mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
This is a new version of #15648 based on the latest master branch. Unlike the previous PR where I fixed a lot of the doctests in addition to integrating xdoctest, I'm going to reduce the scope here. I'm simply going to integrate xdoctest, and then I'm going to mark all of the failing tests as "SKIP". This will let xdoctest run on the dashboards, provide some value, and still let the dashboards pass. I'll leave fixing the doctests themselves to another PR. In my initial commit, I do the bare minimum to get something running with failing dashboards. The few tests that I marked as skip are causing segfaults. Running xdoctest results in 293 failed, 201 passed tests. The next commits will be to disable those tests. (unfortunately I don't have a tool that will insert the `#xdoctest: +SKIP` directive over every failing test, so I'm going to do this mostly manually.) Fixes https://github.com/pytorch/pytorch/issues/71105 @ezyang Pull Request resolved: https://github.com/pytorch/pytorch/pull/82797 Approved by: https://github.com/ezyang
236 lines
10 KiB
Python
236 lines
10 KiB
Python
import operator
|
|
import torch
|
|
import warnings
|
|
from itertools import chain
|
|
from ..modules import Module
|
|
from .scatter_gather import scatter_kwargs, gather
|
|
from .replicate import replicate
|
|
from .parallel_apply import parallel_apply
|
|
from torch._utils import (
|
|
_get_all_device_indices,
|
|
_get_available_device_type,
|
|
_get_device_index,
|
|
_get_devices_properties
|
|
)
|
|
|
|
__all__ = ['DataParallel', 'data_parallel']
|
|
|
|
def _check_balance(device_ids):
|
|
imbalance_warn = """
|
|
There is an imbalance between your GPUs. You may want to exclude GPU {} which
|
|
has less than 75% of the memory or cores of GPU {}. You can do so by setting
|
|
the device_ids argument to DataParallel, or by setting the CUDA_VISIBLE_DEVICES
|
|
environment variable."""
|
|
device_ids = [_get_device_index(x, True) for x in device_ids]
|
|
dev_props = _get_devices_properties(device_ids)
|
|
|
|
def warn_imbalance(get_prop):
|
|
values = [get_prop(props) for props in dev_props]
|
|
min_pos, min_val = min(enumerate(values), key=operator.itemgetter(1))
|
|
max_pos, max_val = max(enumerate(values), key=operator.itemgetter(1))
|
|
if min_val / max_val < 0.75:
|
|
warnings.warn(imbalance_warn.format(device_ids[min_pos], device_ids[max_pos]))
|
|
return True
|
|
return False
|
|
|
|
if warn_imbalance(lambda props: props.total_memory):
|
|
return
|
|
if warn_imbalance(lambda props: props.multi_processor_count):
|
|
return
|
|
|
|
|
|
class DataParallel(Module):
|
|
r"""Implements data parallelism at the module level.
|
|
|
|
This container parallelizes the application of the given :attr:`module` by
|
|
splitting the input across the specified devices by chunking in the batch
|
|
dimension (other objects will be copied once per device). In the forward
|
|
pass, the module is replicated on each device, and each replica handles a
|
|
portion of the input. During the backwards pass, gradients from each replica
|
|
are summed into the original module.
|
|
|
|
The batch size should be larger than the number of GPUs used.
|
|
|
|
.. warning::
|
|
It is recommended to use :class:`~torch.nn.parallel.DistributedDataParallel`,
|
|
instead of this class, to do multi-GPU training, even if there is only a single
|
|
node. See: :ref:`cuda-nn-ddp-instead` and :ref:`ddp`.
|
|
|
|
Arbitrary positional and keyword inputs are allowed to be passed into
|
|
DataParallel but some types are specially handled. tensors will be
|
|
**scattered** on dim specified (default 0). tuple, list and dict types will
|
|
be shallow copied. The other types will be shared among different threads
|
|
and can be corrupted if written to in the model's forward pass.
|
|
|
|
The parallelized :attr:`module` must have its parameters and buffers on
|
|
``device_ids[0]`` before running this :class:`~torch.nn.DataParallel`
|
|
module.
|
|
|
|
.. warning::
|
|
In each forward, :attr:`module` is **replicated** on each device, so any
|
|
updates to the running module in ``forward`` will be lost. For example,
|
|
if :attr:`module` has a counter attribute that is incremented in each
|
|
``forward``, it will always stay at the initial value because the update
|
|
is done on the replicas which are destroyed after ``forward``. However,
|
|
:class:`~torch.nn.DataParallel` guarantees that the replica on
|
|
``device[0]`` will have its parameters and buffers sharing storage with
|
|
the base parallelized :attr:`module`. So **in-place** updates to the
|
|
parameters or buffers on ``device[0]`` will be recorded. E.g.,
|
|
:class:`~torch.nn.BatchNorm2d` and :func:`~torch.nn.utils.spectral_norm`
|
|
rely on this behavior to update the buffers.
|
|
|
|
.. warning::
|
|
Forward and backward hooks defined on :attr:`module` and its submodules
|
|
will be invoked ``len(device_ids)`` times, each with inputs located on
|
|
a particular device. Particularly, the hooks are only guaranteed to be
|
|
executed in correct order with respect to operations on corresponding
|
|
devices. For example, it is not guaranteed that hooks set via
|
|
:meth:`~torch.nn.Module.register_forward_pre_hook` be executed before
|
|
`all` ``len(device_ids)`` :meth:`~torch.nn.Module.forward` calls, but
|
|
that each such hook be executed before the corresponding
|
|
:meth:`~torch.nn.Module.forward` call of that device.
|
|
|
|
.. warning::
|
|
When :attr:`module` returns a scalar (i.e., 0-dimensional tensor) in
|
|
:func:`forward`, this wrapper will return a vector of length equal to
|
|
number of devices used in data parallelism, containing the result from
|
|
each device.
|
|
|
|
.. note::
|
|
There is a subtlety in using the
|
|
``pack sequence -> recurrent network -> unpack sequence`` pattern in a
|
|
:class:`~torch.nn.Module` wrapped in :class:`~torch.nn.DataParallel`.
|
|
See :ref:`pack-rnn-unpack-with-data-parallelism` section in FAQ for
|
|
details.
|
|
|
|
|
|
Args:
|
|
module (Module): module to be parallelized
|
|
device_ids (list of int or torch.device): CUDA devices (default: all devices)
|
|
output_device (int or torch.device): device location of output (default: device_ids[0])
|
|
|
|
Attributes:
|
|
module (Module): the module to be parallelized
|
|
|
|
Example::
|
|
|
|
>>> # xdoctest: +SKIP
|
|
>>> net = torch.nn.DataParallel(model, device_ids=[0, 1, 2])
|
|
>>> output = net(input_var) # input_var can be on any device, including CPU
|
|
"""
|
|
|
|
# TODO: update notes/cuda.rst when this class handles 8+ GPUs well
|
|
|
|
def __init__(self, module, device_ids=None, output_device=None, dim=0):
|
|
super(DataParallel, self).__init__()
|
|
torch._C._log_api_usage_once("torch.nn.parallel.DataParallel")
|
|
device_type = _get_available_device_type()
|
|
if device_type is None:
|
|
self.module = module
|
|
self.device_ids = []
|
|
return
|
|
|
|
if device_ids is None:
|
|
device_ids = _get_all_device_indices()
|
|
|
|
if output_device is None:
|
|
output_device = device_ids[0]
|
|
|
|
self.dim = dim
|
|
self.module = module
|
|
self.device_ids = [_get_device_index(x, True) for x in device_ids]
|
|
self.output_device = _get_device_index(output_device, True)
|
|
self.src_device_obj = torch.device(device_type, self.device_ids[0])
|
|
|
|
_check_balance(self.device_ids)
|
|
|
|
if len(self.device_ids) == 1:
|
|
self.module.to(self.src_device_obj)
|
|
|
|
def forward(self, *inputs, **kwargs):
|
|
with torch.autograd.profiler.record_function("DataParallel.forward"):
|
|
if not self.device_ids:
|
|
return self.module(*inputs, **kwargs)
|
|
|
|
for t in chain(self.module.parameters(), self.module.buffers()):
|
|
if t.device != self.src_device_obj:
|
|
raise RuntimeError("module must have its parameters and buffers "
|
|
"on device {} (device_ids[0]) but found one of "
|
|
"them on device: {}".format(self.src_device_obj, t.device))
|
|
|
|
inputs, kwargs = self.scatter(inputs, kwargs, self.device_ids)
|
|
# for forward function without any inputs, empty list and dict will be created
|
|
# so the module can be executed on one device which is the first one in device_ids
|
|
if not inputs and not kwargs:
|
|
inputs = ((),)
|
|
kwargs = ({},)
|
|
|
|
if len(self.device_ids) == 1:
|
|
return self.module(*inputs[0], **kwargs[0])
|
|
replicas = self.replicate(self.module, self.device_ids[:len(inputs)])
|
|
outputs = self.parallel_apply(replicas, inputs, kwargs)
|
|
return self.gather(outputs, self.output_device)
|
|
|
|
def replicate(self, module, device_ids):
|
|
return replicate(module, device_ids, not torch.is_grad_enabled())
|
|
|
|
def scatter(self, inputs, kwargs, device_ids):
|
|
return scatter_kwargs(inputs, kwargs, device_ids, dim=self.dim)
|
|
|
|
def parallel_apply(self, replicas, inputs, kwargs):
|
|
return parallel_apply(replicas, inputs, kwargs, self.device_ids[:len(replicas)])
|
|
|
|
def gather(self, outputs, output_device):
|
|
return gather(outputs, output_device, dim=self.dim)
|
|
|
|
|
|
def data_parallel(module, inputs, device_ids=None, output_device=None, dim=0, module_kwargs=None):
|
|
r"""Evaluates module(input) in parallel across the GPUs given in device_ids.
|
|
|
|
This is the functional version of the DataParallel module.
|
|
|
|
Args:
|
|
module (Module): the module to evaluate in parallel
|
|
inputs (Tensor): inputs to the module
|
|
device_ids (list of int or torch.device): GPU ids on which to replicate module
|
|
output_device (list of int or torch.device): GPU location of the output Use -1 to indicate the CPU.
|
|
(default: device_ids[0])
|
|
Returns:
|
|
a Tensor containing the result of module(input) located on
|
|
output_device
|
|
"""
|
|
if not isinstance(inputs, tuple):
|
|
inputs = (inputs,) if inputs is not None else ()
|
|
|
|
device_type = _get_available_device_type()
|
|
|
|
if device_ids is None:
|
|
device_ids = _get_all_device_indices()
|
|
|
|
if output_device is None:
|
|
output_device = device_ids[0]
|
|
|
|
device_ids = [_get_device_index(x, True) for x in device_ids]
|
|
output_device = _get_device_index(output_device, True)
|
|
src_device_obj = torch.device(device_type, device_ids[0])
|
|
|
|
for t in chain(module.parameters(), module.buffers()):
|
|
if t.device != src_device_obj:
|
|
raise RuntimeError("module must have its parameters and buffers "
|
|
"on device {} (device_ids[0]) but found one of "
|
|
"them on device: {}".format(src_device_obj, t.device))
|
|
|
|
inputs, module_kwargs = scatter_kwargs(inputs, module_kwargs, device_ids, dim)
|
|
# for module without any inputs, empty list and dict will be created
|
|
# so the module can be executed on one device which is the first one in device_ids
|
|
if not inputs and not module_kwargs:
|
|
inputs = ((),)
|
|
module_kwargs = ({},)
|
|
|
|
if len(device_ids) == 1:
|
|
return module(*inputs[0], **module_kwargs[0])
|
|
used_device_ids = device_ids[:len(inputs)]
|
|
replicas = replicate(module, used_device_ids)
|
|
outputs = parallel_apply(replicas, inputs, module_kwargs, used_device_ids)
|
|
return gather(outputs, output_device, dim)
|