mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
This is a new version of #15648 based on the latest master branch. Unlike the previous PR where I fixed a lot of the doctests in addition to integrating xdoctest, I'm going to reduce the scope here. I'm simply going to integrate xdoctest, and then I'm going to mark all of the failing tests as "SKIP". This will let xdoctest run on the dashboards, provide some value, and still let the dashboards pass. I'll leave fixing the doctests themselves to another PR. In my initial commit, I do the bare minimum to get something running with failing dashboards. The few tests that I marked as skip are causing segfaults. Running xdoctest results in 293 failed, 201 passed tests. The next commits will be to disable those tests. (unfortunately I don't have a tool that will insert the `#xdoctest: +SKIP` directive over every failing test, so I'm going to do this mostly manually.) Fixes https://github.com/pytorch/pytorch/issues/71105 @ezyang Pull Request resolved: https://github.com/pytorch/pytorch/pull/82797 Approved by: https://github.com/ezyang
257 lines
9.6 KiB
Python
257 lines
9.6 KiB
Python
from typing import List, Optional
|
|
import logging
|
|
|
|
import torch
|
|
import torch.distributed.rpc as rpc
|
|
import torch.jit as jit
|
|
import torch.nn as nn
|
|
from torch import Tensor
|
|
from torch.distributed.rpc import RRef
|
|
from .utils import functional_optim_map
|
|
import torch.distributed.autograd as dist_autograd
|
|
|
|
|
|
from collections import defaultdict
|
|
from threading import Lock
|
|
|
|
__all__ = ['DistributedOptimizer']
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# XXX: we define a _ScriptModuleOptimizer here to explicitly
|
|
# compile the FunctionalOptimizer class into TorchScript
|
|
# This is because ScriptClass instance still lives in
|
|
# python unless you explicitly compile it as an attribute
|
|
# in ScriptModule or pass it to a ScriptFunction
|
|
# _ScriptLocalOptimizerInterface serves as a common
|
|
# interface type for Optimizer ScriptModules.
|
|
#
|
|
# TODO (wanchaol): remove this once we added TorchScript
|
|
# class reference semantics
|
|
@jit.interface
|
|
class _ScriptLocalOptimizerInterface(object):
|
|
def step(self, autograd_ctx_id: int) -> None:
|
|
pass
|
|
|
|
class _ScriptLocalOptimizer(nn.Module):
|
|
# TorchScript does not support multithread concurrent compiling.
|
|
# request_callback might invoke concurrent compiling, so we
|
|
# serialize the compiling with a lock
|
|
compile_lock = Lock()
|
|
|
|
def __init__(self, optim_cls, local_params_rref, *args, **kwargs):
|
|
super().__init__()
|
|
self._local_params = [rref.local_value() for rref in local_params_rref]
|
|
self.optim = optim_cls(
|
|
self._local_params,
|
|
*args,
|
|
**kwargs)
|
|
|
|
@jit.export
|
|
def step(self, autograd_ctx_id: int):
|
|
all_local_grads = dist_autograd.get_gradients(autograd_ctx_id)
|
|
# apply functional optimizer step with a list of gradients
|
|
grads: List[Optional[Tensor]] = [
|
|
all_local_grads[p] if p in all_local_grads else None
|
|
for p in self._local_params
|
|
]
|
|
|
|
self.optim.step(grads)
|
|
|
|
|
|
# TODO (wanchaol): remove/merge this with ScriptLocalOptimizer once
|
|
# we have converted all to functional optimizer in distributed.optim
|
|
class _LocalOptimizer(object):
|
|
# Ideally we would only need to share a lock for instances of
|
|
# _LocalOptimizer that deal with the same parameters. We are
|
|
# making a simplifying assumption here that if there is more
|
|
# than one instance of _LocalOptimizer per worker, they will
|
|
# be optimizing the same parameters (e.g. each data parallel
|
|
# trainer will create its own instance of _LocalOptimizer but
|
|
# they will all optimize the same parameters on each worker)
|
|
global_lock = Lock()
|
|
|
|
def __init__(self, optim_cls, local_params_rref, *args, **kwargs):
|
|
self._local_params = [rref.local_value() for rref in local_params_rref]
|
|
self.optim = optim_cls(
|
|
self._local_params,
|
|
*args,
|
|
**kwargs)
|
|
|
|
def step(self, autograd_ctx_id):
|
|
all_local_grads = dist_autograd.get_gradients(autograd_ctx_id)
|
|
|
|
with _LocalOptimizer.global_lock:
|
|
for param, grad in all_local_grads.items():
|
|
param.grad = grad
|
|
self.optim.step()
|
|
|
|
|
|
def _new_local_optimizer(optim_cls, local_params_rref, *args, **kwargs):
|
|
return rpc.RRef(
|
|
_LocalOptimizer(optim_cls, local_params_rref, *args, **kwargs))
|
|
|
|
|
|
def _local_optimizer_step(local_optim_rref, autograd_ctx_id):
|
|
local_optim = local_optim_rref.local_value()
|
|
local_optim.step(autograd_ctx_id)
|
|
|
|
|
|
# new/step functions combined with _ScriptLocalOptimizer to provide GIL-free optimizer
|
|
def _new_script_local_optimizer(optim_cls, local_params_rref, *args, **kwargs):
|
|
optim = _ScriptLocalOptimizer(optim_cls, local_params_rref, *args, **kwargs)
|
|
|
|
with _ScriptLocalOptimizer.compile_lock:
|
|
script_optim = jit.script(optim)
|
|
return rpc.RRef(
|
|
script_optim, _ScriptLocalOptimizerInterface)
|
|
|
|
@jit.script
|
|
def _script_local_optimizer_step(
|
|
local_optim_rref: RRef[_ScriptLocalOptimizerInterface],
|
|
autograd_ctx_id: int
|
|
) -> None:
|
|
local_optim = local_optim_rref.local_value()
|
|
local_optim.step(autograd_ctx_id)
|
|
|
|
def _wait_for_all(rpc_futs):
|
|
# TODO: improve error propagation
|
|
exception = None
|
|
results = []
|
|
for fut in rpc_futs:
|
|
try:
|
|
results.append(fut.wait())
|
|
except Exception as e:
|
|
results.append(e)
|
|
exception = e
|
|
if exception is not None:
|
|
raise exception
|
|
return results
|
|
|
|
|
|
class DistributedOptimizer:
|
|
"""
|
|
DistributedOptimizer takes remote references to parameters scattered
|
|
across workers and applies the given optimizer locally for each parameter.
|
|
|
|
This class uses :meth:`~torch.distributed.autograd.get_gradients` in order
|
|
to retrieve the gradients for specific parameters.
|
|
|
|
Concurrent calls to
|
|
:meth:`~torch.distributed.optim.DistributedOptimizer.step`,
|
|
either from the same or different clients, will
|
|
be serialized on each worker -- as each worker's optimizer can only work
|
|
on one set of gradients at a time. However, there is no guarantee that
|
|
the full forward-backward-optimizer sequence will execute for one client
|
|
at a time. This means that the gradients being applied may not correspond
|
|
to the latest forward pass executed on a given worker. Also, there is no
|
|
guaranteed ordering across workers.
|
|
|
|
`DistributedOptimizer` creates the local optimizer with TorchScript enabled
|
|
by default, so that optimizer updates are not blocked by the Python Global
|
|
Interpreter Lock (GIL) in the case of multithreaded training (e.g. Distributed
|
|
Model Parallel). This feature is currently enabled for most optimizers. You
|
|
can also follow `the recipe`__ in PyTorch tutorials to enable TorchScript support
|
|
for your own custom optimizers.
|
|
|
|
Args:
|
|
optimizer_class (optim.Optimizer): the class of optimizer to
|
|
instantiate on each worker.
|
|
params_rref (list[RRef]): list of RRefs to local or remote parameters
|
|
to optimize.
|
|
args: arguments to pass to the optimizer constructor on each worker.
|
|
kwargs: arguments to pass to the optimizer constructor on each worker.
|
|
|
|
Example::
|
|
>>> import torch.distributed.autograd as dist_autograd
|
|
>>> import torch.distributed.rpc as rpc
|
|
>>> from torch import optim
|
|
>>> from torch.distributed.optim import DistributedOptimizer
|
|
>>>
|
|
>>> # xdoctest: +SKIP
|
|
>>> with dist_autograd.context() as context_id:
|
|
>>> # Forward pass.
|
|
>>> rref1 = rpc.remote("worker1", torch.add, args=(torch.ones(2), 3))
|
|
>>> rref2 = rpc.remote("worker1", torch.add, args=(torch.ones(2), 1))
|
|
>>> loss = rref1.to_here() + rref2.to_here()
|
|
>>>
|
|
>>> # Backward pass.
|
|
>>> dist_autograd.backward(context_id, [loss.sum()])
|
|
>>>
|
|
>>> # Optimizer.
|
|
>>> dist_optim = DistributedOptimizer(
|
|
>>> optim.SGD,
|
|
>>> [rref1, rref2],
|
|
>>> lr=0.05,
|
|
>>> )
|
|
>>> dist_optim.step(context_id)
|
|
|
|
__ https://github.com/pytorch/tutorials/pull/1465
|
|
"""
|
|
|
|
def __init__(self, optimizer_class, params_rref, *args, **kwargs):
|
|
torch._C._log_api_usage_once("torch.distributed.optim.DistributedOptimizer")
|
|
per_worker_params_rref = defaultdict(list)
|
|
for param in params_rref:
|
|
per_worker_params_rref[param.owner()].append(param)
|
|
|
|
if optimizer_class in functional_optim_map and jit._state._enabled:
|
|
optim_ctor = functional_optim_map.get(optimizer_class)
|
|
else:
|
|
optim_ctor = optimizer_class
|
|
self.is_functional_optim = (optim_ctor != optimizer_class)
|
|
|
|
if self.is_functional_optim:
|
|
optimizer_new_func = _new_script_local_optimizer
|
|
else:
|
|
logger.warn(
|
|
f"Creating the optimizer {optimizer_class} without TorchScript support, "
|
|
"this might result in slow computation time in multithreading environment"
|
|
"(i.e. Distributed Model Parallel training on CPU) due to the Python's "
|
|
"Global Interpreter Lock (GIL). Please file an issue if you need this "
|
|
"optimizer in TorchScript. "
|
|
)
|
|
optimizer_new_func = _new_local_optimizer
|
|
|
|
remote_optim_futs = []
|
|
for worker, param_rrefs in per_worker_params_rref.items():
|
|
remote_optim_rref_fut = rpc.rpc_async(
|
|
worker,
|
|
optimizer_new_func,
|
|
args=(optim_ctor, param_rrefs) + args,
|
|
kwargs=kwargs,
|
|
)
|
|
remote_optim_futs.append(remote_optim_rref_fut)
|
|
|
|
self.remote_optimizers = _wait_for_all(remote_optim_futs)
|
|
|
|
def step(self, context_id):
|
|
"""
|
|
Performs a single optimization step.
|
|
|
|
This will call :meth:`torch.optim.Optimizer.step` on each worker
|
|
containing parameters to be optimized, and will block until all workers
|
|
return. The provided ``context_id`` will be used to retrieve the
|
|
corresponding :class:`~torch.distributed.autograd.context` that
|
|
contains the gradients that should be applied to the parameters.
|
|
|
|
Args:
|
|
context_id: the autograd context id for which we should run the
|
|
optimizer step.
|
|
"""
|
|
dist_autograd._is_valid_context(context_id)
|
|
|
|
if self.is_functional_optim:
|
|
optimizer_step_func = _script_local_optimizer_step
|
|
else:
|
|
optimizer_step_func = _local_optimizer_step
|
|
|
|
rpc_futs = []
|
|
for optimizer in self.remote_optimizers:
|
|
rpc_futs.append(rpc.rpc_async(
|
|
optimizer.owner(),
|
|
optimizer_step_func,
|
|
args=(optimizer, context_id),
|
|
))
|
|
_wait_for_all(rpc_futs)
|