mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Fix ``` /torch_shm_manager#compile-manager.cpp.oc089dac2,gcc-5-glibc-2.23-clang/manager.cpp.o:manager.cpp:function main: warning: the use of `tmpnam' is dangerous, better use `mkstemp` ``` apaszke Pull Request resolved: https://github.com/pytorch/pytorch/pull/13289 Differential Revision: D12873282 Pulled By: goldsborough fbshipit-source-id: fc64b59403d52eb271744378ef4ee8338c79312c
60 lines
1.6 KiB
C++
60 lines
1.6 KiB
C++
#include <gtest/gtest.h>
|
|
|
|
#include <torch/csrc/utils/tempfile.h>
|
|
#include <torch/nn/init.h>
|
|
#include <torch/nn/modules/linear.h>
|
|
#include <torch/tensor.h>
|
|
#include <torch/utils.h>
|
|
|
|
#include <test/cpp/api/support.h>
|
|
|
|
TEST(NoGradTest, SetsGradModeCorrectly) {
|
|
torch::manual_seed(0);
|
|
torch::NoGradGuard guard;
|
|
torch::nn::Linear model(5, 2);
|
|
auto x = torch::randn({10, 5}, torch::requires_grad());
|
|
auto y = model->forward(x);
|
|
torch::Tensor s = y.sum();
|
|
|
|
s.backward();
|
|
ASSERT_FALSE(model->parameters()["weight"].grad().defined());
|
|
}
|
|
|
|
struct AutogradTest : torch::test::SeedingFixture {
|
|
AutogradTest() {
|
|
x = torch::randn({3, 3}, torch::requires_grad());
|
|
y = torch::randn({3, 3});
|
|
z = x * y;
|
|
}
|
|
torch::Tensor x, y, z;
|
|
};
|
|
|
|
TEST_F(AutogradTest, CanTakeDerivatives) {
|
|
z.backward();
|
|
ASSERT_TRUE(x.grad().allclose(y));
|
|
}
|
|
|
|
TEST_F(AutogradTest, CanTakeDerivativesOfZeroDimTensors) {
|
|
z.sum().backward();
|
|
ASSERT_TRUE(x.grad().allclose(y));
|
|
}
|
|
|
|
TEST_F(AutogradTest, CanPassCustomGradientInputs) {
|
|
z.sum().backward(torch::ones({}) * 2);
|
|
ASSERT_TRUE(x.grad().allclose(y * 2));
|
|
}
|
|
|
|
TEST(NNInitTest, CanInitializeTensorThatRequiresGrad) {
|
|
auto tensor = torch::empty({3, 4}, torch::requires_grad());
|
|
ASSERT_THROWS_WITH(
|
|
tensor.fill_(1),
|
|
"a leaf Variable that requires grad "
|
|
"has been used in an in-place operation");
|
|
ASSERT_EQ(torch::nn::init::ones_(tensor).sum().item<int32_t>(), 12);
|
|
}
|
|
|
|
TEST(TempFileTest, MatchesExpectedPattern) {
|
|
torch::utils::TempFile pattern = torch::utils::make_tempfile("test-pattern-");
|
|
ASSERT_NE(pattern.name.find("test-pattern-"), std::string::npos);
|
|
}
|