mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Add support for sparse fake tensors. - The testing strategy is to run a fake tensor cross ref test on `test_sparse.py`. This is necessary because OpInfo sparse coverage is completely nonexistent. We could have tried to turn on cross ref testing globally for all files, but that would be very time consuming and the tests I'm interested in are mostly in this file. There are some exclusions in testing for things that don't work. - I make fake tensor converter raise a UnsupportedFakeTensorException if the meta converter fails to do a conversion (which can happen in a relatively large number of situations). - I relax fake tensor invariants so that you can make a fake tensor from a meta tensor. This is useful because in the cross ref test sometimes we operate on meta tensors. - Fake tensor wrapping is improved to handle the case when a function doesn't return any tensors - Meta converter is taught how to convert sparse tensors to meta There's still a little more cleanup that needs to be done, but this is good for review. Signed-off-by: Edward Z. Yang <ezyang@fb.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/82172 Approved by: https://github.com/eellison
1007 lines
61 KiB
Python
1007 lines
61 KiB
Python
# Owner(s): ["module: ProxyTensor"]
|
|
|
|
from torch.testing._internal.common_utils import TestCase, run_tests
|
|
import torch
|
|
import unittest
|
|
import warnings
|
|
import torch.nn.utils._stateless as stateless
|
|
from collections.abc import Iterable
|
|
from torch.testing._internal.common_device_type import instantiate_device_type_tests
|
|
from torch.testing._internal.common_methods_invocations import DecorateInfo
|
|
from torch.testing._internal.common_methods_invocations import op_db, wrapper_set_seed
|
|
from torch._subclasses.fake_tensor import DynamicOutputShapeException
|
|
|
|
from torch._decomp import decomposition_table
|
|
from torch.testing._internal.common_device_type import ops
|
|
from torch.fx.experimental.proxy_tensor import make_fx, DecompositionInterpreter, get_isolated_graphmodule
|
|
from torch.utils._pytree import tree_map
|
|
from torch import nn
|
|
import re
|
|
|
|
aten = torch.ops.aten
|
|
|
|
try:
|
|
import sympy # noqa: F401
|
|
HAS_SYMPY = True
|
|
except ImportError:
|
|
HAS_SYMPY = False
|
|
skipIfNoSympy = unittest.skipIf(not HAS_SYMPY, "no sympy")
|
|
|
|
|
|
def process_failures():
|
|
"""
|
|
Takes file containing failures like
|
|
|
|
FAILED test/test_proxy_tensor.py::TestProxyTensorOpInfoCPU::test_make_fx_symbolic_exhaustive___getitem___cpu_float32 - RuntimeError: aten.size.default - couldn't find symbolic meta function/decomposition # noqa: B950
|
|
|
|
and processes them into a list of opinfo xfails
|
|
"""
|
|
f = open('pytest_failures')
|
|
failures = f.readlines()
|
|
failures = [i.strip() for i in failures]
|
|
|
|
def process_failure_string(s, matcher):
|
|
out = re.search(matcher, s)
|
|
return out.groups()
|
|
|
|
SYMBOLIC_TRACE_MATCH = r'exhaustive_(.*)_cpu.*: (.*)'
|
|
failures = [process_failure_string(s, SYMBOLIC_TRACE_MATCH) for s in failures]
|
|
|
|
def create_normalized_name(op):
|
|
if op.variant_test_name == '':
|
|
s = op.name
|
|
else:
|
|
s = f"{op.name}.{op.variant_test_name}"
|
|
return s.replace('.', '_')
|
|
|
|
remap_opinfo = {create_normalized_name(op): (op.name, op.variant_test_name) for op in op_db}
|
|
|
|
print("symbolic_tensor_failures = {")
|
|
for failure, reason in failures:
|
|
print(f" xfail{remap_opinfo[failure]}, # {reason}")
|
|
print("}")
|
|
|
|
|
|
# Copied from functorch
|
|
def xfail(op_name, variant_name='', *, device_type=None, dtypes=None):
|
|
return (op_name, variant_name, device_type, dtypes, True)
|
|
|
|
|
|
def skip(op_name, variant_name='', *, device_type=None, dtypes=None):
|
|
return (op_name, variant_name, device_type, dtypes, False)
|
|
|
|
|
|
def skipOps(test_case_name, base_test_name, to_skip):
|
|
all_opinfos = op_db
|
|
for xfail in to_skip:
|
|
op_name, variant_name, device_type, dtypes, expected_failure = xfail
|
|
matching_opinfos = [o for o in all_opinfos
|
|
if o.name == op_name and o.variant_test_name == variant_name]
|
|
assert len(matching_opinfos) >= 1, f"Couldn't find OpInfo for {xfail}"
|
|
for opinfo in matching_opinfos:
|
|
decorators = list(opinfo.decorators)
|
|
if expected_failure:
|
|
decorator = DecorateInfo(unittest.expectedFailure,
|
|
test_case_name, base_test_name,
|
|
device_type=device_type, dtypes=dtypes)
|
|
decorators.append(decorator)
|
|
else:
|
|
decorator = DecorateInfo(unittest.skip("Skipped!"),
|
|
test_case_name, base_test_name,
|
|
device_type=device_type, dtypes=dtypes)
|
|
decorators.append(decorator)
|
|
opinfo.decorators = tuple(decorators)
|
|
|
|
# This decorator doesn't modify fn in any way
|
|
def wrapped(fn):
|
|
return fn
|
|
return wrapped
|
|
|
|
|
|
USE_TORCHVISION = False
|
|
try:
|
|
import torchvision
|
|
USE_TORCHVISION = True
|
|
except ImportError:
|
|
warnings.warn("Couldn't import torchvision. Some of our tests use it, try "
|
|
"to install it with commands from pytorch.org, post-fixed with "
|
|
"`--no-deps` to avoid overwriting the pytorch installation",
|
|
UserWarning)
|
|
|
|
|
|
def _create_new_input(x):
|
|
if not isinstance(x, torch.Tensor):
|
|
return x
|
|
if x.dtype != torch.float:
|
|
return x + 1
|
|
if x.is_leaf:
|
|
return torch.rand_like(x, requires_grad=True)
|
|
else:
|
|
return torch.rand_like(x)
|
|
|
|
class TestProxyTensor(TestCase):
|
|
def _test(self, f, inps):
|
|
fx_f = make_fx(f)(*inps)
|
|
new_inps = tree_map(_create_new_input, inps)
|
|
self.assertEqual(fx_f(*new_inps), f(*new_inps))
|
|
|
|
def test_make_fx_simple(self, device):
|
|
def f(x):
|
|
return torch.sin(x)
|
|
self._test(f, (torch.randn(3),))
|
|
|
|
def test_scalar_device(self, device):
|
|
def f(a, b):
|
|
return a + b
|
|
self._test(f, [torch.randn(3, device=device), torch.tensor(5)])
|
|
|
|
def test_isolated_graphmodule(self):
|
|
def is_any_sum(gm):
|
|
return any(node.target == torch.ops.aten.sum.default for node in gm.graph.nodes)
|
|
|
|
def is_any_digamma(gm):
|
|
return any(node.target == torch.ops.aten.digamma.default for node in gm.graph.nodes)
|
|
|
|
def is_any_sigmoid(gm):
|
|
return any(node.target == torch.ops.aten.sigmoid.default for node in gm.graph.nodes)
|
|
|
|
def inner(x):
|
|
return torch.sum(x)
|
|
|
|
def f(x):
|
|
gm = get_isolated_graphmodule(inner, (x,), {})
|
|
self.assertTrue(is_any_sum(gm))
|
|
return x + torch.randn(x.shape)
|
|
|
|
# get_isolated_graphmodule uses make_fx internally that shouldn't be traced
|
|
# by the outer make_fx call
|
|
traced = make_fx(f)(torch.randn(3))
|
|
self.assertFalse(is_any_sum(traced))
|
|
|
|
# When factory functions are used, they should not be traced
|
|
# by the outer make_fx call
|
|
def inner_with_factory():
|
|
val = torch.tensor(float(1))
|
|
val.add_(2)
|
|
return torch.full((10, 10), val).sum()
|
|
|
|
def f1(x):
|
|
gm = get_isolated_graphmodule(inner_with_factory, (), {})
|
|
self.assertTrue(is_any_sum(gm))
|
|
return torch.sigmoid(x)
|
|
|
|
def f2(x):
|
|
gm = get_isolated_graphmodule(f1, (x,), {})
|
|
self.assertFalse(is_any_sum(gm))
|
|
self.assertTrue(is_any_sigmoid(gm))
|
|
return torch.digamma(x)
|
|
|
|
traced = make_fx(f2)(torch.randn(3))
|
|
self.assertFalse(is_any_sum(traced))
|
|
self.assertFalse(is_any_sigmoid(traced))
|
|
self.assertTrue(is_any_digamma(traced))
|
|
|
|
# Verify nested make_fx calls don't make factory functions to be leaked
|
|
# into the outer graph
|
|
def f2(x):
|
|
gm = make_fx(f1)(x)
|
|
self.assertFalse(is_any_sum(gm))
|
|
self.assertTrue(is_any_sigmoid(gm))
|
|
return torch.digamma(x)
|
|
|
|
traced = make_fx(f2)(torch.randn(3))
|
|
self.assertFalse(is_any_sum(traced))
|
|
self.assertTrue(is_any_sigmoid(traced))
|
|
self.assertTrue(is_any_digamma(traced))
|
|
|
|
# Verify interaction with non-ProxyTensor modes
|
|
from torch.testing._internal.logging_tensor import LoggingTensorMode
|
|
|
|
def f1_logging(x):
|
|
with LoggingTensorMode():
|
|
gm = get_isolated_graphmodule(inner_with_factory, (), {})
|
|
self.assertTrue(is_any_sum(gm))
|
|
return torch.sigmoid(x)
|
|
|
|
def f2_logging(x):
|
|
with LoggingTensorMode(), LoggingTensorMode():
|
|
gm = get_isolated_graphmodule(f1_logging, (x,), {})
|
|
self.assertFalse(is_any_sum(gm))
|
|
self.assertTrue(is_any_sigmoid(gm))
|
|
return torch.digamma(x)
|
|
|
|
traced = make_fx(f2_logging)(torch.randn(3))
|
|
self.assertFalse(is_any_sum(traced))
|
|
self.assertFalse(is_any_sigmoid(traced))
|
|
self.assertTrue(is_any_digamma(traced))
|
|
|
|
# Verify interaction with another tensor subclass
|
|
# This case currently doesn't work and should raise an error
|
|
# See: https://github.com/pytorch/pytorch/pull/81764#issuecomment-1200472068
|
|
from torch.testing._internal.logging_tensor import LoggingTensor
|
|
|
|
def f1_logging_tensor(x):
|
|
gm = get_isolated_graphmodule(inner_with_factory, (), {})
|
|
self.assertTrue(is_any_sum(gm))
|
|
return torch.sigmoid(x)
|
|
|
|
def f2_logging_tensor(x):
|
|
x = LoggingTensor(x)
|
|
gm = get_isolated_graphmodule(f1_logging_tensor, (x,), {})
|
|
self.assertFalse(is_any_sum(gm))
|
|
self.assertTrue(is_any_sigmoid(gm))
|
|
return torch.digamma(x)
|
|
|
|
with self.assertRaisesRegex(AssertionError, "ProxyTensor is wrapped with another Tensor subclass"):
|
|
traced = make_fx(f2_logging_tensor)(torch.randn(3))
|
|
self.assertFalse(is_any_sum(traced))
|
|
self.assertFalse(is_any_sigmoid(traced)) # this fails, sigmoid is traced with LoggingTensor
|
|
self.assertTrue(is_any_digamma(traced))
|
|
|
|
@unittest.skipIf(not USE_TORCHVISION, "test requires torchvision")
|
|
def test_resnet18_backward_trace(self, device):
|
|
mod = torchvision.models.resnet18()
|
|
|
|
def f(x):
|
|
for a in mod.parameters():
|
|
a.grad = None
|
|
out = mod(x)
|
|
out.sum().backward()
|
|
return [a.grad for a in mod.parameters()]
|
|
|
|
inp = torch.randn(3, 3, 250, 250, requires_grad=True)
|
|
self._test(f, [inp])
|
|
|
|
def test_proxy_tensor(self):
|
|
def f_grad(x):
|
|
val = x.cos().cos().sum()
|
|
return torch.autograd.grad(val, x)
|
|
|
|
def f_backward(x):
|
|
val = x.cos().cos().sum()
|
|
val.backward()
|
|
return x.grad
|
|
|
|
for f in [f_grad, f_backward]:
|
|
self._test(f, [torch.randn(3, requires_grad=True)])
|
|
|
|
def test_inplace_metadata(self):
|
|
def f(x):
|
|
x = x.clone()
|
|
x.unsqueeze_(-1)
|
|
assert x.shape[-1] == 1
|
|
return x
|
|
|
|
self._test(f, [torch.randn(5)])
|
|
|
|
def test_mode_tracing_factory_function(self):
|
|
def f(x):
|
|
return x + torch.randn(x.shape)
|
|
|
|
# default behavior should trace factory functions
|
|
traced = make_fx(f)(torch.randn(3))
|
|
self.assertTrue(
|
|
any(
|
|
node.target == aten.randn.default
|
|
for node in traced.graph.nodes
|
|
)
|
|
)
|
|
|
|
def test_mode_tracing_factory_function_no_factory_function(self):
|
|
def f(x):
|
|
return x + torch.randn(x.shape)
|
|
# setting the flag to false should not trace factory functions
|
|
traced = make_fx(f, trace_factory_functions=False)(torch.randn(3))
|
|
self.assertFalse(
|
|
any(
|
|
node.target == aten.randn.default
|
|
for node in traced.graph.nodes
|
|
)
|
|
)
|
|
|
|
def test_make_fx_overloads(self):
|
|
def f(x):
|
|
return x.cos() + torch.randn(x.shape)
|
|
|
|
traced = make_fx(f)(torch.randn(3))
|
|
|
|
self.assertTrue(all([isinstance(node.target, torch._ops.OpOverload)
|
|
for node in traced.graph.nodes if node.op == 'call_function']))
|
|
|
|
def test_tensor_constants(self):
|
|
def f():
|
|
val = torch.tensor(float('inf'))
|
|
return torch.full((100, 100), val)
|
|
|
|
self._test(f, [])
|
|
|
|
def test_constant_proxy_tensor(self):
|
|
from torch.fx.experimental.proxy_tensor import make_fx
|
|
|
|
def f():
|
|
val = torch.tensor(float('inf'))
|
|
return torch.full((100, 100), val)
|
|
|
|
g = make_fx(f)()
|
|
self.assertEqual(g(), f())
|
|
|
|
def test_constant_proxy_tensor_mut(self):
|
|
from torch.fx.experimental.proxy_tensor import make_fx
|
|
|
|
def f():
|
|
val = torch.tensor(float(1))
|
|
val.add_(2)
|
|
return torch.full((100, 100), val)
|
|
|
|
g = make_fx(f)()
|
|
self.assertEqual(g(), f())
|
|
# In case we mutated shared state in the g graph!
|
|
self.assertEqual(g(), f())
|
|
|
|
g = make_fx(f, tracing_mode="fake")()
|
|
self.assertEqual(g(), f())
|
|
# In case we mutated shared state in the g graph!
|
|
self.assertEqual(g(), f())
|
|
|
|
def test_constant_unbind(self):
|
|
def f():
|
|
val = torch.tensor([2])
|
|
r, = torch.unbind(val, 0)
|
|
return r.item()
|
|
|
|
g = make_fx(f)()
|
|
self.assertEqual(g(), f())
|
|
|
|
def test_issue82547(self):
|
|
x = nn.Parameter(torch.randn(3, 3))
|
|
|
|
def f():
|
|
return torch.ops.aten.t.default(x)
|
|
self.assertRaisesRegex(Exception, "non-Fake Tensor", lambda: make_fx(f, tracing_mode="fake")())
|
|
|
|
class A(torch.Tensor):
|
|
pass
|
|
|
|
x = A(torch.randn(3, 3))
|
|
self.assertRaisesRegex(TypeError, "no implementation found", lambda: make_fx(f, tracing_mode="fake")())
|
|
|
|
def test_use_fake_and_tensor(self):
|
|
def f(x, y):
|
|
z = torch.tensor([2.0, 3.0])
|
|
return x + y + z
|
|
|
|
g = make_fx(f, tracing_mode="fake")(torch.randn(2), torch.randn(2))
|
|
x, y = torch.randn(2), torch.randn(2)
|
|
self.assertEqual(g(x, y), f(x, y))
|
|
|
|
def test_decomposition_interpreter(self):
|
|
def fn(x):
|
|
return torch.nn.functional.silu(x)
|
|
|
|
x = torch.rand((4, 4))
|
|
fx_module = make_fx(fn, decomposition_table=None)(x)
|
|
|
|
found_silu = False
|
|
for n in fx_module.graph.nodes:
|
|
if n.target == torch.ops.aten.silu or n.target == torch.ops.aten.silu.default:
|
|
found_silu = True
|
|
|
|
self.assertTrue(found_silu)
|
|
|
|
new_graph = torch.fx.Graph()
|
|
silu_decomp_table = {torch.ops.aten.silu.default: decomposition_table[torch.ops.aten.silu.default]}
|
|
DecompositionInterpreter(
|
|
fx_module,
|
|
new_graph=new_graph,
|
|
decomposition_table=silu_decomp_table,
|
|
).run(x)
|
|
|
|
decomposed_module = torch.fx.GraphModule(fx_module, new_graph)
|
|
|
|
for n in decomposed_module.graph.nodes:
|
|
self.assertTrue(n.target != torch.ops.aten.silu)
|
|
self.assertTrue(n.target != torch.ops.aten.silu.default)
|
|
|
|
self.assertEqual(fx_module(x), decomposed_module(x))
|
|
|
|
def test_make_fx_model_fwd_bwd(self, device):
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(5, 5)
|
|
|
|
def forward(self, x):
|
|
return self.linear(x).relu()
|
|
|
|
model = Foo()
|
|
|
|
def f(x, params):
|
|
out = stateless.functional_call(model, params, x).sum()
|
|
out.backward()
|
|
return list(params.values())
|
|
input = torch.randn(3, 5, requires_grad=True)
|
|
params = dict(model.named_parameters())
|
|
fx_f = make_fx(f)(input, params)
|
|
# fx may change the order of parameters in list, so using set() to compare
|
|
self.assertTrue(
|
|
torch.allclose(fx_f(input, params)[0], f(input, params)[0])
|
|
or
|
|
torch.allclose(fx_f(input, params)[0], f(input, params)[1])
|
|
)
|
|
self.assertTrue(
|
|
torch.allclose(fx_f(input, params)[1], f(input, params)[0])
|
|
or
|
|
torch.allclose(fx_f(input, params)[1], f(input, params)[1])
|
|
)
|
|
|
|
def test_make_fx_model_fwd_bwd_wgtupdate(self, device):
|
|
class Foo(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(5, 5)
|
|
|
|
def forward(self, x):
|
|
return self.linear(x).relu()
|
|
|
|
model = Foo()
|
|
|
|
def f(args, params, buffers):
|
|
if not isinstance(args, Iterable):
|
|
args = [args]
|
|
params_and_buffers = {**params, **buffers}
|
|
out = stateless.functional_call(model, params_and_buffers, args)
|
|
out.sum().backward()
|
|
return [p - 1e-4 * p.grad for p in params.values()]
|
|
|
|
input = torch.randn(3, 5, requires_grad=True)
|
|
params = dict(model.named_parameters())
|
|
buffers = dict(model.named_buffers())
|
|
fx_f = make_fx(f)(input, params, buffers)
|
|
# fx may change the order of parameters in list, so using set() to compare
|
|
# also there is a numerical difference in results so changing atol from 1e-08 to 1e-03
|
|
self.assertTrue(
|
|
torch.allclose(fx_f(input, params, buffers)[0], f(input, params, buffers)[0], atol=1e-03)
|
|
or
|
|
torch.allclose(fx_f(input, params, buffers)[0], f(input, params, buffers)[1], atol=1e-03)
|
|
)
|
|
self.assertTrue(
|
|
torch.allclose(fx_f(input, params, buffers)[1], f(input, params, buffers)[0], atol=1e-03)
|
|
or
|
|
torch.allclose(fx_f(input, params, buffers)[1], f(input, params, buffers)[1], atol=1e-03)
|
|
)
|
|
|
|
# TODO: Need to test the guards themselves specifically as well
|
|
@skipIfNoSympy
|
|
class TestSymbolicTracing(TestCase):
|
|
def _test_dynamic(self, fn, trace_inputs, test_inputs):
|
|
"""
|
|
Tests fn traced with trace_inputs against test_inputs
|
|
Also returns shape env
|
|
"""
|
|
trace_inputs = [torch.randn(shape) for shape in trace_inputs]
|
|
traced_f = make_fx(fn, tracing_mode="symbolic")(*trace_inputs)
|
|
for input in test_inputs:
|
|
input = [torch.randn(shape) for shape in input]
|
|
self.assertEqual(traced_f(*input), fn(*input))
|
|
return traced_f.shape_env
|
|
|
|
|
|
def test_unary(self):
|
|
def f(x):
|
|
assert x.shape[0] < 20
|
|
return x.cos()
|
|
test_inputs = []
|
|
test_inputs.append([(2, 5)])
|
|
test_inputs.append([(6, 8)])
|
|
shape_env = self._test_dynamic(f, [(3, 4)], test_inputs)
|
|
self.assertTrue(shape_env.evaluate_guards_for_args(torch.randn(4, 5)))
|
|
self.assertFalse(shape_env.evaluate_guards_for_args(torch.randn(25, 5)))
|
|
assert len(shape_env.guards) == 1
|
|
|
|
def test_binary_broadcast(self):
|
|
def f(a, b):
|
|
c = a * b
|
|
return c
|
|
|
|
test_inputs = []
|
|
test_inputs.append([(1, 5), (3, 1)])
|
|
test_inputs.append([(1, 4), (4, 1)])
|
|
shape_env = self._test_dynamic(f, [(1, 2), (3, 1)], test_inputs)
|
|
assert len(shape_env.guards) == 0
|
|
|
|
def test_cat(self):
|
|
def f(a, b):
|
|
val = torch.mul(a, b)
|
|
out = torch.cat([val, val])
|
|
if out.shape[0] * out.shape[1] > 20:
|
|
out = out.cos()
|
|
return out
|
|
|
|
test_inputs = []
|
|
test_inputs.append([(1, 5), (6, 1)])
|
|
test_inputs.append([(1, 4), (3, 1)])
|
|
shape_env = self._test_dynamic(f, [(1, 6), (8, 1)], test_inputs)
|
|
self.assertTrue(shape_env.evaluate_guards_for_args(torch.randn(1, 10), torch.randn(6, 1)))
|
|
self.assertFalse(shape_env.evaluate_guards_for_args(torch.randn(1, 2), torch.randn(4, 1)))
|
|
assert len(shape_env.guards) == 1
|
|
|
|
make_fx_failures = {
|
|
# unknown
|
|
xfail('allclose'),
|
|
xfail('equal'),
|
|
xfail('linalg.eigvals'),
|
|
xfail('nn.functional.max_pool1d', device_type='cpu'),
|
|
# empty
|
|
skip('new_empty'),
|
|
skip('empty_like'),
|
|
skip('empty'),
|
|
# flaky
|
|
skip('linalg.lstsq', 'grad_oriented'),
|
|
skip('nn.functional.max_unpool1d', '', device_type='cpu'),
|
|
skip('nn.functional.max_unpool2d', '', device_type='cpu'),
|
|
skip('nn.functional.max_unpool3d', '', device_type='cpu'),
|
|
skip('linalg.lstsq'), # flaky, probably just a precision issue
|
|
|
|
# data-dependent control flow
|
|
xfail('cov'),
|
|
xfail('istft'),
|
|
xfail('nanquantile'),
|
|
xfail('nn.functional.gaussian_nll_loss'),
|
|
xfail('quantile'),
|
|
xfail('tensor_split'),
|
|
xfail('corrcoef'),
|
|
|
|
# Seems like it's creating a sparse tensor that isn't captured by tensor.is_sparse
|
|
xfail('sparse.sampled_addmm'),
|
|
|
|
# ???
|
|
xfail('nn.functional.ctc_loss'),
|
|
# proxy tensor doesn't support sparse correctly right now
|
|
skip('to_sparse'),
|
|
# segfaults
|
|
skip('block_diag'),
|
|
}
|
|
|
|
fake_tensor_failures = {
|
|
# FakeTensor fallback doesn't work
|
|
xfail('segment_reduce', 'lengths'),
|
|
xfail('multinomial'),
|
|
xfail('mvlgamma', 'mvlgamma_p_1'),
|
|
xfail('mvlgamma', 'mvlgamma_p_3'),
|
|
xfail('mvlgamma', 'mvlgamma_p_5'),
|
|
xfail('cholesky'),
|
|
xfail('cholesky_inverse'),
|
|
# ASAN failures due to divide by 0
|
|
skip('nn.functional.nll_loss'),
|
|
}
|
|
|
|
symbolic_tensor_failures = {
|
|
# Needs complex-value support
|
|
xfail('polar'),
|
|
xfail('complex'),
|
|
xfail('linalg.eig'),
|
|
xfail('__getitem__', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('__rmatmul__', ''), # aten.new_empty.default - couldn't find symbolic meta function/decomposition
|
|
xfail('__rpow__', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('_masked.amax', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('_masked.amin', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('_masked.argmax', ''), # aten.argmax.default - couldn't find symbolic meta function/decomposition
|
|
xfail('_masked.argmin', ''), # aten.argmin.default - couldn't find symbolic meta function/decomposition
|
|
xfail('_masked.cumprod', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('_masked.cumsum', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('_masked.log_softmax', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('_masked.logaddexp', ''), # aten.logaddexp.default - couldn't find symbolic meta function/decomposition
|
|
xfail('_masked.logsumexp', ''), # Tensors of type TensorImpl do not have numel
|
|
xfail('_masked.mean', ''), # ones() received an invalid combination of arguments - got (torch.Size, device=torch.device, ...
|
|
xfail('_masked.median', ''), # aten.nanmedian.dim - couldn't find symbolic meta function/decomposition
|
|
xfail('_masked.norm', ''), # aten.linalg_vector_norm.default - couldn't find symbolic meta function/decomposition
|
|
xfail('_masked.normalize', ''), # aten.linalg_vector_norm.default - couldn't find symbolic meta function/decomposition
|
|
xfail('_masked.prod', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('_masked.softmax', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('_masked.softmin', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('_masked.std', ''), # ones() received an invalid combination of arguments - got (torch.Size, device=torch.device, d...
|
|
xfail('_masked.sum', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('_masked.var', ''), # ones() received an invalid combination of arguments - got (torch.Size, device=torch.device, d...
|
|
xfail('addbmm', ''), # aten.addbmm.default - couldn't find symbolic meta function/decomposition
|
|
xfail('addmm', ''), # aten.mm.default - couldn't find symbolic meta function/decomposition
|
|
xfail('addmm', 'decomposed'), # aten.mm.default - couldn't find symbolic meta function/decomposition
|
|
xfail('addmv', ''), # aten.addmv.default - couldn't find symbolic meta function/decomposition
|
|
xfail('addr', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('all', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type promotion!
|
|
xfail('aminmax', ''), # aten.aminmax.default - couldn't find symbolic meta function/decomposition
|
|
xfail('argmax', ''), # aten.argmax.default - couldn't find symbolic meta function/decomposition
|
|
xfail('argmin', ''), # aten.argmin.default - couldn't find symbolic meta function/decomposition
|
|
xfail('argsort', ''), # aten.sort.default - couldn't find symbolic meta function/decomposition
|
|
xfail('argwhere', ''), # aten.nonzero.default - couldn't find symbolic meta function/decomposition
|
|
xfail('as_strided', ''), # aten.as_strided.default - couldn't find symbolic meta function/decomposition
|
|
xfail('as_strided_scatter', ''), # aten.as_strided_scatter.default - couldn't find symbolic meta function/decomposition
|
|
xfail('baddbmm', ''), # aten.baddbmm.default - couldn't find symbolic meta function/decomposition
|
|
xfail('bernoulli', ''), # aten.bernoulli.default - couldn't find symbolic meta function/decomposition
|
|
xfail('bfloat16', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('bmm', ''), # aten.bmm.default - couldn't find symbolic meta function/decomposition
|
|
xfail('bool', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('broadcast_tensors', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('bucketize', ''), # aten.bucketize.Tensor - couldn't find symbolic meta function/decomposition
|
|
xfail('byte', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('cartesian_prod', ''), # Tensors of type TensorImpl do not have numel
|
|
xfail('cdist', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('chalf', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('char', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('cholesky_solve', ''), # Could not run 'aten::_cholesky_solve_helper' with arguments from the 'Meta' back...
|
|
xfail('chunk', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('clamp_max', ''), # Received type <class 'NoneType'> that is neither a tensor or a number!
|
|
xfail('clone', ''), # aten.clone.default - couldn't find symbolic meta function/decomposition
|
|
xfail('column_stack', ''), # Tensors of type TensorImpl do not have numel
|
|
xfail('constant_pad_nd', ''), # aten.fill.Scalar - couldn't find symbolic meta function/decomposition
|
|
xfail('count_nonzero', ''), # Could not run 'aten::count_nonzero.dim_IntList' with arguments from the 'Meta' ba...
|
|
xfail('cross', ''), # aten.linalg_cross.default - couldn't find symbolic meta function/decomposition
|
|
xfail('cummax', ''), # aten.cummax.default - couldn't find symbolic meta function/decomposition
|
|
xfail('cummin', ''), # aten.cummin.default - couldn't find symbolic meta function/decomposition
|
|
xfail('cumprod', ''), # aten.cumprod.default - couldn't find symbolic meta function/decomposition
|
|
xfail('cumsum', ''), # aten.cumsum.default - couldn't find symbolic meta function/decomposition
|
|
xfail('cumulative_trapezoid', ''), # aten.slice.Tensor - couldn't find symbolic meta function/decomposition
|
|
xfail('deg2rad', ''), # aten.deg2rad.default - couldn't find symbolic meta function/decomposition
|
|
xfail('diag_embed', ''), # aten.diag_embed.default - couldn't find symbolic meta function/decomposition
|
|
xfail('diagflat', ''), # Tensors of type TensorImpl do not have numel
|
|
xfail('diagonal', ''), # aten.diagonal.default - couldn't find symbolic meta function/decomposition
|
|
xfail('diagonal_scatter', ''), # aten.diagonal_scatter.default - couldn't find symbolic meta function/decomposition
|
|
xfail('diff', ''), # aten.empty_like.default - couldn't find symbolic meta function/decomposition
|
|
xfail('dist', ''), # aten.dist.default - couldn't find symbolic meta function/decomposition
|
|
xfail('double', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('dsplit', ''), # aten.slice.Tensor - couldn't find symbolic meta function/decomposition
|
|
xfail('eig', ''), # aten.eig.default - couldn't find symbolic meta function/decomposition
|
|
xfail('einsum', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('expand_as', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.fft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.fft', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.fftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.fftshift', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.hfft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.hfft', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.hfftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.ifft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.ifft', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.ifftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.ifftshift', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.ihfft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.ihfft', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.ihfftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.irfft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.irfft', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.irfftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.rfft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.rfft', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fft.rfftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('fill', ''), # The underlying op of 'aten.stride' has no overload name '_schema'
|
|
xfail('flatten', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('float', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('float_power', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('frexp', ''), # aten.frexp.Tensor - couldn't find symbolic meta function/decomposition
|
|
xfail('full_like', ''), # aten.full_like.default - couldn't find symbolic meta function/decomposition
|
|
xfail('gather', ''), # aten.gather.default - couldn't find symbolic meta function/decomposition
|
|
xfail('geqrf', ''), # aten.geqrf.default - couldn't find symbolic meta function/decomposition
|
|
xfail('gradient', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('half', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('histc', ''), # Could not run 'aten::histc' with arguments from the 'Meta' backend. This could be because...
|
|
xfail('histogram', ''), # Could not run 'aten::histogram.bin_ct' with arguments from the 'Meta' backend. This c...
|
|
xfail('histogramdd', ''), # aten._histogramdd_bin_edges.default - couldn't find symbolic meta function/decomposition
|
|
xfail('hsplit', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('i0', ''), # aten.i0.default - couldn't find symbolic meta function/decomposition
|
|
xfail('index_add', ''), # Float
|
|
xfail('index_copy', ''), # Expected a long tensor for index, but got Float
|
|
xfail('index_fill', ''), # aten.index_fill.int_Scalar - couldn't find symbolic meta function/decomposition
|
|
xfail('index_put', ''), # aten.index_put.default - couldn't find symbolic meta function/decomposition
|
|
xfail('index_reduce', ''), # Float
|
|
xfail('inner', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('int', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('inverse', ''), # Tensors of type TensorImpl do not have numel
|
|
xfail('isclose', ''), # The underlying op of 'aten.stride' has no overload name '_schema'
|
|
xfail('isin', ''), # aten.isin.Tensor_Tensor - couldn't find symbolic meta function/decomposition
|
|
xfail('isreal', ''), # aten.empty_like.default - couldn't find symbolic meta function/decomposition
|
|
xfail('kron', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('kthvalue', ''), # aten.kthvalue.default - couldn't find symbolic meta function/decomposition
|
|
xfail('lerp', ''), # aten.lerp.Scalar - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.cholesky', ''), # aten.linalg_cholesky_ex.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.cholesky_ex', ''), # aten.linalg_cholesky_ex.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.cond', ''), # Tensors of type TensorImpl do not have numel
|
|
xfail('linalg.cross', ''), # aten.linalg_cross.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.det', ''), # aten._linalg_det.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.eigh', ''), # aten._linalg_eigh.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.eigvalsh', ''), # aten._linalg_eigh.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.householder_product', ''), # aten.linalg_householder_product.default - couldn't find symbolic meta funct...
|
|
xfail('linalg.inv', ''), # aten.linalg_inv_ex.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.inv_ex', ''), # aten.linalg_inv_ex.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.ldl_factor', ''), # aten.linalg_ldl_factor_ex.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.ldl_factor_ex', ''), # aten.linalg_ldl_factor_ex.default - couldn't find symbolic meta function/decompos...
|
|
xfail('linalg.ldl_solve', ''), # aten.linalg_ldl_solve.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.lu', ''), # aten.linalg_lu.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.lu_factor', ''), # aten.linalg_lu_factor_ex.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.lu_factor_ex', ''), # aten.linalg_lu_factor_ex.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.lu_solve', ''), # aten.linalg_lu_solve.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.matrix_power'), # RuntimeError: Trying to call aten.size on a tensor with symbolic shape
|
|
xfail('linalg.matrix_norm', ''), # aten.linalg_vector_norm.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.matrix_rank', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.matrix_rank', 'hermitian'), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.multi_dot', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.norm', ''), # TensorImpl do not have numel
|
|
xfail('linalg.norm', 'subgradients_at_zero'), # TensorImpl do not have numel
|
|
xfail('linalg.pinv', ''), # aten.linalg_pinv.atol_rtol_tensor - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.pinv', 'singular'), # aten.linalg_cholesky_ex.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.pinv', 'hermitian'), # aten.linalg_pinv.atol_rtol_tensor - couldn't find symbolic meta function/decompo...
|
|
xfail('linalg.qr', ''), # aten.linalg_qr.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.slogdet', ''), # aten._linalg_slogdet.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.solve', ''), # aten._linalg_solve_ex.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.solve_ex', ''), # aten._linalg_solve_ex.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.solve_triangular', ''), # aten.linalg_solve_triangular.default - couldn't find symbolic meta function/de...
|
|
xfail('linalg.svd', ''), # aten._linalg_svd.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.svdvals', ''), # aten._linalg_svd.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.tensorinv', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.tensorsolve', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.vander', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('linalg.vecdot', ''), # Could not run 'aten::vdot' with arguments from the 'Meta' backend. This could be ...
|
|
xfail('linalg.vector_norm', ''), # TensorImpl do not have numel
|
|
xfail('log_softmax', 'dtype'), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('logaddexp2', ''), # aten.logaddexp2.default - couldn't find symbolic meta function/decomposition
|
|
xfail('logaddexp', ''), # aten.logaddexp.default - couldn't find symbolic meta function/decomposition
|
|
xfail('logcumsumexp', ''), # aten.logcumsumexp.default - couldn't find symbolic meta function/decomposition
|
|
xfail('logdet', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('long', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('lu', ''), # aten.linalg_lu_factor_ex.default - couldn't find symbolic meta function/decomposition
|
|
xfail('lu_solve', ''), # aten.linalg_lu_solve.default - couldn't find symbolic meta function/decomposition
|
|
xfail('lu_unpack', ''), # aten.lu_unpack.default - couldn't find symbolic meta function/decomposition
|
|
xfail('masked_fill', ''), # expected predicate to be bool, got torch.float32
|
|
xfail('masked_scatter', ''), # aten.masked_scatter.default - couldn't find symbolic meta function/decomposition
|
|
xfail('masked_select', ''), # aten.masked_select.default - couldn't find symbolic meta function/decomposition
|
|
xfail('matmul', ''), # aten.new_empty.default - couldn't find symbolic meta function/decomposition
|
|
xfail('matrix_exp', ''), # aten.linalg_matrix_exp.default - couldn't find symbolic meta function/decomposition
|
|
xfail('max', 'reduction_with_dim'), # aten.max.dim - couldn't find symbolic meta function/decomposition
|
|
xfail('mean', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type promotion!
|
|
xfail('median', ''), # Could not run 'aten::median' with arguments from the 'Meta' backend. This could be becau...
|
|
xfail('meshgrid', 'list_of_tensors'), # Tensors of type TensorImpl do not have numel
|
|
xfail('meshgrid', 'variadic_tensors'), # Tensors of type TensorImpl do not have numel
|
|
xfail('min', 'reduction_with_dim'), # aten.min.dim - couldn't find symbolic meta function/decomposition
|
|
xfail('mm', ''), # aten.mm.default - couldn't find symbolic meta function/decomposition
|
|
xfail('mode', ''), # aten.mode.default - couldn't find symbolic meta function/decomposition
|
|
xfail('msort', ''), # aten.sort.default - couldn't find symbolic meta function/decomposition
|
|
xfail('mv', ''), # aten.mv.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nanmean', ''), # The underlying op of 'aten.stride' has no overload name '_schema'
|
|
xfail('narrow', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('native_layer_norm', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type promot...
|
|
xfail('nn.functional.adaptive_avg_pool1d', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.adaptive_avg_pool2d', ''), # argument 'size' must be tuple of ints, but found element o...
|
|
xfail('nn.functional.adaptive_avg_pool3d', ''), # aten._adaptive_avg_pool3d.default - couldn't find symbolic meta func...
|
|
xfail('nn.functional.adaptive_max_pool1d', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.adaptive_max_pool2d', ''), # aten.adaptive_max_pool2d.default - couldn't find symbolic meta funct...
|
|
xfail('nn.functional.adaptive_max_pool3d', ''), # argument 'output_size' (position 2) must be tupl...
|
|
xfail('nn.functional.avg_pool1d', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.avg_pool2d', ''), # aten.avg_pool2d.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.avg_pool3d', ''), # aten.avg_pool3d.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.batch_norm', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.bilinear', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.binary_cross_entropy', ''), # aten.new_empty.default - couldn't find symbolic meta function/decom...
|
|
xfail('nn.functional.binary_cross_entropy_with_logits', ''), # aten.binary_cross_entropy_with_logits.default - couldn'...
|
|
xfail('nn.functional.conv1d', ''), # aten.convolution.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.conv2d', ''), # aten.convolution.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.conv_transpose1d', ''), # aten.convolution.default - couldn't find symbolic meta function/decompo...
|
|
xfail('nn.functional.conv_transpose2d', ''), # aten.convolution.default - couldn't find symbolic meta function/decompo...
|
|
xfail('nn.functional.conv_transpose3d', ''), # aten.convolution.default - couldn't find symbolic meta function/decompo...
|
|
xfail('nn.functional.cosine_embedding_loss', ''), # The underlying op of 'aten.stride' has no overload name '_schema'
|
|
xfail('nn.functional.cosine_similarity', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.cross_entropy', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.dropout2d', ''), # Tensors of type TensorImpl do not have numel
|
|
xfail('nn.functional.dropout3d', ''), # Tensors of type TensorImpl do not have numel
|
|
xfail('nn.functional.dropout', ''), # Tensors of type TensorImpl do not have numel
|
|
xfail('nn.functional.embedding_bag', ''), # aten._embedding_bag_forward_only.default - couldn't find symbolic meta fun...
|
|
xfail('nn.functional.embedding', ''), # argument 'size' must be tuple of ints, but found element of type tor...
|
|
xfail('nn.functional.feature_alpha_dropout', 'with_train'), # Tensors of type TensorImpl do not have numel
|
|
xfail('nn.functional.fractional_max_pool2d', ''), # argument 'size' must be tuple of ints, but found element of t...
|
|
xfail('nn.functional.fractional_max_pool3d', ''), # argument 'size' must be tuple of ints, but found element of t...
|
|
xfail('nn.functional.glu', ''), # aten.glu.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.grid_sample', ''), # aten.grid_sampler_2d.default - couldn't find symbolic meta function/decompos...
|
|
xfail('nn.functional.group_norm', ''), # 'torch._C.SymIntNode' and 'int'
|
|
xfail('nn.functional.hardsigmoid', ''), # Received type <class 'NoneType'> that is neither a tensor or a number!
|
|
xfail('nn.functional.hardswish', ''), # Received type <class 'NoneType'> that is neither a tensor or a number!
|
|
xfail('nn.functional.hinge_embedding_loss', ''), # aten.empty_like.default - couldn't find symbolic meta function/deco...
|
|
xfail('nn.functional.huber_loss', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.instance_norm', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.interpolate', 'area'), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.interpolate', 'bicubic'), # aten.upsample_bicubic2d.vec - couldn't find symbolic meta function/d...
|
|
xfail('nn.functional.interpolate', 'bilinear'), # aten.upsample_bilinear2d.vec - couldn't find symbolic meta function...
|
|
xfail('nn.functional.interpolate', 'linear'), # aten.upsample_linear1d.vec - couldn't find symbolic meta function/dec...
|
|
xfail('nn.functional.interpolate', 'nearest'), # aten.upsample_nearest1d.vec - couldn't find symbolic meta function/d...
|
|
xfail('nn.functional.interpolate', 'trilinear'), # aten.upsample_trilinear3d.vec - couldn't find symbolic meta functi...
|
|
xfail('nn.functional.kl_div', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type pro...
|
|
xfail('nn.functional.l1_loss', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.layer_norm', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type...
|
|
xfail('nn.functional.linear', ''), # aten.mv.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.local_response_norm', ''), # Tensors of type TensorImpl do not have numel
|
|
xfail('nn.functional.margin_ranking_loss', ''), # The underlying op of 'aten.stride' has no overload name '_schema'
|
|
xfail('nn.functional.max_pool2d', ''), # aten.max_pool2d_with_indices.default - couldn't find symbolic meta function/d...
|
|
xfail('nn.functional.max_pool3d', ''), # aten.max_pool3d_with_indices.default - couldn't find symbolic meta function/d...
|
|
xfail('nn.functional.max_unpool1d', 'grad'), # aten.max_unpool2d.default - couldn't find symbolic meta function/decom...
|
|
xfail('nn.functional.max_unpool2d', 'grad'), # aten.max_unpool2d.default - couldn't find symbolic meta function/decom...
|
|
xfail('nn.functional.max_unpool3d', 'grad'), # aten.max_unpool3d.default - couldn't find symbolic meta function/decom...
|
|
xfail('nn.functional.mse_loss', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.multi_margin_loss', ''), # Could not run 'aten::multi_margin_loss' with arguments from the...
|
|
xfail('nn.functional.multilabel_margin_loss', ''), # Could not run 'aten::multilabel_margin_loss_forward' with ...
|
|
xfail('nn.functional.multilabel_soft_margin_loss', ''), # aten.new_empty.default - couldn't find symbolic meta functio...
|
|
xfail('nn.functional.normalize', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.pad', 'circular'), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.pad', 'constant'), # aten.fill.Scalar - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.pad', 'reflect'), # aten.reflection_pad1d.default - couldn't find symbolic meta function/decompo...
|
|
xfail('nn.functional.pad', 'replicate'), # aten.replication_pad1d.default - couldn't find symbolic meta function/deco...
|
|
xfail('nn.functional.pdist', ''), # Could not run 'aten::_pdist_forward' with arguments from the 'Meta' backend...
|
|
xfail('nn.functional.pixel_shuffle', ''), # aten.pixel_shuffle.default - couldn't find symbolic meta function/decompos...
|
|
xfail('nn.functional.pixel_unshuffle', ''), # aten.pixel_unshuffle.default - couldn't find symbolic meta function/deco...
|
|
xfail('nn.functional.poisson_nll_loss', ''), # The underlying op of 'aten.stride' has no overload name '_schema'
|
|
xfail('nn.functional.rrelu', ''), # aten.empty_like.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.smooth_l1_loss', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.soft_margin_loss', ''), # aten.soft_margin_loss.default - couldn't find symbolic meta function/de...
|
|
xfail('nn.functional.softmin', 'with_dtype'), # aten._to_copy.default - couldn't find symbolic meta function/decompos...
|
|
xfail('nn.functional.triplet_margin_loss', ''), # Unexpected type <class 'torch.SymIntNode'> when computing element...
|
|
xfail('nn.functional.triplet_margin_with_distance_loss', ''), # Unexpected type <class 'torch.SymIntNode'> when com...
|
|
xfail('nn.functional.unfold', ''), # aten.im2col.default - couldn't find symbolic meta function/decomposition
|
|
xfail('nn.functional.upsample_bilinear', ''), # aten.upsample_bilinear2d.vec - couldn't find symbolic meta function/de...
|
|
xfail('nn.functional.upsample_nearest', ''), # aten.upsample_nearest1d.vec - couldn't find symbolic meta function/deco...
|
|
xfail('norm', ''), # TensorImpl does not have numel
|
|
xfail('norm', 'nuc'), # aten._linalg_svd.default - couldn't find symbolic meta function/decomposition
|
|
xfail('normal', ''), # aten.normal.Tensor_Tensor - couldn't find symbolic meta function/decomposition
|
|
xfail('normal', 'number_mean'), # aten.normal.float_Tensor - couldn't find symbolic meta function/decomposition
|
|
xfail('ones_like', ''), # aten.ones_like.default - couldn't find symbolic meta function/decomposition
|
|
xfail('ormqr', ''), # aten.ormqr.default - couldn't find symbolic meta function/decomposition
|
|
xfail('outer', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('pca_lowrank', ''), # aten.mm.default - couldn't find symbolic meta function/decomposition
|
|
xfail('pinverse', ''), # aten.linalg_pinv.atol_rtol_tensor - couldn't find symbolic meta function/decomposition
|
|
xfail('polygamma', 'polygamma_n_0'), # aten.polygamma.default - couldn't find symbolic meta function/decomposition
|
|
xfail('polygamma', 'polygamma_n_1'), # aten.polygamma.default - couldn't find symbolic meta function/decomposition
|
|
xfail('polygamma', 'polygamma_n_2'), # aten.polygamma.default - couldn't find symbolic meta function/decomposition
|
|
xfail('polygamma', 'polygamma_n_3'), # aten.polygamma.default - couldn't find symbolic meta function/decomposition
|
|
xfail('polygamma', 'polygamma_n_4'), # aten.polygamma.default - couldn't find symbolic meta function/decomposition
|
|
xfail('put', ''), # aten.clone.default - couldn't find symbolic meta function/decomposition
|
|
xfail('qr', ''), # aten.linalg_qr.default - couldn't find symbolic meta function/decomposition
|
|
xfail('rad2deg', ''), # aten.rad2deg.default - couldn't find symbolic meta function/decomposition
|
|
xfail('rand_like', ''), # aten.randn_like.default - couldn't find symbolic meta function/decomposition
|
|
xfail('randint_like', ''), # aten.randint_like.default - couldn't find symbolic meta function/decomposition
|
|
xfail('randn_like', ''), # aten.randn_like.default - couldn't find symbolic meta function/decomposition
|
|
xfail('ravel', ''), # Tensors of type TensorImpl do not have numel
|
|
xfail('renorm', ''), # aten.renorm.default - couldn't find symbolic meta function/decomposition
|
|
xfail('repeat', ''), # aten.repeat.default - couldn't find symbolic meta function/decomposition
|
|
xfail('reshape_as', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('reshape', ''), # Tensors of type TensorImpl do not have numel
|
|
xfail('resize_', ''), # aten.clone.default - couldn't find symbolic meta function/decomposition
|
|
xfail('resize_as_', ''), # aten.clone.default - couldn't find symbolic meta function/decomposition
|
|
xfail('roll', ''), # Tensors of type TensorImpl do not have numel
|
|
xfail('rot90', ''), # aten.empty_like.default - couldn't find symbolic meta function/decomposition
|
|
xfail('round', ''), # aten.round.default - couldn't find symbolic meta function/decomposition
|
|
xfail('round', 'decimals_0'), # aten.round.decimals - couldn't find symbolic meta function/decomposition
|
|
xfail('round', 'decimals_3'), # aten.round.decimals - couldn't find symbolic meta function/decomposition
|
|
xfail('round', 'decimals_neg_3'), # aten.round.decimals - couldn't find symbolic meta function/decomposition
|
|
xfail('scatter_add', ''), # aten.scatter_add.default - couldn't find symbolic meta function/decomposition
|
|
xfail('scatter', ''), # aten.scatter.src - couldn't find symbolic meta function/decomposition
|
|
xfail('scatter_reduce', 'amax'), # aten.scatter_reduce.two - couldn't find symbolic meta function/decomposition
|
|
xfail('scatter_reduce', 'amin'), # aten.scatter_reduce.two - couldn't find symbolic meta function/decomposition
|
|
xfail('scatter_reduce', 'mean'), # aten.scatter_reduce.two - couldn't find symbolic meta function/decomposition
|
|
xfail('scatter_reduce', 'prod'), # aten.scatter_reduce.two - couldn't find symbolic meta function/decomposition
|
|
xfail('scatter_reduce', 'sum'), # aten.scatter_reduce.two - couldn't find symbolic meta function/decomposition
|
|
xfail('searchsorted', ''), # Could not run 'aten::searchsorted.Tensor' with arguments from the 'Meta' backend. ...
|
|
xfail('segment_reduce', 'offsets'), # aten.segment_reduce.default - couldn't find symbolic meta function/decomposition
|
|
xfail('select', ''), # aten.select.int - couldn't find symbolic meta function/decomposition
|
|
xfail('select_scatter', ''), # aten.select_scatter.default - couldn't find symbolic meta function/decomposition
|
|
xfail('sgn', ''), # aten.sgn.default - couldn't find symbolic meta function/decomposition
|
|
xfail('short', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('sinc', ''), # aten.sinc.default - couldn't find symbolic meta function/decomposition
|
|
xfail('slice_scatter', ''), # aten.slice_scatter.default - couldn't find symbolic meta function/decomposition
|
|
xfail('softmax', 'with_dtype'), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
|
|
xfail('sort', ''), # aten.sort.default - couldn't find symbolic meta function/decomposition
|
|
xfail('special.airy_ai', ''), # aten.special_airy_ai.default - couldn't find symbolic meta function/decomposition
|
|
xfail('special.bessel_j0', ''), # aten.special_bessel_j0.default - couldn't find symbolic meta function/decomposition
|
|
xfail('special.bessel_j1', ''), # aten.special_bessel_j1.default - couldn't find symbolic meta function/decomposition
|
|
xfail('special.bessel_y0', ''), # aten.special_bessel_y0.default - couldn't find symbolic meta function/decomposition
|
|
xfail('special.bessel_y1', ''), # aten.special_bessel_y1.default - couldn't find symbolic meta function/decomposition
|
|
xfail('special.chebyshev_polynomial_t', ''), # aten.special_chebyshev_polynomial_t.default - couldn't find symbolic me...
|
|
xfail('special.chebyshev_polynomial_u', ''), # aten.special_chebyshev_polynomial_u.default - couldn't find symbolic me...
|
|
xfail('special.entr', ''), # aten.special_entr.default - couldn't find symbolic meta function/decomposition
|
|
xfail('special.erfcx', ''), # aten.special_erfcx.default - couldn't find symbolic meta function/decomposition
|
|
xfail('special.hermite_polynomial_h', ''), # aten.special_hermite_polynomial_h.default - couldn't find symbolic meta f...
|
|
xfail('special.hermite_polynomial_he', ''), # aten.special_hermite_polynomial_he.default - couldn't find symbolic meta...
|
|
xfail('special.laguerre_polynomial_l', ''), # aten.special_laguerre_polynomial_l.default - couldn't find symbolic meta...
|
|
xfail('special.log_ndtr', ''), # aten.special_log_ndtr.default - couldn't find symbolic meta function/decomposition
|
|
xfail('special.modified_bessel_i0', ''), # aten.special_modified_bessel_i0.default - couldn't find symbolic meta funct...
|
|
xfail('special.modified_bessel_i1', ''), # aten.special_modified_bessel_i1.default - couldn't find symbolic meta funct...
|
|
xfail('special.modified_bessel_k0', ''), # aten.special_modified_bessel_k0.default - couldn't find symbolic meta funct...
|
|
xfail('special.modified_bessel_k1', ''), # aten.special_modified_bessel_k1.default - couldn't find symbolic meta funct...
|
|
xfail('special.ndtri', ''), # aten.special_ndtri.default - couldn't find symbolic meta function/decomposition
|
|
xfail('special.polygamma', 'special_polygamma_n_0'), # aten.polygamma.default - couldn't find symbolic meta function/...
|
|
xfail('special.scaled_modified_bessel_k0', ''), # aten.special_scaled_modified_bessel_k0.default - couldn't find symbo...
|
|
xfail('special.scaled_modified_bessel_k1', ''), # aten.special_scaled_modified_bessel_k1.default - couldn't find symbo...
|
|
xfail('special.spherical_bessel_j0', ''), # aten.special_spherical_bessel_j0.default - couldn't find symbolic meta fun...
|
|
xfail('special.xlog1py', ''), # aten.special_xlog1py.default - couldn't find symbolic meta function/decomposition
|
|
xfail('split', ''), # 'torch._C.SymIntNode' and 'int'
|
|
xfail('split', 'list_args'), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('split_with_sizes', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('stack', ''), # argument 'size' must be tuple of ints, but found element of type torch._C.SymIntNode a...
|
|
xfail('std', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type promotion!
|
|
xfail('std_mean', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type promotion!
|
|
xfail('stft', ''), # argument 'size' must be tuple of ints, but found element of type torch._C.SymIntNode at...
|
|
xfail('sum_to_size', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('svd', ''), # aten._linalg_svd.default - couldn't find symbolic meta function/decomposition
|
|
xfail('svd_lowrank', ''), # aten.mm.default - couldn't find symbolic meta function/decomposition
|
|
xfail('symeig', ''), # aten.symeig.default - couldn't find symbolic meta function/decomposition
|
|
xfail('take_along_dim', ''), # dtype of indices should be Long but got Float
|
|
xfail('take', ''), # aten.take.default - couldn't find symbolic meta function/decomposition
|
|
xfail('tensordot', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('tile', ''), # aten.repeat.default - couldn't find symbolic meta function/decomposition
|
|
xfail('topk', ''), # aten.topk.default - couldn't find symbolic meta function/decomposition
|
|
xfail('trapezoid', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('trapz', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('triangular_solve', ''), # aten.triangular_solve.default - couldn't find symbolic meta function/decomposition
|
|
xfail('tril', ''), # aten.tril.default - couldn't find symbolic meta function/decomposition
|
|
xfail('triu', ''), # aten.triu.default - couldn't find symbolic meta function/decomposition
|
|
xfail('unfold', ''), # aten.unfold.default - couldn't find symbolic meta function/decomposition
|
|
xfail('var_mean', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type promotion!
|
|
xfail('var', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type promotion!
|
|
xfail('vdot', ''), # aten.vdot.default - couldn't find symbolic meta function/decomposition
|
|
xfail('view_as_complex', ''), # aten.view_as_complex.default - couldn't find symbolic meta function/decomposition
|
|
xfail('view_as', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('view', ''), # Tensors of type TensorImpl do not have numel
|
|
xfail('vsplit', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
|
|
xfail('where', ''), # expected predicate to be bool, got torch.float32
|
|
xfail('zero_', ''), # aten.clone.default - couldn't find symbolic meta function/decomposition
|
|
xfail('zeros_like', ''), # aten.zeros_like.default - couldn't find symbolic meta function/decomposition
|
|
}
|
|
|
|
def _test_make_fx_helper(self, device, dtype, op, tracing_mode):
|
|
def f(args, kwargs):
|
|
return op.op(*args, **kwargs)
|
|
sample_inputs_itr = op.sample_inputs(device, dtype, requires_grad=False)
|
|
new_f = None
|
|
for sample_input in sample_inputs_itr:
|
|
args = [sample_input.input] + list(sample_input.args)
|
|
kwargs = sample_input.kwargs
|
|
|
|
try:
|
|
new_f = make_fx(f, tracing_mode=tracing_mode)(args, kwargs)
|
|
except DynamicOutputShapeException as e:
|
|
self.skipTest("Dynamic output shape operation in trace")
|
|
|
|
for arg in args:
|
|
if isinstance(arg, torch.Tensor) and arg.dtype == torch.float:
|
|
arg.uniform_(0, 1)
|
|
try:
|
|
old_out = f(args, kwargs)
|
|
except Exception:
|
|
continue
|
|
new_out = wrapper_set_seed(new_f, args, kwargs)
|
|
self.assertEqual(new_out, old_out)
|
|
|
|
class TestProxyTensorOpInfo(TestCase):
|
|
@ops(op_db, allowed_dtypes=(torch.float,))
|
|
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_exhaustive', make_fx_failures)
|
|
def test_make_fx_exhaustive(self, device, dtype, op):
|
|
_test_make_fx_helper(self, device, dtype, op, "real")
|
|
|
|
@ops(op_db, allowed_dtypes=(torch.float,))
|
|
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_fake_exhaustive', make_fx_failures.union(fake_tensor_failures))
|
|
def test_make_fx_fake_exhaustive(self, device, dtype, op):
|
|
_test_make_fx_helper(self, device, dtype, op, "fake")
|
|
|
|
@skipIfNoSympy
|
|
@ops(op_db, allowed_dtypes=(torch.float,))
|
|
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_symbolic_exhaustive',
|
|
make_fx_failures | fake_tensor_failures | symbolic_tensor_failures)
|
|
def test_make_fx_symbolic_exhaustive(self, device, dtype, op):
|
|
_test_make_fx_helper(self, device, dtype, op, "symbolic")
|
|
|
|
|
|
only_for = ("cpu")
|
|
instantiate_device_type_tests(
|
|
TestProxyTensor,
|
|
globals(),
|
|
only_for=only_for,
|
|
)
|
|
instantiate_device_type_tests(TestProxyTensorOpInfo, globals(), only_for=only_for)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|