mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Instead of inferring shape mappings from a bunch of data structures that were plumbed in InstructionTranslator, we instead work out mappings by just iterating over the GraphArgs and mapping symbols to arguments as they show up. If multiple argument sizes/strides/offset map to the same symbol, this means they are duck sized, so we also generate extra equality tests that they must be equal. Finally, we generate 0/1 specialization guards. The resulting code is much shorter, and I think also easier to understand. TODO: Delete all the tensor ref tracking code, it's unnecessary Signed-off-by: Edward Z. Yang <ezyang@fb.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/90528 Approved by: https://github.com/voznesenskym
1172 lines
34 KiB
Python
1172 lines
34 KiB
Python
import collections
|
|
import contextlib
|
|
import copy
|
|
import cProfile
|
|
import dataclasses
|
|
import datetime
|
|
import dis
|
|
import functools
|
|
import gc
|
|
import inspect
|
|
import itertools
|
|
import logging
|
|
import logging.config
|
|
import math
|
|
import operator
|
|
import os
|
|
import pstats
|
|
import re
|
|
import sys
|
|
import time
|
|
import types
|
|
import typing
|
|
import weakref
|
|
from contextlib import contextmanager
|
|
from functools import lru_cache
|
|
from typing import Any, Dict, List
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
from torch import fx
|
|
from torch._dispatch.python import enable_python_dispatcher
|
|
from torch._subclasses.fake_tensor import FakeTensor
|
|
from torch.nn.modules.lazy import LazyModuleMixin
|
|
from torch.utils._pytree import tree_flatten, tree_map
|
|
|
|
from . import config, logging as torchdynamo_logging
|
|
|
|
counters = collections.defaultdict(collections.Counter)
|
|
troubleshooting_url = (
|
|
"https://github.com/pytorch/torchdynamo/blob/main/TROUBLESHOOTING.md"
|
|
)
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
# profiling compilation time
|
|
compilation_metrics = collections.OrderedDict()
|
|
|
|
|
|
timer_counter = itertools.count()
|
|
|
|
|
|
def tabulate(rows, headers):
|
|
try:
|
|
import tabulate
|
|
|
|
return tabulate.tabulate(rows, headers=headers)
|
|
except ImportError:
|
|
return "\n".join(
|
|
", ".join(map(str, row)) for row in itertools.chain([headers], rows)
|
|
)
|
|
|
|
|
|
def dynamo_profiled(func):
|
|
def profile_wrapper(*args, **kwargs):
|
|
global timer_counter
|
|
datafn = (
|
|
func.__name__ + f"{next(timer_counter)}.profile"
|
|
) # Name the data file sensibly
|
|
prof = cProfile.Profile()
|
|
prof.enable()
|
|
retval = prof.runcall(func, *args, **kwargs)
|
|
prof.disable()
|
|
print(f"### Cprofile for {func.__name__} iter {next(timer_counter)} ###")
|
|
ps = pstats.Stats(prof)
|
|
ps.sort_stats(pstats.SortKey.TIME).print_stats(20)
|
|
ps.sort_stats(pstats.SortKey.CUMULATIVE).print_stats(20)
|
|
prof.dump_stats(datafn)
|
|
return retval
|
|
|
|
return profile_wrapper
|
|
|
|
|
|
def dynamo_timed(func):
|
|
def time_wrapper(*args, **kwargs):
|
|
key = func.__qualname__
|
|
if key not in compilation_metrics:
|
|
compilation_metrics[key] = []
|
|
t0 = time.time()
|
|
r = func(*args, **kwargs)
|
|
latency = time.time() - t0
|
|
# print(f"Dynamo timer: key={key}, latency={latency:.2f} sec")
|
|
compilation_metrics[key].append(latency)
|
|
return r
|
|
|
|
return time_wrapper
|
|
|
|
|
|
def compile_times(repr="str", aggregate=False):
|
|
"""
|
|
Get metrics about torchdynamo frontend/backend compilation times.
|
|
|
|
Accumulates information from functions tagged with `@dynamo_timed`.
|
|
|
|
repr='str' returns a printable string for user interaction, and 'csv'
|
|
returns headers, rows which can be logged for output
|
|
|
|
aggregate causes values from multiple compilations (e.g. split graphs)
|
|
to be accumulated into one value. If false, expect more than one value
|
|
per metric.
|
|
"""
|
|
|
|
def fmt_fn(values, item_fn=lambda x: x):
|
|
|
|
if aggregate:
|
|
return item_fn(sum(values))
|
|
return ", ".join(map(item_fn, values))
|
|
|
|
if repr == "str":
|
|
rows = [
|
|
(k, fmt_fn(compilation_metrics[k], item_fn=lambda x: f"{x:.4f}"))
|
|
for k in compilation_metrics
|
|
]
|
|
out = "TorchDynamo compilation metrics:\n"
|
|
out += tabulate(rows, headers=("Function", "Runtimes (s)"))
|
|
return out
|
|
elif repr == "csv":
|
|
values = [
|
|
fmt_fn(v, item_fn=lambda x: f"{x:.6f}")
|
|
for v in compilation_metrics.values()
|
|
]
|
|
headers = list(compilation_metrics.keys())
|
|
return headers, values
|
|
|
|
|
|
tensortype_to_dtype = {
|
|
torch.FloatTensor: (torch.float32, torch.float),
|
|
torch.DoubleTensor: (torch.float64, torch.double),
|
|
torch.HalfTensor: (torch.float16, torch.half),
|
|
torch.BFloat16Tensor: (torch.bfloat16,),
|
|
torch.ByteTensor: (torch.uint8,),
|
|
torch.CharTensor: (torch.int8,),
|
|
torch.LongTensor: (torch.int64, torch.long),
|
|
torch.IntTensor: (torch.int32, torch.int),
|
|
torch.ShortTensor: (torch.int16, torch.short),
|
|
torch.BoolTensor: (torch.bool,),
|
|
}
|
|
|
|
|
|
class DuplicateWarningChecker(object):
|
|
def __init__(self, maxsize=4096):
|
|
self.maxsize = maxsize
|
|
self.reset()
|
|
|
|
def reset(self):
|
|
self.set = collections.OrderedDict()
|
|
|
|
def add(self, key):
|
|
if key in self.set:
|
|
self.set.move_to_end(key, last=True)
|
|
if not config.verbose:
|
|
return False
|
|
else:
|
|
self.set[key] = None
|
|
while len(self.set) > self.maxsize:
|
|
self.set.popitem(last=False)
|
|
return True
|
|
|
|
|
|
graph_break_dup_warning_checker = DuplicateWarningChecker()
|
|
|
|
|
|
def init_logging():
|
|
torchdynamo_logging.init_logging(
|
|
config.log_level, log_file_name=config.log_file_name
|
|
)
|
|
graph_break_dup_warning_checker.reset()
|
|
|
|
|
|
# filter out all frames after entering dynamo
|
|
def filter_stack(stack):
|
|
user_stack = []
|
|
for frame in stack:
|
|
if "convert_frame" in frame.filename:
|
|
break
|
|
if (
|
|
"eval_frame" in frame.filename
|
|
or f"{config.dynamo_import}.optimize(" in frame.line
|
|
):
|
|
continue
|
|
user_stack.append(frame)
|
|
|
|
return user_stack
|
|
|
|
|
|
def format_graph_tabular(graph):
|
|
node_specs = [[n.op, n.name, n.target, n.args, n.kwargs] for n in graph.nodes]
|
|
return tabulate(node_specs, headers=["opcode", "name", "target", "args", "kwargs"])
|
|
|
|
|
|
def format_bytecode(prefix, name, filename, line_no, code):
|
|
return f"{prefix} {name} {filename}\
|
|
line {line_no} \n{dis.Bytecode(code).dis()}\n "
|
|
|
|
|
|
def gen_record_file_name(exc, code):
|
|
return f"{get_debug_dir()}/error_recordings/\
|
|
{code.co_name}_{type(exc).__name__}_{code.co_firstlineno}.rec"
|
|
|
|
|
|
def write_record_to_file(filename, exec_record):
|
|
try:
|
|
if os.path.exists(filename):
|
|
log.warning(
|
|
f"Unable to write execution record {filename}; file already exists."
|
|
)
|
|
else:
|
|
os.makedirs(os.path.dirname(filename), exist_ok=True)
|
|
with open(filename, "wb") as f:
|
|
exec_record.dump(f)
|
|
except Exception:
|
|
log.error(f"Unable to write execution record {filename}", exc_info=1)
|
|
|
|
|
|
def count_calls(g: fx.Graph):
|
|
c = 0
|
|
for n in g.nodes:
|
|
if "call" in n.op:
|
|
c += 1
|
|
return c
|
|
|
|
|
|
def identity(x):
|
|
return x
|
|
|
|
|
|
def nothing(*args, **kwargs):
|
|
pass
|
|
|
|
|
|
class ExactWeakKeyDictionary:
|
|
"""Similar to weakref.WeakKeyDictionary, but use `is`/`id` rather than `==` to compare equality"""
|
|
|
|
def __init__(self):
|
|
self.values = dict()
|
|
self.refs = dict()
|
|
|
|
def __getitem__(self, key):
|
|
return self.values[id(key)]
|
|
|
|
def get(self, key, default=None):
|
|
return self.values.get(id(key), default)
|
|
|
|
def __contains__(self, key):
|
|
return id(key) in self.values
|
|
|
|
def __setitem__(self, key, value):
|
|
idx = id(key)
|
|
if idx not in self.refs:
|
|
self.refs[idx] = weakref.ref(key, lambda ref: self._remove_id(idx))
|
|
self.values[idx] = value
|
|
|
|
def _remove_id(self, idx):
|
|
if idx in self.values:
|
|
del self.values[idx]
|
|
if idx in self.refs:
|
|
del self.refs[idx]
|
|
|
|
def clear(self):
|
|
self.refs.clear()
|
|
self.values.clear()
|
|
|
|
|
|
def istype(obj, allowed_types):
|
|
"""isinstance() without subclasses"""
|
|
if isinstance(allowed_types, (tuple, list, set)):
|
|
return type(obj) in allowed_types
|
|
return type(obj) is allowed_types
|
|
|
|
|
|
def is_typing(value):
|
|
if sys.version_info < (3, 9):
|
|
return isinstance(value, typing._GenericAlias)
|
|
else:
|
|
return isinstance(value, typing._SpecialGenericAlias)
|
|
|
|
|
|
def is_numpy_int_type(value):
|
|
return istype(
|
|
value,
|
|
(
|
|
np.int8,
|
|
np.int16,
|
|
np.int32,
|
|
np.int64,
|
|
np.uint8,
|
|
np.uint16,
|
|
np.uint32,
|
|
np.uint64,
|
|
),
|
|
)
|
|
|
|
|
|
def is_numpy_float_type(value):
|
|
return istype(
|
|
value,
|
|
(
|
|
np.float16,
|
|
np.float32,
|
|
np.float64,
|
|
),
|
|
)
|
|
|
|
|
|
def istensor(obj):
|
|
"""Check of obj is a tensor"""
|
|
tensor_list = (
|
|
torch.Tensor,
|
|
torch.nn.Parameter,
|
|
*config.traceable_tensor_subclasses,
|
|
)
|
|
tensor_list = tensor_list + (torch._subclasses.FakeTensor,)
|
|
return istype(obj, tensor_list)
|
|
|
|
|
|
def is_lazy_module(mod):
|
|
return isinstance(mod, LazyModuleMixin)
|
|
|
|
|
|
@functools.lru_cache(4096)
|
|
def print_once(*args):
|
|
print(*args)
|
|
|
|
|
|
def make_cell(val=None):
|
|
"""Some black magic to create a cell object that usually only exists in a closure"""
|
|
x = val
|
|
|
|
def f():
|
|
return x
|
|
|
|
assert len(f.__closure__) == 1
|
|
return f.__closure__[0]
|
|
|
|
|
|
def proxy_args_kwargs(args, kwargs):
|
|
try:
|
|
proxy_args = tuple(arg.as_proxy() for arg in args)
|
|
proxy_kwargs = {key: arg.as_proxy() for key, arg in kwargs.items()}
|
|
return proxy_args, proxy_kwargs
|
|
except NotImplementedError as e:
|
|
from .exc import unimplemented
|
|
from .variables.base import typestr
|
|
|
|
raise unimplemented(
|
|
f"call_function args: {typestr(*args)} {typestr(*list(kwargs.values()))}"
|
|
) from e
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class CleanupHook:
|
|
"""Remove a global variable when hook is called"""
|
|
|
|
scope: Dict[str, Any]
|
|
name: str
|
|
|
|
def __call__(self, *args):
|
|
CleanupManager.count -= 1
|
|
del self.scope[self.name]
|
|
|
|
@staticmethod
|
|
def create(scope, name, val):
|
|
assert name not in scope
|
|
CleanupManager.count += 1
|
|
scope[name] = val
|
|
return CleanupHook(scope, name)
|
|
|
|
|
|
class CleanupManager(ExactWeakKeyDictionary):
|
|
count = 0
|
|
|
|
def _remove_id(self, idx):
|
|
for hook in self.values[idx]:
|
|
hook()
|
|
super()._remove_id(idx)
|
|
|
|
|
|
CleanupManager.instance = CleanupManager()
|
|
|
|
|
|
def clone_tensor(x):
|
|
"""Clone the tensor and its gradient"""
|
|
y = x.clone().requires_grad_(x.requires_grad)
|
|
if x.is_leaf and x.grad is not None:
|
|
y.grad = x.grad.clone()
|
|
return y
|
|
|
|
|
|
def clone_input(x):
|
|
"""copy while preserving strides"""
|
|
# TODO: this is questionable
|
|
if isinstance(x, torch._subclasses.FakeTensor):
|
|
# this func fails on fake tensors in __torch_dispatch__
|
|
return x
|
|
|
|
def torch_clone(x):
|
|
y = torch.clone(x)
|
|
if x.is_leaf:
|
|
y.requires_grad_(x.requires_grad)
|
|
if x.is_leaf and x.grad is not None:
|
|
y.grad = clone_input(x.grad)
|
|
return y
|
|
|
|
with torch.no_grad():
|
|
if x.device.type == "xla":
|
|
# Access data_ptr() for a xla tensor will cause crash
|
|
return torch_clone(x)
|
|
|
|
needed_size = sum(
|
|
(shape - 1) * stride for shape, stride in zip(x.size(), x.stride())
|
|
)
|
|
if x.is_quantized:
|
|
result = torch.empty_quantized((needed_size + 32,), x)
|
|
else:
|
|
result = torch.empty(needed_size + 32, dtype=x.dtype, device=x.device)
|
|
cache_line_offset = (
|
|
(x.data_ptr() - result.data_ptr()) % 32
|
|
) // x.element_size()
|
|
result.as_strided_(x.size(), x.stride(), cache_line_offset)
|
|
try:
|
|
result.copy_(x.clone())
|
|
if x.is_leaf:
|
|
result.requires_grad_(x.requires_grad)
|
|
if x.is_leaf and x.grad is not None:
|
|
result.grad = clone_input(x.grad)
|
|
except RuntimeError:
|
|
# RuntimeError: unsupported operation: more than one element of the written-to
|
|
# tensor refers to a single memory location. Please clone() the tensor before
|
|
# performing the operation.
|
|
return torch_clone(x)
|
|
return result
|
|
|
|
|
|
def clone_inputs(example_inputs):
|
|
if isinstance(example_inputs, dict):
|
|
res = dict(example_inputs)
|
|
for key, value in res.items():
|
|
assert isinstance(value, torch.Tensor)
|
|
res[key] = clone_input(value)
|
|
return res
|
|
|
|
res = list(example_inputs)
|
|
for i in range(len(res)):
|
|
if isinstance(res[i], torch.Tensor):
|
|
res[i] = clone_input(res[i])
|
|
return res
|
|
|
|
|
|
@contextmanager
|
|
def preserve_rng_state():
|
|
rng = torch.clone(torch.random.get_rng_state())
|
|
if torch.cuda.is_available():
|
|
cuda_rng = torch.clone(torch.cuda.get_rng_state())
|
|
try:
|
|
yield
|
|
finally:
|
|
torch.random.set_rng_state(rng)
|
|
if torch.cuda.is_available():
|
|
torch.cuda.set_rng_state(cuda_rng)
|
|
|
|
|
|
def is_jit_model(model0):
|
|
return isinstance(
|
|
model0,
|
|
(
|
|
torch.jit._trace.TopLevelTracedModule,
|
|
torch.jit._script.RecursiveScriptModule,
|
|
torch.jit.ScriptFunction,
|
|
torch.jit.ScriptModule,
|
|
),
|
|
)
|
|
|
|
|
|
def torchscript(model, example_inputs, verbose=False):
|
|
if is_jit_model(model):
|
|
# already done?
|
|
return model
|
|
|
|
try:
|
|
return torch.jit.trace(model, example_inputs)
|
|
except Exception:
|
|
try:
|
|
return torch.jit.script(model)
|
|
except Exception:
|
|
if verbose:
|
|
log.exception("jit error")
|
|
else:
|
|
log.error("Both torch.jit.trace and torch.jit.script failed")
|
|
return None
|
|
|
|
|
|
def getfile(obj):
|
|
try:
|
|
return inspect.getfile(obj)
|
|
except TypeError:
|
|
return None
|
|
|
|
|
|
def is_namedtuple(obj):
|
|
"""Test if an object is a namedtuple or a torch.return_types.* quasi-namedtuple"""
|
|
return is_namedtuple_cls(type(obj))
|
|
|
|
|
|
def is_namedtuple_cls(cls):
|
|
"""Test if an object is a namedtuple or a torch.return_types.* quasi-namedtuple"""
|
|
try:
|
|
if issubclass(cls, tuple):
|
|
bases = getattr(cls, "__bases__", []) or [None]
|
|
module = getattr(cls, "__module__", None)
|
|
return module == "torch.return_types" or (
|
|
bases[0] is tuple and hasattr(cls, "_make") and hasattr(cls, "_fields")
|
|
)
|
|
except TypeError:
|
|
pass
|
|
return False
|
|
|
|
|
|
@functools.lru_cache(1)
|
|
def namedtuple_fields(cls):
|
|
"""Get the fields of a namedtuple or a torch.return_types.* quasi-namedtuple"""
|
|
if cls is slice:
|
|
return ["start", "stop", "step"]
|
|
|
|
assert issubclass(cls, tuple)
|
|
if hasattr(cls, "_fields"):
|
|
# normal namedtuples
|
|
return cls._fields
|
|
|
|
@dataclasses.dataclass
|
|
class Marker:
|
|
index: int
|
|
|
|
# frustrating ones e.g. torch.return_types.max
|
|
assert cls.__module__ == "torch.return_types"
|
|
obj = cls(map(Marker, range(cls.n_fields)))
|
|
fields = [None] * cls.n_fields
|
|
for name in dir(obj):
|
|
if name[0] != "_" and isinstance(getattr(obj, name), Marker):
|
|
fields[getattr(obj, name).index] = name
|
|
return fields
|
|
|
|
|
|
def checkpoint_params(gm):
|
|
with torch.no_grad():
|
|
rng_state = torch.clone(torch.random.get_rng_state())
|
|
if torch.cuda.is_available():
|
|
cuda_rng_state = torch.clone(torch.cuda.get_rng_state())
|
|
saved_state = []
|
|
for param in itertools.chain(gm.parameters(), gm.buffers()):
|
|
saved_state.append((param, param._version, torch.clone(param)))
|
|
|
|
def restore():
|
|
with torch.no_grad():
|
|
torch.random.set_rng_state(rng_state)
|
|
if torch.cuda.is_available():
|
|
torch.cuda.set_rng_state(cuda_rng_state)
|
|
for param, version, original_value in saved_state:
|
|
if param._version != version:
|
|
param.copy_(original_value)
|
|
|
|
return restore
|
|
|
|
|
|
def timed(model, example_inputs, times=1):
|
|
if torch.cuda.is_available():
|
|
synchronize = torch.cuda.synchronize
|
|
else:
|
|
synchronize = nothing
|
|
|
|
synchronize()
|
|
gc.collect()
|
|
torch.manual_seed(1337)
|
|
t0 = time.perf_counter()
|
|
for _ in range(times):
|
|
result = model(*example_inputs)
|
|
synchronize()
|
|
t1 = time.perf_counter()
|
|
return result, t1 - t0
|
|
|
|
|
|
def check_is_cuda(gm, example_inputs):
|
|
return all(x.is_cuda for x in itertools.chain(example_inputs, gm.parameters(True)))
|
|
|
|
|
|
@lru_cache(32)
|
|
def rot_n_helper(n):
|
|
assert n > 1
|
|
vars = [f"v{i}" for i in range(n)]
|
|
rotated = reversed(vars[-1:] + vars[:-1])
|
|
fn = eval(f"lambda {','.join(vars)}: ({','.join(rotated)})")
|
|
fn.__name__ = f"rot_{n}_helper"
|
|
return fn
|
|
|
|
|
|
def is_safe_constant(v):
|
|
if istype(v, (tuple, frozenset)):
|
|
return all(map(is_safe_constant, v))
|
|
return istype(
|
|
v,
|
|
(
|
|
types.CodeType,
|
|
int,
|
|
float,
|
|
bool,
|
|
str,
|
|
bytes,
|
|
type(None),
|
|
slice,
|
|
type(type),
|
|
torch.device,
|
|
),
|
|
)
|
|
|
|
|
|
def check_constant_args(args, kwargs):
|
|
return all(x.is_python_constant() for x in itertools.chain(args, kwargs.values()))
|
|
|
|
|
|
def check_unspec_python_args(args, kwargs):
|
|
from .variables.constant import ConstantVariable
|
|
from .variables.tensor import UnspecializedPythonVariable
|
|
|
|
unspec_count = 0
|
|
for x in itertools.chain(args, kwargs.values()):
|
|
if isinstance(x, UnspecializedPythonVariable):
|
|
unspec_count += 1
|
|
elif not isinstance(x, (UnspecializedPythonVariable, ConstantVariable)):
|
|
return False
|
|
else:
|
|
pass
|
|
|
|
return unspec_count > 0
|
|
|
|
|
|
def specialize_args_kwargs(tx, args, kwargs):
|
|
specialized_args = []
|
|
specialized_kwargs = {}
|
|
for x in args:
|
|
specialized_args.append(x.as_specialized(tx))
|
|
for k, v in kwargs.items():
|
|
specialized_kwargs.update({k: v.as_specialized(tx)})
|
|
return specialized_args, specialized_kwargs
|
|
|
|
|
|
dict_values = type(dict().values())
|
|
odict_values = type(collections.OrderedDict().values())
|
|
tuple_iterator = type(iter(tuple()))
|
|
tuple_iterator_len = tuple_iterator.__length_hint__
|
|
object_new = object.__new__
|
|
|
|
|
|
def product(it):
|
|
return functools.reduce(operator.mul, it, 1)
|
|
|
|
|
|
def tuple_iterator_getitem(it, index):
|
|
_, (obj,), start = it.__reduce__()
|
|
return obj[start + index]
|
|
|
|
|
|
def dict_param_key_ids(value):
|
|
return set([id(k) for k in value.keys() if isinstance(k, torch.nn.Parameter)])
|
|
|
|
|
|
def dict_const_keys(value):
|
|
return set(k for k in value.keys() if not isinstance(k, torch.nn.Parameter))
|
|
|
|
|
|
def global_key_name(key):
|
|
return f"__dict_key_{id(key)}"
|
|
|
|
|
|
def rename_implicit(v):
|
|
"""
|
|
Usage of inline comprehensions generates a implicit ".0" variable that
|
|
trips up guard generation. This renames these variables in guards.
|
|
"""
|
|
m = re.match(r"^[.](\d+)$", v)
|
|
if m:
|
|
assert v == ".0", f"currently only .0 supported: {v}"
|
|
# to support .1 etc see guards.py and _eval_frame.c
|
|
return f"___implicit{m.group(1)}"
|
|
return v
|
|
|
|
|
|
from torch._subclasses import ( # noqa: F401
|
|
FakeTensorMode,
|
|
UnsupportedFakeTensorException,
|
|
)
|
|
|
|
|
|
def make_fake_tensor(
|
|
e, fake_mode, static_shapes=False, tx=None, ignore_subclass=False, *, sname: str
|
|
):
|
|
return fake_mode.from_tensor(
|
|
e, static_shapes=static_shapes, ignore_subclass=ignore_subclass, sname=sname
|
|
)
|
|
|
|
|
|
def wrap_fake_exception(fn):
|
|
try:
|
|
return fn()
|
|
except UnsupportedFakeTensorException as e:
|
|
from .exc import unimplemented
|
|
|
|
msg = f"Unsupported: {e.reason} with fake tensor propagation."
|
|
log.warning(msg)
|
|
raise unimplemented(msg) from e
|
|
|
|
|
|
def wrap_to_fake_tensor_and_record(
|
|
e, tx, ignore_subclass=False, *, sname: str, static_shapes=False
|
|
):
|
|
if type(e) in (torch.Tensor, torch.nn.Parameter) or (
|
|
ignore_subclass and isinstance(e, torch.Tensor)
|
|
):
|
|
static_shapes = static_shapes or config.dynamic_shapes is False
|
|
if type(e) is torch.nn.Parameter:
|
|
# Always static for params
|
|
static_shapes = True
|
|
return wrap_fake_exception(
|
|
lambda: make_fake_tensor(
|
|
e,
|
|
tx.fake_mode,
|
|
static_shapes,
|
|
tx,
|
|
ignore_subclass=ignore_subclass,
|
|
sname=sname,
|
|
)
|
|
)
|
|
else:
|
|
return e
|
|
|
|
|
|
def deepcopy_to_fake_tensor(obj, fake_mode):
|
|
with torch._subclasses.fake_tensor.FakeCopyMode(fake_mode):
|
|
return wrap_fake_exception(lambda: copy.deepcopy(obj))
|
|
|
|
|
|
def rmse(ref, res):
|
|
"""
|
|
Calculate root mean squared error
|
|
"""
|
|
return torch.sqrt(torch.mean(torch.square(ref - res)))
|
|
|
|
|
|
def same(
|
|
ref,
|
|
res,
|
|
fp64_ref=None,
|
|
cos_similarity=False,
|
|
tol=1e-4,
|
|
equal_nan=False,
|
|
exact_dtype=True,
|
|
):
|
|
"""Check correctness to see if ref and res match"""
|
|
if fp64_ref is None:
|
|
fp64_ref = ref
|
|
if isinstance(ref, (list, tuple, torch.nn.ParameterList, torch.Size)):
|
|
assert isinstance(res, (list, tuple)), f"type mismatch {type(ref)} {type(res)}"
|
|
return len(ref) == len(res) and all(
|
|
same(ai, bi, fp64_refi, cos_similarity, tol, equal_nan, exact_dtype)
|
|
for ai, bi, fp64_refi in zip(ref, res, fp64_ref)
|
|
)
|
|
elif isinstance(ref, dict):
|
|
assert isinstance(res, dict)
|
|
assert set(ref.keys()) == set(
|
|
res.keys()
|
|
), f"keys mismatch {set(ref.keys())} == {set(res.keys())}"
|
|
for k in ref.keys():
|
|
if not (
|
|
same(
|
|
ref[k],
|
|
res[k],
|
|
fp64_ref[k],
|
|
cos_similarity=cos_similarity,
|
|
tol=tol,
|
|
equal_nan=equal_nan,
|
|
exact_dtype=exact_dtype,
|
|
)
|
|
):
|
|
log.error(f"Accuracy failed for key name {k}")
|
|
return False
|
|
return True
|
|
elif isinstance(ref, torch.Tensor):
|
|
assert not isinstance(ref, torch._subclasses.FakeTensor)
|
|
assert not isinstance(res, torch._subclasses.FakeTensor)
|
|
|
|
if ref.is_sparse:
|
|
assert res.is_sparse
|
|
ref = ref.to_dense()
|
|
res = res.to_dense()
|
|
assert isinstance(res, torch.Tensor), f"type mismatch {type(ref)} {type(res)}"
|
|
if exact_dtype:
|
|
if ref.dtype != res.dtype:
|
|
log.error(f"dtype mismatch {ref.dtype}, {res.dtype}")
|
|
return False
|
|
if ref.dtype == torch.bool:
|
|
# triton stores bool as int8, so add this for more accurate checking
|
|
return torch.allclose(
|
|
ref.to(dtype=torch.uint8),
|
|
res.to(dtype=torch.uint8),
|
|
atol=tol,
|
|
rtol=tol,
|
|
equal_nan=equal_nan,
|
|
)
|
|
if cos_similarity:
|
|
ref = ref.flatten().to(torch.float32)
|
|
res = res.flatten().to(torch.float32)
|
|
if torch.allclose(ref, res, atol=tol, rtol=tol, equal_nan=True):
|
|
# early exit that handles zero/nan better
|
|
# cosine_similarity(zeros(10), zeros(10), dim=0) is 0
|
|
return True
|
|
score = torch.nn.functional.cosine_similarity(ref, res, dim=0, eps=1e-6)
|
|
if score < 0.99:
|
|
breakpoint()
|
|
log.warning(f"Similarity score={score.cpu().detach().item()}")
|
|
return score >= 0.99
|
|
else:
|
|
if not exact_dtype:
|
|
ref = ref.to(res.dtype)
|
|
|
|
# First try usual allclose
|
|
if torch.allclose(ref, res, atol=tol, rtol=tol, equal_nan=equal_nan):
|
|
return True
|
|
|
|
# Check error from fp64 version
|
|
if fp64_ref.dtype == torch.float64:
|
|
ref_error = rmse(fp64_ref, ref).item()
|
|
res_error = rmse(fp64_ref, res).item()
|
|
multiplier = 2.0
|
|
|
|
if (
|
|
fp64_ref.numel() < 1000
|
|
or (ref.ndim == 4 and ref.shape[-1] == ref.shape[-2] == 1)
|
|
# large tol means a benchmark has been specified as REQUIRE_HIGHER_TOLERANCE
|
|
or tol >= 2 * 1e-2
|
|
):
|
|
# In the presence of noise, noise might dominate our error
|
|
# metric for smaller tensors.
|
|
# Similary, for 1x1 kenerls, there seems to be high noise with amp.
|
|
multiplier = 3.0
|
|
|
|
passes_test = res_error <= (multiplier * ref_error + 1e-4)
|
|
if not passes_test:
|
|
log.error(
|
|
f"RMSE (res-fp64): {res_error:.5f}, (ref-fp64): {ref_error:.5f} and shape={res.size()}"
|
|
)
|
|
# import pdb; pdb.set_trace()
|
|
return passes_test
|
|
|
|
return False
|
|
elif isinstance(ref, (str, int, type(None), bool, torch.device)):
|
|
return ref == res
|
|
elif isinstance(ref, float):
|
|
return math.isclose(ref, res, rel_tol=tol, abs_tol=tol)
|
|
elif is_numpy_int_type(ref) or is_numpy_float_type(ref):
|
|
return (type(ref) is type(res)) and (ref == res)
|
|
elif type(ref).__name__ in (
|
|
"MaskedLMOutput",
|
|
"Seq2SeqLMOutput",
|
|
"CausalLMOutputWithCrossAttentions",
|
|
"LongformerMaskedLMOutput",
|
|
"Instances",
|
|
"SquashedNormal",
|
|
"Boxes",
|
|
"Normal",
|
|
"TanhTransform",
|
|
"Foo",
|
|
"Variable",
|
|
):
|
|
assert type(ref) is type(res)
|
|
return all(
|
|
same(
|
|
getattr(ref, key),
|
|
getattr(res, key),
|
|
getattr(fp64_ref, key),
|
|
cos_similarity=cos_similarity,
|
|
tol=tol,
|
|
equal_nan=equal_nan,
|
|
exact_dtype=exact_dtype,
|
|
)
|
|
for key in ref.__dict__.keys()
|
|
)
|
|
else:
|
|
raise RuntimeError(f"unsupported type: {type(ref).__name__}")
|
|
|
|
|
|
def format_func_info(code):
|
|
short_filename = code.co_filename.split("/")[-1]
|
|
return f"'{code.co_name}' ({short_filename}:{code.co_firstlineno})"
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def disable_cache_limit():
|
|
prior = config.cache_size_limit
|
|
config.cache_size_limit = sys.maxsize
|
|
|
|
try:
|
|
yield
|
|
finally:
|
|
pass
|
|
config.cache_size_limit = prior
|
|
|
|
|
|
# map from transformed code back to original user code
|
|
orig_code_map = ExactWeakKeyDictionary()
|
|
|
|
# keep a record of code_obj -> list of guard failure reasons for logging
|
|
guard_failures = collections.defaultdict(list)
|
|
|
|
|
|
class CompileProfiler:
|
|
"""Utility for profiling how and what dynamo would compile.
|
|
|
|
Can be used for
|
|
* diagnosing recompilation issues
|
|
* determining an appropriate compile cache limit
|
|
* (TODO)confirming which functions got compiled/skipped
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.frame_count = 0
|
|
self.op_count = 0
|
|
self.backend_ctx_ctor = lambda: disable_cache_limit()
|
|
|
|
def __call__(self, gm: torch.fx.GraphModule, example_inputs):
|
|
self.frame_count += 1
|
|
for node in gm.graph.nodes:
|
|
if "call" in node.op:
|
|
self.op_count += 1
|
|
return gm.forward
|
|
|
|
def get_metrics(self):
|
|
return {"guard_failures": guard_failures}
|
|
|
|
def report(self):
|
|
metrics = self.get_metrics()
|
|
gf = metrics["guard_failures"]
|
|
|
|
def num_recompiles(code):
|
|
return len(gf[code])
|
|
|
|
def recompile_reasons(code):
|
|
return "\n".join([str(x) for x in gf[code]])
|
|
|
|
summarized_gf = [
|
|
[format_func_info(code), num_recompiles(code), recompile_reasons(code)]
|
|
for code in gf
|
|
]
|
|
rpt = "Torchdynamo Profiler Report\n"
|
|
if "graph_break" in counters:
|
|
rpt += "\n"
|
|
rpt += "The following conditions caused torchdynamo to break out of tracing and fall back to python.\n"
|
|
rpt += (
|
|
f"You may gain additional insight by passing `nopython=True` to {config.dynamo_import}.optimize, "
|
|
"to break on the first condition.\n"
|
|
)
|
|
graph_breaks = counters["graph_break"]
|
|
rpt += tabulate(
|
|
[[msg, graph_breaks[msg]] for msg in graph_breaks],
|
|
headers=["Graph Break Reason", "Count"],
|
|
)
|
|
|
|
if len(gf):
|
|
max_recompiles = max([num_recompiles(code) for code in gf])
|
|
rpt += "\n"
|
|
rpt += (
|
|
"These subgraphs were recompiled more than once due to guard failures."
|
|
)
|
|
rpt += (
|
|
"Guard failures indicate some condition assumed to be static by the tracer changed, "
|
|
"making it unsafe to reuse the compiled program."
|
|
)
|
|
rpt += tabulate(
|
|
summarized_gf,
|
|
headers=["Function", "Num Recompiles", "Recompile Reasons"],
|
|
)
|
|
rpt += "\n"
|
|
rpt += (
|
|
f"Set {config.dynamo_import}.config.cache_size_limit to "
|
|
f"{max_recompiles} to avoid being cache limited.\n"
|
|
)
|
|
else:
|
|
rpt += "No cache-limited recompilations detected.\n"
|
|
|
|
return rpt
|
|
|
|
|
|
# return same dir unless user changes config between calls
|
|
@functools.lru_cache(None)
|
|
def _get_debug_dir(root_dir):
|
|
dir_name = "run_" + datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S_%f")
|
|
return os.path.join(root_dir, dir_name)
|
|
|
|
|
|
def get_debug_dir():
|
|
debug_root = config.debug_dir_root
|
|
return _get_debug_dir(debug_root)
|
|
|
|
|
|
def get_fake_value(node, tx):
|
|
"""
|
|
Run the computation represented by `node` using fake tensors and return the result.
|
|
"""
|
|
from .exc import TorchRuntimeError, unimplemented, Unsupported
|
|
|
|
op = node.op
|
|
|
|
def fake_wrapper(e):
|
|
if isinstance(e, torch.Tensor):
|
|
assert isinstance(e, FakeTensor)
|
|
return e
|
|
|
|
def visit(n: torch.fx.Node):
|
|
return n.meta["example_value"]
|
|
|
|
args, kwargs = torch.fx.node.map_arg((node.args, node.kwargs), visit)
|
|
args = tree_map(fake_wrapper, args)
|
|
kwargs = tree_map(fake_wrapper, kwargs)
|
|
|
|
nnmodule = None
|
|
if op == "call_module":
|
|
nnmodule = tx.output.nn_modules[node.target]
|
|
|
|
if not is_lazy_module(nnmodule):
|
|
nnmodule = deepcopy_to_fake_tensor(nnmodule, tx.fake_mode)
|
|
|
|
if op == "call_module" and is_lazy_module(nnmodule):
|
|
assert nnmodule is not None
|
|
# In the case of a lazy module, we want to run
|
|
# the pre-hooks which initialize it
|
|
nnmodule(*args, **kwargs)
|
|
try:
|
|
with tx.fake_mode, enable_python_dispatcher():
|
|
return wrap_fake_exception(
|
|
lambda: run_node(tx.output, node, args, kwargs, nnmodule)
|
|
)
|
|
except Unsupported:
|
|
raise
|
|
except RuntimeError as e:
|
|
cause = e
|
|
if e.__cause__ is not None:
|
|
cause = e.__cause__
|
|
if isinstance(
|
|
cause, torch._subclasses.fake_tensor.DataDependentOutputException
|
|
):
|
|
if config.capture_scalar_outputs and node.target == "item":
|
|
return torch.zeros(size=(), dtype=args[0].dtype).item()
|
|
else:
|
|
unimplemented(f"data dependent operator: {cause.func}")
|
|
elif isinstance(
|
|
cause, torch._subclasses.fake_tensor.DynamicOutputShapeException
|
|
):
|
|
unimplemented(f"dynamic shape operator: {cause.func}")
|
|
raise TorchRuntimeError() from e
|
|
|
|
|
|
def run_node(output_graph, node, args, kwargs, nnmodule):
|
|
"""
|
|
Runs a given node, with the given args and kwargs.
|
|
|
|
Behavior is dicatated by a node's op.
|
|
|
|
run_node is useful for extracting real values out of nodes.
|
|
See get_real_value for more info on common usage.
|
|
|
|
Note: The output_graph arg is only used for 'get_attr' ops
|
|
Note: The nnmodule arg is only used for 'call_module' ops
|
|
|
|
Nodes that are not call_function, call_method, call_module, or get_attr will
|
|
raise an AssertionError.
|
|
"""
|
|
op = node.op
|
|
try:
|
|
if op == "call_function":
|
|
return node.target(*args, **kwargs)
|
|
elif op == "call_method":
|
|
return getattr(args[0], node.target)(*args[1:], **kwargs)
|
|
elif op == "call_module":
|
|
assert nnmodule is not None
|
|
return nnmodule(*args, **kwargs)
|
|
elif op == "get_attr":
|
|
return output_graph.get_submodule(node.target)
|
|
except Exception as e:
|
|
raise RuntimeError(
|
|
f"Failed running {op} {node.target}(*{args}, **{kwargs}):\n{e}\n(scroll up for backtrace)"
|
|
) from e
|
|
raise AssertionError(op)
|
|
|
|
|
|
def get_real_value(node, output_graph):
|
|
"""
|
|
Run the actual computation represented by `node` and return the result.
|
|
This will execute any dependent nodes in the graph as well.
|
|
"""
|
|
cache = output_graph.real_value_cache
|
|
if node in cache:
|
|
return cache[node]
|
|
|
|
op = node.op
|
|
args, kwargs = torch.fx.node.map_arg(
|
|
(node.args, node.kwargs),
|
|
lambda n: get_real_value(n, output_graph),
|
|
)
|
|
|
|
if op == "call_module":
|
|
nn_module = output_graph.nn_modules[node.target]
|
|
if not is_lazy_module(nn_module):
|
|
nn_module = copy.deepcopy(nn_module)
|
|
else:
|
|
# In the case of a lazy module, we want to run
|
|
# the pre-hooks which initialize it
|
|
nn_module(*args, **kwargs)
|
|
else:
|
|
nn_module = None
|
|
|
|
try:
|
|
real_value = run_node(output_graph, node, args, kwargs, nn_module)
|
|
cache[node] = real_value
|
|
except RuntimeError as e:
|
|
raise TorchRuntimeError() from e
|
|
return real_value
|
|
|
|
|
|
def assert_no_fake_params_or_buffers(gm):
|
|
from torch._subclasses.fake_tensor import FakeTensorConfig
|
|
|
|
def stack_or_hint(t):
|
|
if FakeTensorConfig.debug:
|
|
import traceback
|
|
|
|
return f"FAKE TENSOR CREATION TRACEBACK: \n {traceback.format_list(t._debug_trace)}"
|
|
else:
|
|
return "Enable TORCH_FAKE_TENSOR_DEBUG=1 to get creation stack traces on fake tensors."
|
|
|
|
for name, buffer in gm.named_buffers():
|
|
assert not isinstance(
|
|
buffer, torch._subclasses.FakeTensor
|
|
), f"Unexpected fake buffer {name} {stack_or_hint(buffer)}"
|
|
for name, param in gm.named_parameters():
|
|
assert not isinstance(
|
|
param, torch._subclasses.FakeTensor
|
|
), f"Unexpected fake param {name} {stack_or_hint(param)}"
|
|
|
|
|
|
def fake_mode_from_tensors(inputs: List[Any]):
|
|
"""
|
|
Takes a list of anything, unflattened is fine, returns a fake_mode
|
|
if any are fake. All fake modes on all fake tensors must be identical.
|
|
Returns None if no fake_mode is fine
|
|
"""
|
|
flat_inputs, _ = tree_flatten(inputs)
|
|
fake_mode = None
|
|
for flat_input in flat_inputs:
|
|
if isinstance(flat_input, torch._subclasses.FakeTensor):
|
|
if fake_mode is None:
|
|
fake_mode = flat_input.fake_mode
|
|
else:
|
|
assert fake_mode is flat_input.fake_mode
|
|
return fake_mode
|