) for x in t)
|
|
if type(t) is list
|
|
else t.dequantize()
|
|
if t.is_quantized
|
|
else t
|
|
)
|
|
|
|
|
|
class Shadow(nn.Module):
|
|
r"""Shadow module attaches the float module to its matching quantized module
|
|
as the shadow. Then it uses Logger module to process the outputs of both
|
|
modules.
|
|
|
|
Args:
|
|
q_module: module quantized from float_module that we want to shadow
|
|
float_module: float module used to shadow q_module
|
|
Logger: type of logger used to process the outputs of q_module and
|
|
float_module. ShadowLogger or custom loggers can be used.
|
|
"""
|
|
|
|
def __init__(self, q_module, float_module, Logger):
|
|
super(Shadow, self).__init__()
|
|
self.orig_module = q_module
|
|
self.shadow_module = float_module
|
|
self.dequant = nnq.DeQuantize()
|
|
self.logger = Logger()
|
|
|
|
def forward(self, *x):
|
|
xl = _convert_tuple_to_list(x)
|
|
output = self.orig_module(*xl)
|
|
xl_float = _dequantize_tensor_list(xl)
|
|
shadow_output = self.shadow_module(*xl_float)
|
|
self.logger(output, shadow_output)
|
|
return output
|
|
|
|
def add(self, x, y):
|
|
output = self.orig_module.add(x, y)
|
|
x = x.dequantize()
|
|
y = y.dequantize()
|
|
shadow_output = self.shadow_module.add(x, y)
|
|
self.logger(output, shadow_output)
|
|
return output
|
|
|
|
def add_scalar(self, x, y):
|
|
output = self.orig_module.add_scalar(x, y)
|
|
x = x.dequantize()
|
|
shadow_output = self.shadow_module.add_scalar(x, y)
|
|
self.logger(output, shadow_output)
|
|
return output
|
|
|
|
def mul(self, x, y):
|
|
output = self.orig_module.mul(x, y)
|
|
x = x.dequantize()
|
|
y = y.dequantize()
|
|
shadow_output = self.shadow_module.mul(x, y)
|
|
self.logger(output, shadow_output)
|
|
return output
|
|
|
|
def mul_scalar(self, x, y):
|
|
output = self.orig_module.mul_scalar(x, y)
|
|
x = x.dequantize()
|
|
shadow_output = self.shadow_module.mul_scalar(x, y)
|
|
self.logger(output, shadow_output)
|
|
return output
|
|
|
|
def cat(self, x, dim=0):
|
|
output = self.orig_module.cat(x, dim)
|
|
x = [y.dequantize() for y in x]
|
|
shadow_output = self.shadow_module.cat(x, dim)
|
|
self.logger(output, shadow_output)
|
|
return output
|
|
|
|
def add_relu(self, x, y):
|
|
output = self.orig_module.add_relu(x, y)
|
|
x = x.dequantize()
|
|
y = y.dequantize()
|
|
shadow_output = self.shadow_module.add_relu(x, y)
|
|
self.logger(output, shadow_output)
|
|
return output
|
|
|
|
|
|
def prepare_model_with_stubs(float_module, q_module, module_swap_list, Logger):
|
|
r"""Prepare the model by attaching the float module to its matching quantized
|
|
module as the shadow if the float module type is in module_swap_list.
|
|
|
|
Example usage:
|
|
prepare_model_with_stubs(float_model, q_model, module_swap_list, Logger)
|
|
q_model(data)
|
|
ob_dict = get_logger_dict(q_model)
|
|
|
|
Args:
|
|
float_module: float module used to generate the q_module
|
|
q_module: module quantized from float_module
|
|
module_swap_list: list of float module types to attach the shadow
|
|
Logger: type of logger to be used in shadow module to process the outputs of
|
|
quantized module and its float shadow module
|
|
"""
|
|
torch._C._log_api_usage_once("quantization_api._numeric_suite.prepare_model_with_stubs")
|
|
|
|
float_module_children = {}
|
|
for name, mod in float_module.named_children():
|
|
float_module_children[name] = mod
|
|
|
|
reassign = {}
|
|
for name, mod in q_module.named_children():
|
|
if name not in float_module_children:
|
|
continue
|
|
|
|
float_mod = float_module_children[name]
|
|
|
|
if type(float_mod) not in module_swap_list:
|
|
prepare_model_with_stubs(float_mod, mod, module_swap_list, Logger)
|
|
|
|
if type(float_mod) in module_swap_list:
|
|
reassign[name] = Shadow(mod, float_mod, Logger)
|
|
|
|
for key, value in reassign.items():
|
|
q_module._modules[key] = value
|
|
|
|
|
|
def compare_model_stub(
|
|
float_model, q_model, module_swap_list, *data, Logger=ShadowLogger
|
|
):
|
|
r"""Compare quantized module in a model with its floating point counterpart,
|
|
feeding both of them the same input. Return a dict with key corresponding to
|
|
module names and each entry being a dictionary with two keys 'float' and
|
|
'quantized', containing the output tensors of quantized and its matching
|
|
float shadow module. This dict can be used to compare and compute the module
|
|
level quantization error.
|
|
|
|
This function first call prepare_model_with_stubs() to swap the quantized
|
|
module that we want to compare with the Shadow module, which takes quantized
|
|
module, corresponding float module and logger as input, and creates a forward
|
|
path inside to make the float module to shadow quantized module sharing the
|
|
same input. The logger can be customizable, default logger is ShadowLogger
|
|
and it will save the outputs of the quantized module and float module that
|
|
can be used to compute the module level quantization error.
|
|
|
|
Example usage:
|
|
module_swap_list = [torchvision.models.quantization.resnet.QuantizableBasicBlock]
|
|
ob_dict = compare_model_stub(float_model,qmodel,module_swap_list, data)
|
|
for key in ob_dict:
|
|
print(key, compute_error(ob_dict[key]['float'], ob_dict[key]['quantized'].dequantize()))
|
|
|
|
Args:
|
|
float_model: float model used to generate the q_model
|
|
q_model: model quantized from float_model
|
|
module_swap_list: list of float module types at which shadow modules will
|
|
be attached.
|
|
data: input data used to run the prepared q_model
|
|
Logger: type of logger to be used in shadow module to process the outputs of
|
|
quantized module and its float shadow module
|
|
"""
|
|
torch._C._log_api_usage_once("quantization_api._numeric_suite.compare_model_stub")
|
|
prepare_model_with_stubs(float_model, q_model, module_swap_list, Logger)
|
|
q_model(*data)
|
|
ob_dict = get_logger_dict(q_model)
|
|
return ob_dict
|
|
|
|
|
|
def get_matching_activations(float_module, q_module):
|
|
r"""Find the matching activation between float and quantized modules.
|
|
|
|
Args:
|
|
float_module: float module used to generate the q_module
|
|
q_module: module quantized from float_module
|
|
|
|
Return:
|
|
act_dict: dict with key corresponding to quantized module names and each
|
|
entry being a dictionary with two keys 'float' and 'quantized', containing
|
|
the matching float and quantized activations
|
|
"""
|
|
torch._C._log_api_usage_once("quantization_api._numeric_suite.get_matching_activations")
|
|
float_dict = get_logger_dict(float_module)
|
|
quantized_dict = get_logger_dict(q_module)
|
|
act_dict: Dict[str, Dict] = {}
|
|
for key in quantized_dict:
|
|
match_key = _find_match(sorted(float_dict, reverse=True), key, "stats")
|
|
if match_key is not None:
|
|
act_dict[key] = {}
|
|
act_dict[key]["float"] = float_dict[match_key]["tensor_val"]
|
|
act_dict[key]["quantized"] = quantized_dict[key]["tensor_val"]
|
|
return act_dict
|
|
|
|
|
|
def prepare_model_outputs(
|
|
float_module,
|
|
q_module,
|
|
Logger=OutputLogger,
|
|
allow_list=None
|
|
):
|
|
r"""Prepare the model by attaching the logger to both float module
|
|
and quantized module if they are in the allow_list.
|
|
|
|
Args:
|
|
float_module: float module used to generate the q_module
|
|
q_module: module quantized from float_module
|
|
Logger: type of logger to be attached to float_module and q_module
|
|
allow_list: list of module types to attach logger
|
|
"""
|
|
torch._C._log_api_usage_once("quantization_api._numeric_suite.prepare_model_outputs")
|
|
if allow_list is None:
|
|
allow_list = get_default_compare_output_module_list()
|
|
|
|
qconfig_debug = torch.quantization.QConfig(activation=Logger, weight=None)
|
|
float_module.qconfig = qconfig_debug
|
|
prepare(float_module, inplace=True, allow_list=allow_list)
|
|
q_module.qconfig = qconfig_debug
|
|
prepare(
|
|
q_module,
|
|
inplace=True,
|
|
allow_list=allow_list,
|
|
observer_non_leaf_module_list=NON_LEAF_MODULE_TO_ADD_OBSERVER_ALLOW_LIST,
|
|
)
|
|
|
|
|
|
def compare_model_outputs(
|
|
float_model,
|
|
q_model,
|
|
*data,
|
|
Logger=OutputLogger,
|
|
allow_list=None
|
|
):
|
|
r"""Compare output activations between float and quantized models at
|
|
corresponding locations for the same input. Return a dict with key corresponding
|
|
to quantized module names and each entry being a dictionary with two keys
|
|
'float' and 'quantized', containing the activations of quantized model and
|
|
float model at matching locations. This dict can be used to compare and
|
|
compute the propagation quantization error.
|
|
|
|
Example usage:
|
|
act_compare_dict = compare_model_outputs(float_model, qmodel, data)
|
|
for key in act_compare_dict:
|
|
print(key, compute_error(act_compare_dict[key]['float'], act_compare_dict[key]['quantized'].dequantize()))
|
|
|
|
Args:
|
|
float_model: float model used to generate the q_model
|
|
q_model: model quantized from float_model
|
|
data: input data used to run the prepared float_model and q_model
|
|
Logger: type of logger to be attached to float_module and q_module
|
|
allow_list: list of module types to attach logger
|
|
|
|
Return:
|
|
act_compare_dict: dict with key corresponding to quantized module names
|
|
and each entry being a dictionary with two keys 'float' and 'quantized',
|
|
containing the matching float and quantized activations
|
|
"""
|
|
torch._C._log_api_usage_once("quantization_api._numeric_suite.compare_model_outputs")
|
|
if allow_list is None:
|
|
allow_list = get_default_compare_output_module_list()
|
|
prepare_model_outputs(float_model, q_model, Logger, allow_list)
|
|
float_model(*data)
|
|
q_model(*data)
|
|
act_compare_dict = get_matching_activations(float_model, q_model)
|
|
return act_compare_dict
|