pytorch/caffe2/python/predictor/predictor_test.py
Bugra Akyildiz 27c7158166 Remove __future__ imports for legacy Python2 supports (#45033)
Summary:
There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports:

```2to3 -f future -w caffe2```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033

Reviewed By: seemethere

Differential Revision: D23808648

Pulled By: bugra

fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
2020-09-23 17:57:02 -07:00

74 lines
2.0 KiB
Python

import unittest
import numpy as np
from caffe2.python import workspace, core
from caffe2.proto import caffe2_pb2
class TestPredictor(unittest.TestCase):
def setUp(self):
np.random.seed(1)
self.predict_net = self._predict_net
self.init_net = self._init_net
@property
def _predict_net(self):
net = caffe2_pb2.NetDef()
net.name = 'test-predict-net'
net.external_input[:] = ['A', 'B']
net.external_output[:] = ['C']
net.op.extend([
core.CreateOperator(
'MatMul',
['A', 'B'],
['C'],
)
])
return net.SerializeToString()
@property
def _init_net(self):
net = caffe2_pb2.NetDef()
net.name = 'test-init-net'
net.external_output[:] = ['A', 'B']
net.op.extend([
core.CreateOperator(
'GivenTensorFill',
[],
['A'],
shape=(2, 3),
values=np.zeros((2, 3), np.float32).flatten().tolist(),
),
core.CreateOperator(
'GivenTensorFill',
[],
['B'],
shape=(3, 4),
values=np.zeros((3, 4), np.float32).flatten().tolist(),
),
])
return net.SerializeToString()
def test_run(self):
A = np.ones((2, 3), np.float32)
B = np.ones((3, 4), np.float32)
predictor = workspace.Predictor(self.init_net, self.predict_net)
outputs = predictor.run([A, B])
self.assertEqual(len(outputs), 1)
np.testing.assert_almost_equal(np.dot(A, B), outputs[0])
def test_run_map(self):
A = np.zeros((2, 3), np.float32)
B = np.ones((3, 4), np.float32)
predictor = workspace.Predictor(self.init_net, self.predict_net)
outputs = predictor.run({
'B': B,
})
self.assertEqual(len(outputs), 1)
np.testing.assert_almost_equal(np.dot(A, B), outputs[0])