pytorch/torch/testing/_internal/common_quantized.py
Edmund Williams Jr 465138ec39 refactoring TestQuantizeScript (#39677)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/39677

Test Plan:
Moved a test class suite between files, wanted to have same functionality (simple code refactor) so tested to make sure the test output was the same before/after the refactor.
Image below shows the output of TestGraphModePostTrainingStatic before refactor

{F239676498}

This image shows the output of TestQuantizeScript (renamed version that is in test_quantize_script.py instead of test_quantize.py)

{F239676509}

Differential Revision: D21940638

Pulled By: edmundw314

fbshipit-source-id: 54160a5151aadf3a34bdac2bcaeb52904e6653ed
2020-06-19 11:47:00 -07:00

131 lines
4.8 KiB
Python

r"""Importing this file includes common utility methods for checking quantized
tensors and modules.
"""
from __future__ import absolute_import, division, print_function, unicode_literals
import numpy as np
import torch
from contextlib import contextmanager
from torch.testing._internal.common_utils import TEST_WITH_ASAN, TEST_WITH_TSAN, TEST_WITH_UBSAN, IS_PPC, IS_MACOS, IS_WINDOWS
supported_qengines = torch.backends.quantized.supported_engines
supported_qengines.remove('none')
# Note: We currently do not run QNNPACK tests on WINDOWS and MACOS as it is flaky. Issue #29326
# QNNPACK is not supported on PPC
# QNNPACK throws ASAN heap-buffer-overflow error.
if 'qnnpack' in supported_qengines:
if IS_PPC or TEST_WITH_ASAN or TEST_WITH_TSAN or TEST_WITH_UBSAN or IS_MACOS or IS_WINDOWS:
supported_qengines.remove('qnnpack')
"""Computes the output shape given convolution parameters."""
def _conv_output_shape(input_size, kernel_size, padding, stride, dilation,
output_padding=0):
return np.floor((input_size + 2 * padding - kernel_size - (kernel_size - 1)
* (dilation - 1)) / stride) + 2 * output_padding + 1
# Quantization references
def _quantize(x, scale, zero_point, qmin=None, qmax=None, dtype=np.uint8):
"""Quantizes a numpy array."""
if qmin is None:
qmin = np.iinfo(dtype).min
if qmax is None:
qmax = np.iinfo(dtype).max
qx = np.round(x / scale + zero_point).astype(np.int64)
qx = np.clip(qx, qmin, qmax)
qx = qx.astype(dtype)
return qx
def _dequantize(qx, scale, zero_point):
"""Dequantizes a numpy array."""
x = (qx.astype(np.float) - zero_point) * scale
return x
def _requantize(x, multiplier, zero_point, qmin=0, qmax=255, qtype=np.uint8):
"""Requantizes a numpy array, i.e., intermediate int32 or int16 values are
converted back to given type"""
qx = (x * multiplier).round() + zero_point
qx = np.clip(qx, qmin, qmax).astype(qtype)
return qx
def _calculate_dynamic_qparams(X, dtype, reduce_range=False):
"""Calculate the dynamic quantization parameters (scale, zero_point)
according to the min and max element of the tensor"""
if isinstance(X, torch.Tensor):
X = X.numpy()
if dtype == torch.qint8:
if reduce_range:
qmin, qmax = -64, 63
else:
qmin, qmax = -128, 127
else: # dtype == torch.quint8
if reduce_range:
qmin, qmax = 0, 127
else:
qmin, qmax = 0, 255
min_val = X.min()
max_val = X.max()
if min_val == max_val:
scale = 1.0
zero_point = 0
else:
max_val = max(max_val, 0.0)
min_val = min(min_val, 0.0)
scale = (max_val - min_val) / (qmax - qmin)
scale = max(scale, np.finfo(np.float32).eps)
zero_point = qmin - round(min_val / scale)
zero_point = max(qmin, zero_point)
zero_point = min(qmax, zero_point)
return [float(scale), int(zero_point)]
def _calculate_dynamic_per_channel_qparams(X, dtype):
"""Calculate the dynamic quantization parameters (scale, zero_point)
according to the min and max element of the tensor"""
if isinstance(X, torch.Tensor):
X = X.numpy()
qmin, qmax = torch.iinfo(dtype).min, torch.iinfo(dtype).max
n_levels = qmax - qmin
scale = np.zeros(X.shape[0], dtype=np.float64)
zero_point = np.zeros(X.shape[0], dtype=np.int64)
for i in range(zero_point.shape[0]):
min_val = X.min()
max_val = X.max()
if min_val == max_val:
scale[i] = 1.0
zero_point[i] = 0
else:
max_val = max(max_val, 0.0)
min_val = min(min_val, 0.0)
scale[i] = (max_val - min_val) / n_levels
scale[i] = max(scale[i], np.finfo(np.float32).eps)
zero_point[i] = qmin - round(min_val / scale[i])
zero_point[i] = max(qmin, zero_point[i])
zero_point[i] = min(qmax, zero_point[i])
return scale, zero_point
@contextmanager
def override_quantized_engine(qengine):
previous = torch.backends.quantized.engine
torch.backends.quantized.engine = qengine
try:
yield
finally:
torch.backends.quantized.engine = previous
# TODO: Update all quantization tests to use this decorator.
# Currently for some of the tests it seems to have inconsistent params
# for fbgemm vs qnnpack.
def override_qengines(qfunction):
def test_fn(*args, **kwargs):
for qengine in supported_qengines:
with override_quantized_engine(qengine):
# qfunction should not return anything.
qfunction(*args, **kwargs)
return test_fn
def qengine_is_fbgemm():
return torch.backends.quantized.engine == 'fbgemm'
def qengine_is_qnnpack():
return torch.backends.quantized.engine == 'qnnpack'