mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-08 07:39:33 +01:00
Summary: This adds a few things on top of https://github.com/pytorch/pytorch/pull/80184, 1). node.target was assumed to be "tanh", torch.nn.Tanh etc. this PR handles that properly 2). adds FixedQParamsFakeQuantize support 3). extends the comparison function _partial_wrapper_equals to work with FakeQuantize.with_args(observer=...) Test Plan: python test/test_quantization.py TestQuantizeFx python test/test_quantization.py TestQuantizeFxOps Reviewers: Subscribers: Tasks: Tags: Differential Revision: [D37735193](https://our.internmc.facebook.com/intern/diff/D37735193) Pull Request resolved: https://github.com/pytorch/pytorch/pull/81010 Approved by: https://github.com/andrewor14
273 lines
12 KiB
Python
273 lines
12 KiB
Python
from __future__ import annotations
|
|
from collections import OrderedDict
|
|
from typing import Any, Callable, Dict, Tuple, Union
|
|
|
|
import torch
|
|
|
|
from .fake_quantize import (
|
|
default_weight_fake_quant,
|
|
FixedQParamsFakeQuantize,
|
|
)
|
|
from .observer import (
|
|
_PartialWrapper,
|
|
default_fixed_qparams_range_0to1_observer,
|
|
default_fixed_qparams_range_neg1to1_observer,
|
|
default_weight_observer,
|
|
)
|
|
from .qconfig import (
|
|
default_reuse_input_qconfig,
|
|
get_default_qconfig,
|
|
get_default_qat_qconfig,
|
|
QConfig,
|
|
QConfigAny
|
|
)
|
|
|
|
|
|
__all__ = [
|
|
"get_default_qconfig_mapping",
|
|
"get_default_qat_qconfig_mapping",
|
|
"QConfigMapping",
|
|
]
|
|
|
|
|
|
# TODO: replace all usages with these constants
|
|
GLOBAL_DICT_KEY = ""
|
|
OBJECT_TYPE_DICT_KEY = "object_type"
|
|
MODULE_NAME_REGEX_DICT_KEY = "module_name_regex"
|
|
MODULE_NAME_DICT_KEY = "module_name"
|
|
MODULE_NAME_OBJECT_TYPE_ORDER_DICT_KEY = "module_name_object_type_order"
|
|
|
|
_FIXED_QPARAMS_OP_TO_OBSERVER: Dict[Union[Callable, str], _PartialWrapper] = {
|
|
torch.nn.Hardsigmoid: default_fixed_qparams_range_0to1_observer,
|
|
torch.nn.functional.hardsigmoid: default_fixed_qparams_range_0to1_observer,
|
|
"hardsigmoid": default_fixed_qparams_range_0to1_observer,
|
|
"hardsigmoid_": default_fixed_qparams_range_0to1_observer,
|
|
torch.nn.Sigmoid: default_fixed_qparams_range_0to1_observer,
|
|
torch.sigmoid: default_fixed_qparams_range_0to1_observer,
|
|
"sigmoid": default_fixed_qparams_range_0to1_observer,
|
|
"sigmoid_": default_fixed_qparams_range_0to1_observer,
|
|
torch.nn.Softmax: default_fixed_qparams_range_0to1_observer,
|
|
torch.nn.Tanh: default_fixed_qparams_range_neg1to1_observer,
|
|
torch.tanh: default_fixed_qparams_range_neg1to1_observer,
|
|
"tanh": default_fixed_qparams_range_neg1to1_observer,
|
|
"tanh_": default_fixed_qparams_range_neg1to1_observer,
|
|
}
|
|
|
|
|
|
def _get_default_qconfig_mapping(is_qat: bool, backend: str, version: int) -> QConfigMapping:
|
|
"""
|
|
Return the default QConfigMapping for the given quantization type and backend.
|
|
"""
|
|
if is_qat:
|
|
qconfig = get_default_qat_qconfig(backend, version)
|
|
else:
|
|
qconfig = get_default_qconfig(backend, version)
|
|
default_weight = default_weight_fake_quant if is_qat else default_weight_observer
|
|
|
|
# default_per_channel_weight_observer is not currently compatible with fbgemm backend
|
|
# so we have to modify the weight observer to default_weight_observer or another
|
|
# per tensor supported observer.
|
|
# see https://github.com/pytorch/pytorch/issues/47535
|
|
if backend == "fbgemm":
|
|
qconfig_transpose = QConfig(activation=qconfig.activation, weight=default_weight)
|
|
else:
|
|
qconfig_transpose = qconfig
|
|
|
|
qconfig_mapping = QConfigMapping() \
|
|
.set_global(qconfig) \
|
|
.set_object_type("reshape", default_reuse_input_qconfig) \
|
|
.set_object_type(torch.nn.Conv1d, qconfig) \
|
|
.set_object_type(torch.nn.Conv2d, qconfig) \
|
|
.set_object_type(torch.nn.Conv3d, qconfig) \
|
|
.set_object_type(torch.nn.ConvTranspose1d, qconfig_transpose) \
|
|
.set_object_type(torch.nn.ConvTranspose2d, qconfig_transpose) \
|
|
.set_object_type(torch.nn.ConvTranspose3d, qconfig_transpose) \
|
|
.set_object_type(torch.nn.Linear, qconfig) \
|
|
.set_object_type(torch.nn.functional.conv1d, qconfig) \
|
|
.set_object_type(torch.nn.functional.conv2d, qconfig) \
|
|
.set_object_type(torch.nn.functional.conv3d, qconfig) \
|
|
.set_object_type(torch.nn.functional.conv_transpose1d, qconfig_transpose) \
|
|
.set_object_type(torch.nn.functional.conv_transpose2d, qconfig_transpose) \
|
|
.set_object_type(torch.nn.functional.conv_transpose3d, qconfig_transpose) \
|
|
.set_object_type(torch.nn.functional.linear, qconfig) \
|
|
.set_object_type(torch.nn.ReLU, qconfig) \
|
|
.set_object_type(torch.nn.functional.relu, qconfig) \
|
|
.set_object_type(torch.relu, qconfig) \
|
|
.set_object_type(torch.nn.BatchNorm1d, qconfig) \
|
|
.set_object_type(torch.nn.BatchNorm2d, qconfig) \
|
|
.set_object_type(torch.nn.BatchNorm3d, qconfig)
|
|
|
|
# Use special observers for ops with fixed qparams
|
|
fixed_qparams_observer_to_qconfig: Dict[Any, QConfigAny] = {}
|
|
for fixed_qparams_op, observer in _FIXED_QPARAMS_OP_TO_OBSERVER.items():
|
|
if observer in fixed_qparams_observer_to_qconfig:
|
|
fixed_qparams_qconfig = fixed_qparams_observer_to_qconfig[observer]
|
|
else:
|
|
if is_qat:
|
|
activation = FixedQParamsFakeQuantize.with_args(observer=observer)
|
|
else:
|
|
activation = observer
|
|
fixed_qparams_qconfig = QConfig(activation=activation, weight=default_weight)
|
|
fixed_qparams_observer_to_qconfig[observer] = fixed_qparams_qconfig
|
|
qconfig_mapping.set_object_type(fixed_qparams_op, fixed_qparams_qconfig)
|
|
|
|
return qconfig_mapping
|
|
|
|
def get_default_qconfig_mapping(backend="fbgemm", version=0) -> QConfigMapping:
|
|
"""
|
|
Return the default QConfigMapping for post training quantization.
|
|
"""
|
|
return _get_default_qconfig_mapping(False, backend, version)
|
|
|
|
def get_default_qat_qconfig_mapping(backend="fbgemm", version=1) -> QConfigMapping:
|
|
"""
|
|
Return the default QConfigMapping for quantization aware training.
|
|
"""
|
|
return _get_default_qconfig_mapping(True, backend, version)
|
|
|
|
|
|
class QConfigMapping:
|
|
"""
|
|
Mapping from model ops to :class:`torch.ao.quantization.QConfig`s.
|
|
|
|
The user can specify QConfigs using the following methods (in increasing match priority):
|
|
|
|
`set_global`: sets the global (default) QConfig
|
|
`set_object_type`: sets the QConfig for a given module type, function, or method name
|
|
`set_module_name_regex`: sets the QConfig for modules matching the given regex string
|
|
`set_module_name`: sets the QConfig for modules matching the given module name
|
|
`set_module_name_object_type_order`: sets the QConfig for modules matching a combination
|
|
of the given module name, object type, and the index at which the module appears
|
|
|
|
Example usage::
|
|
|
|
qconfig_mapping = QConfigMapping()
|
|
.set_global(global_qconfig)
|
|
.set_object_type(torch.nn.Linear, qconfig1)
|
|
.set_object_type(torch.nn.ReLU, qconfig1)
|
|
.set_module_name_regex("foo.*bar.*conv[0-9]+", qconfig1)
|
|
.set_module_name_regex("foo.*", qconfig2)
|
|
.set_module_name("module1", qconfig1)
|
|
.set_module_name("module2", qconfig2)
|
|
.set_module_name_object_type_order("foo.bar", torch.nn.functional.linear, 0, qconfig3)
|
|
"""
|
|
|
|
def __init__(self):
|
|
# In increasing match priority:
|
|
self.global_qconfig: QConfigAny = None
|
|
self.object_type_qconfigs: OrderedDict[Union[Callable, str], QConfigAny] = OrderedDict()
|
|
self.module_name_regex_qconfigs: OrderedDict[str, QConfigAny] = OrderedDict()
|
|
self.module_name_qconfigs: OrderedDict[str, QConfigAny] = OrderedDict()
|
|
self.module_name_object_type_order_qconfigs: OrderedDict[Tuple[str, Callable, int], QConfigAny] =\
|
|
OrderedDict()
|
|
|
|
def set_global(self, global_qconfig: QConfigAny) -> QConfigMapping:
|
|
"""
|
|
Set the global (default) QConfig.
|
|
"""
|
|
self.global_qconfig = global_qconfig
|
|
return self
|
|
|
|
def set_object_type(self, object_type: Union[Callable, str], qconfig: QConfigAny) -> QConfigMapping:
|
|
"""
|
|
Set the QConfig for a given module type, function, or method name.
|
|
If the QConfig for an existing object type was already set, the new QConfig will override the old one.
|
|
"""
|
|
self.object_type_qconfigs[object_type] = qconfig
|
|
return self
|
|
|
|
def set_module_name_regex(self, module_name_regex: str, qconfig: QConfigAny) -> QConfigMapping:
|
|
"""
|
|
Set the QConfig for modules matching the given regex string.
|
|
|
|
Regexes will be matched in the order in which they are registered through this method.
|
|
Thus, the caller should register more specific patterns first, e.g.::
|
|
|
|
qconfig_mapping = QConfigMapping()
|
|
.set_module_name_regex("foo.*bar.*conv[0-9]+", qconfig1)
|
|
.set_module_name_regex("foo.*bar.*", qconfig2)
|
|
.set_module_name_regex("foo.*", qconfig3)
|
|
|
|
In this example, "foo.bar.conv0" would match qconfig1, "foo.bar.linear" would match qconfig2,
|
|
and "foo.baz.relu" would match qconfig3.
|
|
|
|
If the QConfig for an existing module name regex was already set, the new QConfig will override the
|
|
old one while preserving the order in which the regexes were originally registered.
|
|
"""
|
|
self.module_name_regex_qconfigs[module_name_regex] = qconfig
|
|
return self
|
|
|
|
def set_module_name(self, module_name: str, qconfig: QConfigAny) -> QConfigMapping:
|
|
"""
|
|
Set the QConfig for modules matching the given module name.
|
|
If the QConfig for an existing module name was already set, the new QConfig will override the old one.
|
|
"""
|
|
self.module_name_qconfigs[module_name] = qconfig
|
|
return self
|
|
|
|
def set_module_name_object_type_order(
|
|
self,
|
|
module_name: str,
|
|
object_type: Callable,
|
|
index: int,
|
|
qconfig: QConfigAny) -> QConfigMapping:
|
|
"""
|
|
Set the QConfig for modules matching a combination of the given module name, object type,
|
|
and the index at which the module appears.
|
|
|
|
If the QConfig for an existing (module name, object type, index) was already set, the new QConfig
|
|
will override the old one.
|
|
"""
|
|
self.module_name_object_type_order_qconfigs[(module_name, object_type, index)] = qconfig
|
|
return self
|
|
|
|
# TODO: remove this
|
|
def to_dict(self) -> Dict[str, Any]:
|
|
"""
|
|
Convert this `QConfigMapping` to a dictionary with the following keys:
|
|
|
|
"" (for global QConfig)
|
|
"object_type"
|
|
"module_name_regex"
|
|
"module_name"
|
|
"module_name_object_type_order"
|
|
|
|
The values of this dictionary are lists of tuples.
|
|
"""
|
|
return {
|
|
GLOBAL_DICT_KEY: self.global_qconfig,
|
|
OBJECT_TYPE_DICT_KEY: list(self.object_type_qconfigs.items()),
|
|
MODULE_NAME_REGEX_DICT_KEY: list(self.module_name_regex_qconfigs.items()),
|
|
MODULE_NAME_DICT_KEY: list(self.module_name_qconfigs.items()),
|
|
MODULE_NAME_OBJECT_TYPE_ORDER_DICT_KEY: [
|
|
(*k, v) for k, v in self.module_name_object_type_order_qconfigs.items()
|
|
],
|
|
}
|
|
|
|
# TODO: remove this
|
|
@classmethod
|
|
def from_dict(cls, qconfig_dict: Dict[str, Any]) -> QConfigMapping:
|
|
"""
|
|
Create a `QConfigMapping` from a dictionary with the following keys (all optional):
|
|
|
|
"" (for global QConfig)
|
|
"object_type"
|
|
"module_name_regex"
|
|
"module_name"
|
|
"module_name_object_type_order"
|
|
|
|
The values of this dictionary are expected to be lists of tuples.
|
|
"""
|
|
conf = cls()
|
|
if GLOBAL_DICT_KEY in qconfig_dict:
|
|
conf.set_global(qconfig_dict[GLOBAL_DICT_KEY])
|
|
for object_type, qconfig in qconfig_dict.get(OBJECT_TYPE_DICT_KEY, []):
|
|
conf.set_object_type(object_type, qconfig)
|
|
for module_name_regex, qconfig in qconfig_dict.get(MODULE_NAME_REGEX_DICT_KEY, []):
|
|
conf.set_module_name_regex(module_name_regex, qconfig)
|
|
for module_name, qconfig in qconfig_dict.get(MODULE_NAME_DICT_KEY, []):
|
|
conf.set_module_name(module_name, qconfig)
|
|
for module_name, object_type, index, qconfig in qconfig_dict.get(MODULE_NAME_OBJECT_TYPE_ORDER_DICT_KEY, []):
|
|
conf.set_module_name_object_type_order(module_name, object_type, index, qconfig)
|
|
return conf
|