mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/24046 `nnq.Linear` was a confusing mess of buffers/attributes and Tensor/not tensor members. This PR reworks it to consistently have only Python attributes, with the conversions handled explicitly by state_dict or __{get,set}state__ methods (added in PRs further up the stack Test Plan: Imported from OSS Reviewed By: driazati Differential Revision: D16728345 Pulled By: jamesr66a fbshipit-source-id: 47468b776b428fca2409bb55c8b161afb68a3379
153 lines
6.0 KiB
Python
153 lines
6.0 KiB
Python
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
|
|
import torch
|
|
from torch.nn.modules.module import Module
|
|
from torch.nn.modules.linear import Linear as NNLinear
|
|
|
|
from torch._jit_internal import Optional
|
|
|
|
class Quantize(Module):
|
|
r"""Quantizes an incoming tensor
|
|
Args:
|
|
`out_scale`: scale of the output Quantized Tensor
|
|
`out_zero_point`: zero_point of output Quantized Tensor
|
|
`out_dtype`: data type of output Quantized Tensor
|
|
|
|
Attributes:
|
|
`out_scale`, `out_zero_point`, `out_dtype`
|
|
|
|
Examples::
|
|
>>> t = torch.tensor([[1., -1.], [1., -1.]])
|
|
>>> scale, zero_point, dtype = 1.0, 2, torch.qint8
|
|
>>> qm = Quantize(scale, zero_point, dtype)
|
|
>>> qt = qm(t)
|
|
>>> print(qt)
|
|
tensor([[ 1., -1.],
|
|
[ 1., -1.]], size=(2, 2), dtype=torch.qint8, scale=1.0, zero_point=2)
|
|
"""
|
|
|
|
def __init__(self, out_scale, out_zero_point, out_dtype):
|
|
super(Quantize, self).__init__()
|
|
self.register_buffer('_scale', torch.tensor([out_scale]))
|
|
self.register_buffer('_zero_point', torch.tensor([out_zero_point], dtype=torch.long))
|
|
self._dtype = out_dtype
|
|
|
|
def forward(self, X):
|
|
return torch.quantize_linear(X, float(self._scale),
|
|
int(self._zero_point), self._dtype)
|
|
|
|
@staticmethod
|
|
def from_float(mod):
|
|
assert hasattr(mod, 'observer')
|
|
qparams = mod.observer.calculate_qparams()
|
|
return Quantize(qparams[0].item(), qparams[1].item(), mod.observer.dtype)
|
|
|
|
class DeQuantize(Module):
|
|
r"""Dequantizes an incoming tensor
|
|
|
|
Examples::
|
|
>>> input = torch.tensor([[1., -1.], [1., -1.]])
|
|
>>> scale, zero_point, dtype = 1.0, 2, torch.qint8
|
|
>>> qm = Quantize(scale, zero_point, dtype)
|
|
>>> quantized_input = qm(input)
|
|
>>> dqm = DeQuantize()
|
|
>>> dequantized = dqm(quantized_input)
|
|
>>> print(dequantized)
|
|
tensor([[ 1., -1.],
|
|
[ 1., -1.]], dtype=torch.float32)
|
|
"""
|
|
|
|
def __init__(self):
|
|
super(DeQuantize, self).__init__()
|
|
|
|
def forward(self, Xq):
|
|
return Xq.dequantize()
|
|
|
|
@staticmethod
|
|
def from_float(mod):
|
|
return DeQuantize()
|
|
|
|
class Linear(torch.nn.Module):
|
|
r"""
|
|
A quantized linear module with quantized tensor as inputs and outputs.
|
|
We adopt the same interface as `torch.nn.Linear`, please see
|
|
https://pytorch.org/docs/stable/nn.html#torch.nn.Linear for documentation.
|
|
|
|
Similar to :class:`~torch.nn.Linear`, attributes will be randomly
|
|
initialized at module creation time and will be overwritten later
|
|
|
|
Attributes:
|
|
weight (Tensor): the non-learnable quantized weights of the module of
|
|
shape :math:`(\text{out\_features}, \text{in\_features})`.
|
|
bias (Tensor): the non-learnable bias of the module of shape :math:`(\text{out\_features})`.
|
|
If :attr:`bias` is ``True``, the values are initialized to zero.
|
|
scale: `scale` parameter of output Quantized Tensor, type: double
|
|
zero_point: `zero_point` parameter for output Quantized Tensor, type: long
|
|
|
|
Examples::
|
|
|
|
>>> m = nn.quantized.Linear(20, 30)
|
|
>>> input = torch.randn(128, 20)
|
|
>>> input = torch.quantize_linear(input, 1.0, 0, torch.quint8)
|
|
>>> output = m(input)
|
|
>>> print(output.size())
|
|
torch.Size([128, 30])
|
|
"""
|
|
def __init__(self, in_features, out_features, bias_=True):
|
|
super(Linear, self).__init__()
|
|
# We don't muck around with buffers or attributes or anything here
|
|
# to keep the module simple. *everything* is simply a Python attribute.
|
|
self.in_features = in_features
|
|
self.out_features = out_features
|
|
if bias_:
|
|
self.bias = torch.jit.annotate(
|
|
Optional[torch.Tensor],
|
|
torch._empty_affine_quantized(
|
|
[out_features], scale=1, zero_point=0, dtype=torch.qint32))
|
|
else:
|
|
self.bias = torch.jit.annotate(Optional[torch.Tensor], None)
|
|
|
|
qweight = torch._empty_affine_quantized(
|
|
[out_features, in_features], scale=1, zero_point=0, dtype=torch.qint8)
|
|
|
|
self._packed_weight = torch.ops.quantized.fbgemm_linear_prepack(qweight)
|
|
self.scale = 1.0
|
|
self.zero_point = 0
|
|
|
|
def forward(self, x):
|
|
return torch.ops.quantized.fbgemm_linear(
|
|
x, self._packed_weight, self.bias, self.scale, self.zero_point)
|
|
|
|
@staticmethod
|
|
def from_float(mod):
|
|
r"""Create a quantized module from a float module or qparams_dict
|
|
|
|
Args:
|
|
mod (Module): a float module, either produced by torch.quantization
|
|
utilities or provided by the user
|
|
"""
|
|
if hasattr(mod, 'weight_fake_quant'):
|
|
# assert type(mod) == QATLinear, 'training mode nnq.Linear.from_float only works for nn.qat.Linear'
|
|
weight_observer = mod.weight_fake_quant
|
|
else:
|
|
assert type(mod) == NNLinear, 'nnq.Linear.from_float only works for nn.Linear'
|
|
assert hasattr(mod, 'qconfig'), 'Input float module must have qconfig defined'
|
|
assert hasattr(mod, 'observer'), 'Input float module must have observer attached'
|
|
weight_observer = mod.qconfig.weight()
|
|
weight_observer(mod.weight)
|
|
activation_observer = mod.observer
|
|
act_scale, act_zp = activation_observer.calculate_qparams()
|
|
wt_scale, wt_zp = weight_observer.calculate_qparams()
|
|
bias_scale = (wt_scale * act_scale).float()
|
|
qweight = torch.quantize_linear(mod.weight.float(), wt_scale, wt_zp.long().item(), torch.qint8)
|
|
if mod.bias is not None:
|
|
qbias = torch.quantize_linear(mod.bias.float(), bias_scale, 0, torch.qint32)
|
|
else:
|
|
qbias = None
|
|
qlinear = Linear(mod.in_features, mod.out_features)
|
|
qlinear._packed_weight = torch.ops.quantized.fbgemm_linear_prepack(qweight)
|
|
qlinear.bias = qbias
|
|
qlinear.scale = float(act_scale)
|
|
qlinear.zero_point = int(act_zp)
|
|
return qlinear
|