pytorch/torch/_tensor_str.py
Edward Z. Yang 42fefd4403 Sparse fake tensor support (#82172)
Add support for sparse fake tensors.

- The testing strategy is to run a fake tensor cross ref test on `test_sparse.py`. This is necessary because OpInfo sparse coverage is completely nonexistent. We could have tried to turn on cross ref testing globally for all files, but that would be very time consuming and the tests I'm interested in are mostly in this file. There are some exclusions in testing for things that don't work.
- I make fake tensor converter raise a UnsupportedFakeTensorException if the meta converter fails to do a conversion (which can happen in a relatively large number of situations).
- I relax fake tensor invariants so that you can make a fake tensor from a meta tensor. This is useful because in the cross ref test sometimes we operate on meta tensors.
- Fake tensor wrapping is improved to handle the case when a function doesn't return any tensors
- Meta converter is taught how to convert sparse tensors to meta

There's still a little more cleanup that needs to be done, but this is good for review.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82172
Approved by: https://github.com/eellison
2022-08-03 14:29:36 +00:00

595 lines
22 KiB
Python

import math
from typing import Optional
import torch
from torch._six import inf
class __PrinterOptions(object):
precision: int = 4
threshold: float = 1000
edgeitems: int = 3
linewidth: int = 80
sci_mode: Optional[bool] = None
PRINT_OPTS = __PrinterOptions()
# We could use **kwargs, but this will give better docs
def set_printoptions(
precision=None,
threshold=None,
edgeitems=None,
linewidth=None,
profile=None,
sci_mode=None,
):
r"""Set options for printing. Items shamelessly taken from NumPy
Args:
precision: Number of digits of precision for floating point output
(default = 4).
threshold: Total number of array elements which trigger summarization
rather than full `repr` (default = 1000).
edgeitems: Number of array items in summary at beginning and end of
each dimension (default = 3).
linewidth: The number of characters per line for the purpose of
inserting line breaks (default = 80). Thresholded matrices will
ignore this parameter.
profile: Sane defaults for pretty printing. Can override with any of
the above options. (any one of `default`, `short`, `full`)
sci_mode: Enable (True) or disable (False) scientific notation. If
None (default) is specified, the value is defined by
`torch._tensor_str._Formatter`. This value is automatically chosen
by the framework.
Example::
>>> torch.set_printoptions(precision=2)
>>> torch.tensor([1.12345])
tensor([1.12])
>>> torch.set_printoptions(threshold=5)
>>> torch.arange(10)
tensor([0, 1, 2, ..., 7, 8, 9])
"""
if profile is not None:
if profile == "default":
PRINT_OPTS.precision = 4
PRINT_OPTS.threshold = 1000
PRINT_OPTS.edgeitems = 3
PRINT_OPTS.linewidth = 80
elif profile == "short":
PRINT_OPTS.precision = 2
PRINT_OPTS.threshold = 1000
PRINT_OPTS.edgeitems = 2
PRINT_OPTS.linewidth = 80
elif profile == "full":
PRINT_OPTS.precision = 4
PRINT_OPTS.threshold = inf
PRINT_OPTS.edgeitems = 3
PRINT_OPTS.linewidth = 80
if precision is not None:
PRINT_OPTS.precision = precision
if threshold is not None:
PRINT_OPTS.threshold = threshold
if edgeitems is not None:
PRINT_OPTS.edgeitems = edgeitems
if linewidth is not None:
PRINT_OPTS.linewidth = linewidth
PRINT_OPTS.sci_mode = sci_mode
def tensor_totype(t):
dtype = torch.float if t.is_mps else torch.double
return t.to(dtype=dtype)
class _Formatter(object):
def __init__(self, tensor):
self.floating_dtype = tensor.dtype.is_floating_point
self.int_mode = True
self.sci_mode = False
self.max_width = 1
with torch.no_grad():
tensor_view = tensor.reshape(-1)
if not self.floating_dtype:
for value in tensor_view:
value_str = "{}".format(value)
self.max_width = max(self.max_width, len(value_str))
else:
nonzero_finite_vals = torch.masked_select(
tensor_view, torch.isfinite(tensor_view) & tensor_view.ne(0)
)
if nonzero_finite_vals.numel() == 0:
# no valid number, do nothing
return
# Convert to double for easy calculation. HalfTensor overflows with 1e8, and there's no div() on CPU.
nonzero_finite_abs = tensor_totype(nonzero_finite_vals.abs())
nonzero_finite_min = tensor_totype(nonzero_finite_abs.min())
nonzero_finite_max = tensor_totype(nonzero_finite_abs.max())
for value in nonzero_finite_vals:
if value != torch.ceil(value):
self.int_mode = False
break
if self.int_mode:
# in int_mode for floats, all numbers are integers, and we append a decimal to nonfinites
# to indicate that the tensor is of floating type. add 1 to the len to account for this.
if (
nonzero_finite_max / nonzero_finite_min > 1000.0
or nonzero_finite_max > 1.0e8
):
self.sci_mode = True
for value in nonzero_finite_vals:
value_str = (
("{{:.{}e}}").format(PRINT_OPTS.precision).format(value)
)
self.max_width = max(self.max_width, len(value_str))
else:
for value in nonzero_finite_vals:
value_str = ("{:.0f}").format(value)
self.max_width = max(self.max_width, len(value_str) + 1)
else:
# Check if scientific representation should be used.
if (
nonzero_finite_max / nonzero_finite_min > 1000.0
or nonzero_finite_max > 1.0e8
or nonzero_finite_min < 1.0e-4
):
self.sci_mode = True
for value in nonzero_finite_vals:
value_str = (
("{{:.{}e}}").format(PRINT_OPTS.precision).format(value)
)
self.max_width = max(self.max_width, len(value_str))
else:
for value in nonzero_finite_vals:
value_str = (
("{{:.{}f}}").format(PRINT_OPTS.precision).format(value)
)
self.max_width = max(self.max_width, len(value_str))
if PRINT_OPTS.sci_mode is not None:
self.sci_mode = PRINT_OPTS.sci_mode
def width(self):
return self.max_width
def format(self, value):
if self.floating_dtype:
if self.sci_mode:
ret = (
("{{:{}.{}e}}")
.format(self.max_width, PRINT_OPTS.precision)
.format(value)
)
elif self.int_mode:
ret = "{:.0f}".format(value)
if not (math.isinf(value) or math.isnan(value)):
ret += "."
else:
ret = ("{{:.{}f}}").format(PRINT_OPTS.precision).format(value)
else:
ret = "{}".format(value)
return (self.max_width - len(ret)) * " " + ret
def _scalar_str(self, formatter1, formatter2=None):
if formatter2 is not None:
real_str = _scalar_str(self.real, formatter1)
imag_str = (_scalar_str(self.imag, formatter2) + "j").lstrip()
# handles negative numbers, +0.0, -0.0
if imag_str[0] == "+" or imag_str[0] == "-":
return real_str + imag_str
else:
return real_str + "+" + imag_str
else:
return formatter1.format(self.item())
def _vector_str(self, indent, summarize, formatter1, formatter2=None):
# length includes spaces and comma between elements
element_length = formatter1.width() + 2
if formatter2 is not None:
# width for imag_formatter + an extra j for complex
element_length += formatter2.width() + 1
elements_per_line = max(
1, int(math.floor((PRINT_OPTS.linewidth - indent) / (element_length)))
)
char_per_line = element_length * elements_per_line
def _val_formatter(val, formatter1=formatter1, formatter2=formatter2):
if formatter2 is not None:
real_str = formatter1.format(val.real)
imag_str = (formatter2.format(val.imag) + "j").lstrip()
# handles negative numbers, +0.0, -0.0
if imag_str[0] == "+" or imag_str[0] == "-":
return real_str + imag_str
else:
return real_str + "+" + imag_str
else:
return formatter1.format(val)
if summarize and self.size(0) > 2 * PRINT_OPTS.edgeitems:
data = (
[_val_formatter(val) for val in self[: PRINT_OPTS.edgeitems].tolist()]
+ [" ..."]
+ [_val_formatter(val) for val in self[-PRINT_OPTS.edgeitems :].tolist()]
)
else:
data = [_val_formatter(val) for val in self.tolist()]
data_lines = [
data[i : i + elements_per_line] for i in range(0, len(data), elements_per_line)
]
lines = [", ".join(line) for line in data_lines]
return "[" + ("," + "\n" + " " * (indent + 1)).join(lines) + "]"
# formatter2 is only used for printing complex tensors.
# For complex tensors, formatter1 and formatter2 are the formatters for tensor.real
# and tensor.imag respesectively
def _tensor_str_with_formatter(self, indent, summarize, formatter1, formatter2=None):
dim = self.dim()
if dim == 0:
return _scalar_str(self, formatter1, formatter2)
if dim == 1:
return _vector_str(self, indent, summarize, formatter1, formatter2)
if summarize and self.size(0) > 2 * PRINT_OPTS.edgeitems:
slices = (
[
_tensor_str_with_formatter(
self[i], indent + 1, summarize, formatter1, formatter2
)
for i in range(0, PRINT_OPTS.edgeitems)
]
+ ["..."]
+ [
_tensor_str_with_formatter(
self[i], indent + 1, summarize, formatter1, formatter2
)
for i in range(len(self) - PRINT_OPTS.edgeitems, len(self))
]
)
else:
slices = [
_tensor_str_with_formatter(
self[i], indent + 1, summarize, formatter1, formatter2
)
for i in range(0, self.size(0))
]
tensor_str = ("," + "\n" * (dim - 1) + " " * (indent + 1)).join(slices)
return "[" + tensor_str + "]"
def _tensor_str(self, indent):
if self.numel() == 0:
return "[]"
if self.has_names():
# There are two main codepaths (possibly more) that tensor printing goes through:
# - tensor data can fit comfortably on screen
# - tensor data needs to be summarized
# Some of the codepaths don't fully support named tensors, so we send in
# an unnamed tensor to the formatting code as a workaround.
self = self.rename(None)
summarize = self.numel() > PRINT_OPTS.threshold
if self._is_zerotensor():
self = self.clone()
# handle the negative bit
if self.is_neg():
self = self.resolve_neg()
if self.dtype is torch.float16 or self.dtype is torch.bfloat16:
self = self.float()
if self.dtype is torch.complex32:
self = self.cfloat()
if self.dtype.is_complex:
# handle the conjugate bit
self = self.resolve_conj()
real_formatter = _Formatter(
get_summarized_data(self.real) if summarize else self.real
)
imag_formatter = _Formatter(
get_summarized_data(self.imag) if summarize else self.imag
)
return _tensor_str_with_formatter(
self, indent, summarize, real_formatter, imag_formatter
)
else:
formatter = _Formatter(get_summarized_data(self) if summarize else self)
return _tensor_str_with_formatter(self, indent, summarize, formatter)
def _add_suffixes(tensor_str, suffixes, indent, force_newline):
tensor_strs = [tensor_str]
last_line_len = len(tensor_str) - tensor_str.rfind("\n") + 1
for suffix in suffixes:
suffix_len = len(suffix)
if force_newline or last_line_len + suffix_len + 2 > PRINT_OPTS.linewidth:
tensor_strs.append(",\n" + " " * indent + suffix)
last_line_len = indent + suffix_len
force_newline = False
else:
tensor_strs.append(", " + suffix)
last_line_len += suffix_len + 2
tensor_strs.append(")")
return "".join(tensor_strs)
def get_summarized_data(self):
dim = self.dim()
if dim == 0:
return self
if dim == 1:
if self.size(0) > 2 * PRINT_OPTS.edgeitems:
return torch.cat(
(self[: PRINT_OPTS.edgeitems], self[-PRINT_OPTS.edgeitems :])
)
else:
return self
if self.size(0) > 2 * PRINT_OPTS.edgeitems:
start = [self[i] for i in range(0, PRINT_OPTS.edgeitems)]
end = [self[i] for i in range(len(self) - PRINT_OPTS.edgeitems, len(self))]
return torch.stack([get_summarized_data(x) for x in (start + end)])
else:
return torch.stack([get_summarized_data(x) for x in self])
def _str_intern(inp, *, tensor_contents=None):
is_plain_tensor = type(inp) is torch.Tensor or type(inp) is torch.nn.Parameter
if inp.is_nested:
prefix = "nested_tensor("
elif is_plain_tensor:
prefix = "tensor("
else:
prefix = f"{type(inp).__name__}("
indent = len(prefix)
suffixes = []
custom_contents_provided = tensor_contents is not None
if custom_contents_provided:
tensor_str = tensor_contents
# This is used to extract the primal value and thus disable the forward AD
# within this function.
# TODO(albanD) This needs to be updated when more than one level is supported
self, tangent = torch.autograd.forward_ad.unpack_dual(inp)
# Note [Print tensor device]:
# A general logic here is we only print device when it doesn't match
# the device specified in default tensor type.
# Currently torch.set_default_tensor_type() only supports CPU/CUDA, thus
# torch._C._get_default_device() only returns either cpu or cuda.
# In other cases, we don't have a way to set them as default yet,
# and we should always print out device for them.
if (
self.device.type != torch._C._get_default_device()
or (
self.device.type == "cuda"
and torch.cuda.current_device() != self.device.index
)
or (self.device.type == "mps")
):
suffixes.append("device='" + str(self.device) + "'")
# Tensor printing performs tensor operations like slice, indexing, etc to make it in a
# representable format. These operations on ipu/xla/lazy tensor results in compilations. Hence,
# to avoid compilations, copying the tensor to cpu before printing.
if self.device.type in ["xla", "lazy", "ipu"]:
self = self.to("cpu")
# TODO: add an API to map real -> complex dtypes
_default_complex_dtype = (
torch.cdouble if torch.get_default_dtype() == torch.double else torch.cfloat
)
has_default_dtype = self.dtype in (
torch.get_default_dtype(),
_default_complex_dtype,
torch.int64,
torch.bool,
)
if self.is_sparse:
suffixes.append("size=" + str(tuple(self.shape)))
from torch._subclasses.fake_tensor import FakeTensor
if not self.is_meta and not isinstance(self, FakeTensor):
suffixes.append("nnz=" + str(self._nnz()))
if not has_default_dtype:
suffixes.append("dtype=" + str(self.dtype))
if not custom_contents_provided:
indices_prefix = "indices=tensor("
indices = self._indices().detach()
indices_str = _tensor_str(indices, indent + len(indices_prefix))
if indices.numel() == 0:
indices_str += ", size=" + str(tuple(indices.shape))
values_prefix = "values=tensor("
values = self._values().detach()
values_str = _tensor_str(values, indent + len(values_prefix))
if values.numel() == 0:
values_str += ", size=" + str(tuple(values.shape))
tensor_str = (
indices_prefix
+ indices_str
+ "),\n"
+ " " * indent
+ values_prefix
+ values_str
+ ")"
)
elif self.layout in {
torch.sparse_csr,
torch.sparse_csc,
torch.sparse_bsr,
torch.sparse_bsc,
}:
suffixes.append("size=" + str(tuple(self.shape)))
suffixes.append("nnz=" + str(self._nnz()))
if not has_default_dtype:
suffixes.append("dtype=" + str(self.dtype))
if not custom_contents_provided:
compressed_indices_method, plain_indices_method = {
torch.sparse_csr: (torch.Tensor.crow_indices, torch.Tensor.col_indices),
torch.sparse_csc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices),
torch.sparse_bsr: (torch.Tensor.crow_indices, torch.Tensor.col_indices),
torch.sparse_bsc: (torch.Tensor.ccol_indices, torch.Tensor.row_indices),
}[self.layout]
if self.layout in {torch.sparse_csr, torch.sparse_bsr}:
cdimname, pdimname = "row", "column"
else:
cdimname, pdimname = "column", "row"
compressed_indices_prefix = f"c{cdimname[:3]}_indices=tensor("
compressed_indices = compressed_indices_method(self).detach()
compressed_indices_str = _tensor_str(
compressed_indices, indent + len(compressed_indices_prefix)
)
if compressed_indices.numel() == 0:
compressed_indices_str += ", size=" + str(
tuple(compressed_indices.shape)
)
plain_indices_prefix = f"{pdimname[:3]}_indices=tensor("
plain_indices = plain_indices_method(self).detach()
plain_indices_str = _tensor_str(
plain_indices, indent + len(plain_indices_prefix)
)
if plain_indices.numel() == 0:
plain_indices_str += ", size=" + str(tuple(plain_indices.shape))
values_prefix = "values=tensor("
values = self.values().detach()
values_str = _tensor_str(values, indent + len(values_prefix))
if values.numel() == 0:
values_str += ", size=" + str(tuple(values.shape))
tensor_str = (
compressed_indices_prefix
+ compressed_indices_str
+ "),\n"
+ " " * indent
+ plain_indices_prefix
+ plain_indices_str
+ "),\n"
+ " " * indent
+ values_prefix
+ values_str
+ ")"
)
elif self.is_quantized:
suffixes.append("size=" + str(tuple(self.shape)))
if not has_default_dtype:
suffixes.append("dtype=" + str(self.dtype))
suffixes.append("quantization_scheme=" + str(self.qscheme()))
if (
self.qscheme() == torch.per_tensor_affine
or self.qscheme() == torch.per_tensor_symmetric
):
suffixes.append("scale=" + str(self.q_scale()))
suffixes.append("zero_point=" + str(self.q_zero_point()))
elif (
self.qscheme() == torch.per_channel_affine
or self.qscheme() == torch.per_channel_symmetric
or self.qscheme() == torch.per_channel_affine_float_qparams
):
suffixes.append("scale=" + str(self.q_per_channel_scales()))
suffixes.append("zero_point=" + str(self.q_per_channel_zero_points()))
suffixes.append("axis=" + str(self.q_per_channel_axis()))
if not custom_contents_provided:
tensor_str = _tensor_str(self.dequantize(), indent)
elif self.is_nested:
if not custom_contents_provided:
def indented_str(s, indent):
return "\n".join(f" {line}" for line in s.split("\n"))
strs = ",\n".join(
indented_str(str(t), indent + 1)
for t in torch.ops.aten.unbind.int(self, 0)
)
tensor_str = f"[\n{strs}\n]"
elif torch._is_functional_tensor(self):
prefix = "_to_functional_tensor("
tensor_str = repr(torch._from_functional_tensor(self))
else:
if self.is_meta:
suffixes.append("size=" + str(tuple(self.shape)))
if self.dtype != torch.get_default_dtype():
suffixes.append("dtype=" + str(self.dtype))
# TODO: This implies that ellipses is valid syntax for allocating
# a meta tensor, which it could be, but it isn't right now
if not custom_contents_provided:
tensor_str = "..."
else:
if self.numel() == 0 and not self.is_sparse:
# Explicitly print the shape if it is not (0,), to match NumPy behavior
if self.dim() != 1:
suffixes.append("size=" + str(tuple(self.shape)))
# In an empty tensor, there are no elements to infer if the dtype
# should be int64, so it must be shown explicitly.
if self.dtype != torch.get_default_dtype():
suffixes.append("dtype=" + str(self.dtype))
if not custom_contents_provided:
tensor_str = "[]"
else:
if not has_default_dtype:
suffixes.append("dtype=" + str(self.dtype))
if not custom_contents_provided:
if self.layout != torch.strided:
tensor_str = _tensor_str(self.to_dense(), indent)
else:
tensor_str = _tensor_str(self, indent)
if self.layout != torch.strided:
suffixes.append("layout=" + str(self.layout))
# Use inp here to get the original grad_fn and not the one generated by the forward grad
# unpacking.
if inp.grad_fn is not None:
name = type(inp.grad_fn).__name__
if name == "CppFunction":
name = inp.grad_fn.name().rsplit("::", 1)[-1]
suffixes.append("grad_fn=<{}>".format(name))
elif inp.requires_grad:
suffixes.append("requires_grad=True")
if self.has_names():
suffixes.append("names={}".format(self.names))
if tangent is not None:
suffixes.append("tangent={}".format(tangent))
string_repr = _add_suffixes(
prefix + tensor_str, suffixes, indent, force_newline=self.is_sparse
)
# Check if this instance is flagged as a parameter and change the repr accordingly.
# Unfortunately, this function has to be aware of this detail.
# NB: This is currently skipped for plain tensor parameters to maintain BC. In the future,
# this should be done for those as well to produce a valid repr.
if isinstance(self, torch.nn.Parameter) and not is_plain_tensor:
string_repr = f"Parameter({string_repr})"
return string_repr
def _str(self, *, tensor_contents=None):
with torch.no_grad():
return _str_intern(self, tensor_contents=tensor_contents)