pytorch/test/test_proxy_tensor.py
Edward Z. Yang 42fefd4403 Sparse fake tensor support (#82172)
Add support for sparse fake tensors.

- The testing strategy is to run a fake tensor cross ref test on `test_sparse.py`. This is necessary because OpInfo sparse coverage is completely nonexistent. We could have tried to turn on cross ref testing globally for all files, but that would be very time consuming and the tests I'm interested in are mostly in this file. There are some exclusions in testing for things that don't work.
- I make fake tensor converter raise a UnsupportedFakeTensorException if the meta converter fails to do a conversion (which can happen in a relatively large number of situations).
- I relax fake tensor invariants so that you can make a fake tensor from a meta tensor. This is useful because in the cross ref test sometimes we operate on meta tensors.
- Fake tensor wrapping is improved to handle the case when a function doesn't return any tensors
- Meta converter is taught how to convert sparse tensors to meta

There's still a little more cleanup that needs to be done, but this is good for review.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82172
Approved by: https://github.com/eellison
2022-08-03 14:29:36 +00:00

1007 lines
61 KiB
Python

# Owner(s): ["module: ProxyTensor"]
from torch.testing._internal.common_utils import TestCase, run_tests
import torch
import unittest
import warnings
import torch.nn.utils._stateless as stateless
from collections.abc import Iterable
from torch.testing._internal.common_device_type import instantiate_device_type_tests
from torch.testing._internal.common_methods_invocations import DecorateInfo
from torch.testing._internal.common_methods_invocations import op_db, wrapper_set_seed
from torch._subclasses.fake_tensor import DynamicOutputShapeException
from torch._decomp import decomposition_table
from torch.testing._internal.common_device_type import ops
from torch.fx.experimental.proxy_tensor import make_fx, DecompositionInterpreter, get_isolated_graphmodule
from torch.utils._pytree import tree_map
from torch import nn
import re
aten = torch.ops.aten
try:
import sympy # noqa: F401
HAS_SYMPY = True
except ImportError:
HAS_SYMPY = False
skipIfNoSympy = unittest.skipIf(not HAS_SYMPY, "no sympy")
def process_failures():
"""
Takes file containing failures like
FAILED test/test_proxy_tensor.py::TestProxyTensorOpInfoCPU::test_make_fx_symbolic_exhaustive___getitem___cpu_float32 - RuntimeError: aten.size.default - couldn't find symbolic meta function/decomposition # noqa: B950
and processes them into a list of opinfo xfails
"""
f = open('pytest_failures')
failures = f.readlines()
failures = [i.strip() for i in failures]
def process_failure_string(s, matcher):
out = re.search(matcher, s)
return out.groups()
SYMBOLIC_TRACE_MATCH = r'exhaustive_(.*)_cpu.*: (.*)'
failures = [process_failure_string(s, SYMBOLIC_TRACE_MATCH) for s in failures]
def create_normalized_name(op):
if op.variant_test_name == '':
s = op.name
else:
s = f"{op.name}.{op.variant_test_name}"
return s.replace('.', '_')
remap_opinfo = {create_normalized_name(op): (op.name, op.variant_test_name) for op in op_db}
print("symbolic_tensor_failures = {")
for failure, reason in failures:
print(f" xfail{remap_opinfo[failure]}, # {reason}")
print("}")
# Copied from functorch
def xfail(op_name, variant_name='', *, device_type=None, dtypes=None):
return (op_name, variant_name, device_type, dtypes, True)
def skip(op_name, variant_name='', *, device_type=None, dtypes=None):
return (op_name, variant_name, device_type, dtypes, False)
def skipOps(test_case_name, base_test_name, to_skip):
all_opinfos = op_db
for xfail in to_skip:
op_name, variant_name, device_type, dtypes, expected_failure = xfail
matching_opinfos = [o for o in all_opinfos
if o.name == op_name and o.variant_test_name == variant_name]
assert len(matching_opinfos) >= 1, f"Couldn't find OpInfo for {xfail}"
for opinfo in matching_opinfos:
decorators = list(opinfo.decorators)
if expected_failure:
decorator = DecorateInfo(unittest.expectedFailure,
test_case_name, base_test_name,
device_type=device_type, dtypes=dtypes)
decorators.append(decorator)
else:
decorator = DecorateInfo(unittest.skip("Skipped!"),
test_case_name, base_test_name,
device_type=device_type, dtypes=dtypes)
decorators.append(decorator)
opinfo.decorators = tuple(decorators)
# This decorator doesn't modify fn in any way
def wrapped(fn):
return fn
return wrapped
USE_TORCHVISION = False
try:
import torchvision
USE_TORCHVISION = True
except ImportError:
warnings.warn("Couldn't import torchvision. Some of our tests use it, try "
"to install it with commands from pytorch.org, post-fixed with "
"`--no-deps` to avoid overwriting the pytorch installation",
UserWarning)
def _create_new_input(x):
if not isinstance(x, torch.Tensor):
return x
if x.dtype != torch.float:
return x + 1
if x.is_leaf:
return torch.rand_like(x, requires_grad=True)
else:
return torch.rand_like(x)
class TestProxyTensor(TestCase):
def _test(self, f, inps):
fx_f = make_fx(f)(*inps)
new_inps = tree_map(_create_new_input, inps)
self.assertEqual(fx_f(*new_inps), f(*new_inps))
def test_make_fx_simple(self, device):
def f(x):
return torch.sin(x)
self._test(f, (torch.randn(3),))
def test_scalar_device(self, device):
def f(a, b):
return a + b
self._test(f, [torch.randn(3, device=device), torch.tensor(5)])
def test_isolated_graphmodule(self):
def is_any_sum(gm):
return any(node.target == torch.ops.aten.sum.default for node in gm.graph.nodes)
def is_any_digamma(gm):
return any(node.target == torch.ops.aten.digamma.default for node in gm.graph.nodes)
def is_any_sigmoid(gm):
return any(node.target == torch.ops.aten.sigmoid.default for node in gm.graph.nodes)
def inner(x):
return torch.sum(x)
def f(x):
gm = get_isolated_graphmodule(inner, (x,), {})
self.assertTrue(is_any_sum(gm))
return x + torch.randn(x.shape)
# get_isolated_graphmodule uses make_fx internally that shouldn't be traced
# by the outer make_fx call
traced = make_fx(f)(torch.randn(3))
self.assertFalse(is_any_sum(traced))
# When factory functions are used, they should not be traced
# by the outer make_fx call
def inner_with_factory():
val = torch.tensor(float(1))
val.add_(2)
return torch.full((10, 10), val).sum()
def f1(x):
gm = get_isolated_graphmodule(inner_with_factory, (), {})
self.assertTrue(is_any_sum(gm))
return torch.sigmoid(x)
def f2(x):
gm = get_isolated_graphmodule(f1, (x,), {})
self.assertFalse(is_any_sum(gm))
self.assertTrue(is_any_sigmoid(gm))
return torch.digamma(x)
traced = make_fx(f2)(torch.randn(3))
self.assertFalse(is_any_sum(traced))
self.assertFalse(is_any_sigmoid(traced))
self.assertTrue(is_any_digamma(traced))
# Verify nested make_fx calls don't make factory functions to be leaked
# into the outer graph
def f2(x):
gm = make_fx(f1)(x)
self.assertFalse(is_any_sum(gm))
self.assertTrue(is_any_sigmoid(gm))
return torch.digamma(x)
traced = make_fx(f2)(torch.randn(3))
self.assertFalse(is_any_sum(traced))
self.assertTrue(is_any_sigmoid(traced))
self.assertTrue(is_any_digamma(traced))
# Verify interaction with non-ProxyTensor modes
from torch.testing._internal.logging_tensor import LoggingTensorMode
def f1_logging(x):
with LoggingTensorMode():
gm = get_isolated_graphmodule(inner_with_factory, (), {})
self.assertTrue(is_any_sum(gm))
return torch.sigmoid(x)
def f2_logging(x):
with LoggingTensorMode(), LoggingTensorMode():
gm = get_isolated_graphmodule(f1_logging, (x,), {})
self.assertFalse(is_any_sum(gm))
self.assertTrue(is_any_sigmoid(gm))
return torch.digamma(x)
traced = make_fx(f2_logging)(torch.randn(3))
self.assertFalse(is_any_sum(traced))
self.assertFalse(is_any_sigmoid(traced))
self.assertTrue(is_any_digamma(traced))
# Verify interaction with another tensor subclass
# This case currently doesn't work and should raise an error
# See: https://github.com/pytorch/pytorch/pull/81764#issuecomment-1200472068
from torch.testing._internal.logging_tensor import LoggingTensor
def f1_logging_tensor(x):
gm = get_isolated_graphmodule(inner_with_factory, (), {})
self.assertTrue(is_any_sum(gm))
return torch.sigmoid(x)
def f2_logging_tensor(x):
x = LoggingTensor(x)
gm = get_isolated_graphmodule(f1_logging_tensor, (x,), {})
self.assertFalse(is_any_sum(gm))
self.assertTrue(is_any_sigmoid(gm))
return torch.digamma(x)
with self.assertRaisesRegex(AssertionError, "ProxyTensor is wrapped with another Tensor subclass"):
traced = make_fx(f2_logging_tensor)(torch.randn(3))
self.assertFalse(is_any_sum(traced))
self.assertFalse(is_any_sigmoid(traced)) # this fails, sigmoid is traced with LoggingTensor
self.assertTrue(is_any_digamma(traced))
@unittest.skipIf(not USE_TORCHVISION, "test requires torchvision")
def test_resnet18_backward_trace(self, device):
mod = torchvision.models.resnet18()
def f(x):
for a in mod.parameters():
a.grad = None
out = mod(x)
out.sum().backward()
return [a.grad for a in mod.parameters()]
inp = torch.randn(3, 3, 250, 250, requires_grad=True)
self._test(f, [inp])
def test_proxy_tensor(self):
def f_grad(x):
val = x.cos().cos().sum()
return torch.autograd.grad(val, x)
def f_backward(x):
val = x.cos().cos().sum()
val.backward()
return x.grad
for f in [f_grad, f_backward]:
self._test(f, [torch.randn(3, requires_grad=True)])
def test_inplace_metadata(self):
def f(x):
x = x.clone()
x.unsqueeze_(-1)
assert x.shape[-1] == 1
return x
self._test(f, [torch.randn(5)])
def test_mode_tracing_factory_function(self):
def f(x):
return x + torch.randn(x.shape)
# default behavior should trace factory functions
traced = make_fx(f)(torch.randn(3))
self.assertTrue(
any(
node.target == aten.randn.default
for node in traced.graph.nodes
)
)
def test_mode_tracing_factory_function_no_factory_function(self):
def f(x):
return x + torch.randn(x.shape)
# setting the flag to false should not trace factory functions
traced = make_fx(f, trace_factory_functions=False)(torch.randn(3))
self.assertFalse(
any(
node.target == aten.randn.default
for node in traced.graph.nodes
)
)
def test_make_fx_overloads(self):
def f(x):
return x.cos() + torch.randn(x.shape)
traced = make_fx(f)(torch.randn(3))
self.assertTrue(all([isinstance(node.target, torch._ops.OpOverload)
for node in traced.graph.nodes if node.op == 'call_function']))
def test_tensor_constants(self):
def f():
val = torch.tensor(float('inf'))
return torch.full((100, 100), val)
self._test(f, [])
def test_constant_proxy_tensor(self):
from torch.fx.experimental.proxy_tensor import make_fx
def f():
val = torch.tensor(float('inf'))
return torch.full((100, 100), val)
g = make_fx(f)()
self.assertEqual(g(), f())
def test_constant_proxy_tensor_mut(self):
from torch.fx.experimental.proxy_tensor import make_fx
def f():
val = torch.tensor(float(1))
val.add_(2)
return torch.full((100, 100), val)
g = make_fx(f)()
self.assertEqual(g(), f())
# In case we mutated shared state in the g graph!
self.assertEqual(g(), f())
g = make_fx(f, tracing_mode="fake")()
self.assertEqual(g(), f())
# In case we mutated shared state in the g graph!
self.assertEqual(g(), f())
def test_constant_unbind(self):
def f():
val = torch.tensor([2])
r, = torch.unbind(val, 0)
return r.item()
g = make_fx(f)()
self.assertEqual(g(), f())
def test_issue82547(self):
x = nn.Parameter(torch.randn(3, 3))
def f():
return torch.ops.aten.t.default(x)
self.assertRaisesRegex(Exception, "non-Fake Tensor", lambda: make_fx(f, tracing_mode="fake")())
class A(torch.Tensor):
pass
x = A(torch.randn(3, 3))
self.assertRaisesRegex(TypeError, "no implementation found", lambda: make_fx(f, tracing_mode="fake")())
def test_use_fake_and_tensor(self):
def f(x, y):
z = torch.tensor([2.0, 3.0])
return x + y + z
g = make_fx(f, tracing_mode="fake")(torch.randn(2), torch.randn(2))
x, y = torch.randn(2), torch.randn(2)
self.assertEqual(g(x, y), f(x, y))
def test_decomposition_interpreter(self):
def fn(x):
return torch.nn.functional.silu(x)
x = torch.rand((4, 4))
fx_module = make_fx(fn, decomposition_table=None)(x)
found_silu = False
for n in fx_module.graph.nodes:
if n.target == torch.ops.aten.silu or n.target == torch.ops.aten.silu.default:
found_silu = True
self.assertTrue(found_silu)
new_graph = torch.fx.Graph()
silu_decomp_table = {torch.ops.aten.silu.default: decomposition_table[torch.ops.aten.silu.default]}
DecompositionInterpreter(
fx_module,
new_graph=new_graph,
decomposition_table=silu_decomp_table,
).run(x)
decomposed_module = torch.fx.GraphModule(fx_module, new_graph)
for n in decomposed_module.graph.nodes:
self.assertTrue(n.target != torch.ops.aten.silu)
self.assertTrue(n.target != torch.ops.aten.silu.default)
self.assertEqual(fx_module(x), decomposed_module(x))
def test_make_fx_model_fwd_bwd(self, device):
class Foo(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(5, 5)
def forward(self, x):
return self.linear(x).relu()
model = Foo()
def f(x, params):
out = stateless.functional_call(model, params, x).sum()
out.backward()
return list(params.values())
input = torch.randn(3, 5, requires_grad=True)
params = dict(model.named_parameters())
fx_f = make_fx(f)(input, params)
# fx may change the order of parameters in list, so using set() to compare
self.assertTrue(
torch.allclose(fx_f(input, params)[0], f(input, params)[0])
or
torch.allclose(fx_f(input, params)[0], f(input, params)[1])
)
self.assertTrue(
torch.allclose(fx_f(input, params)[1], f(input, params)[0])
or
torch.allclose(fx_f(input, params)[1], f(input, params)[1])
)
def test_make_fx_model_fwd_bwd_wgtupdate(self, device):
class Foo(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear = torch.nn.Linear(5, 5)
def forward(self, x):
return self.linear(x).relu()
model = Foo()
def f(args, params, buffers):
if not isinstance(args, Iterable):
args = [args]
params_and_buffers = {**params, **buffers}
out = stateless.functional_call(model, params_and_buffers, args)
out.sum().backward()
return [p - 1e-4 * p.grad for p in params.values()]
input = torch.randn(3, 5, requires_grad=True)
params = dict(model.named_parameters())
buffers = dict(model.named_buffers())
fx_f = make_fx(f)(input, params, buffers)
# fx may change the order of parameters in list, so using set() to compare
# also there is a numerical difference in results so changing atol from 1e-08 to 1e-03
self.assertTrue(
torch.allclose(fx_f(input, params, buffers)[0], f(input, params, buffers)[0], atol=1e-03)
or
torch.allclose(fx_f(input, params, buffers)[0], f(input, params, buffers)[1], atol=1e-03)
)
self.assertTrue(
torch.allclose(fx_f(input, params, buffers)[1], f(input, params, buffers)[0], atol=1e-03)
or
torch.allclose(fx_f(input, params, buffers)[1], f(input, params, buffers)[1], atol=1e-03)
)
# TODO: Need to test the guards themselves specifically as well
@skipIfNoSympy
class TestSymbolicTracing(TestCase):
def _test_dynamic(self, fn, trace_inputs, test_inputs):
"""
Tests fn traced with trace_inputs against test_inputs
Also returns shape env
"""
trace_inputs = [torch.randn(shape) for shape in trace_inputs]
traced_f = make_fx(fn, tracing_mode="symbolic")(*trace_inputs)
for input in test_inputs:
input = [torch.randn(shape) for shape in input]
self.assertEqual(traced_f(*input), fn(*input))
return traced_f.shape_env
def test_unary(self):
def f(x):
assert x.shape[0] < 20
return x.cos()
test_inputs = []
test_inputs.append([(2, 5)])
test_inputs.append([(6, 8)])
shape_env = self._test_dynamic(f, [(3, 4)], test_inputs)
self.assertTrue(shape_env.evaluate_guards_for_args(torch.randn(4, 5)))
self.assertFalse(shape_env.evaluate_guards_for_args(torch.randn(25, 5)))
assert len(shape_env.guards) == 1
def test_binary_broadcast(self):
def f(a, b):
c = a * b
return c
test_inputs = []
test_inputs.append([(1, 5), (3, 1)])
test_inputs.append([(1, 4), (4, 1)])
shape_env = self._test_dynamic(f, [(1, 2), (3, 1)], test_inputs)
assert len(shape_env.guards) == 0
def test_cat(self):
def f(a, b):
val = torch.mul(a, b)
out = torch.cat([val, val])
if out.shape[0] * out.shape[1] > 20:
out = out.cos()
return out
test_inputs = []
test_inputs.append([(1, 5), (6, 1)])
test_inputs.append([(1, 4), (3, 1)])
shape_env = self._test_dynamic(f, [(1, 6), (8, 1)], test_inputs)
self.assertTrue(shape_env.evaluate_guards_for_args(torch.randn(1, 10), torch.randn(6, 1)))
self.assertFalse(shape_env.evaluate_guards_for_args(torch.randn(1, 2), torch.randn(4, 1)))
assert len(shape_env.guards) == 1
make_fx_failures = {
# unknown
xfail('allclose'),
xfail('equal'),
xfail('linalg.eigvals'),
xfail('nn.functional.max_pool1d', device_type='cpu'),
# empty
skip('new_empty'),
skip('empty_like'),
skip('empty'),
# flaky
skip('linalg.lstsq', 'grad_oriented'),
skip('nn.functional.max_unpool1d', '', device_type='cpu'),
skip('nn.functional.max_unpool2d', '', device_type='cpu'),
skip('nn.functional.max_unpool3d', '', device_type='cpu'),
skip('linalg.lstsq'), # flaky, probably just a precision issue
# data-dependent control flow
xfail('cov'),
xfail('istft'),
xfail('nanquantile'),
xfail('nn.functional.gaussian_nll_loss'),
xfail('quantile'),
xfail('tensor_split'),
xfail('corrcoef'),
# Seems like it's creating a sparse tensor that isn't captured by tensor.is_sparse
xfail('sparse.sampled_addmm'),
# ???
xfail('nn.functional.ctc_loss'),
# proxy tensor doesn't support sparse correctly right now
skip('to_sparse'),
# segfaults
skip('block_diag'),
}
fake_tensor_failures = {
# FakeTensor fallback doesn't work
xfail('segment_reduce', 'lengths'),
xfail('multinomial'),
xfail('mvlgamma', 'mvlgamma_p_1'),
xfail('mvlgamma', 'mvlgamma_p_3'),
xfail('mvlgamma', 'mvlgamma_p_5'),
xfail('cholesky'),
xfail('cholesky_inverse'),
# ASAN failures due to divide by 0
skip('nn.functional.nll_loss'),
}
symbolic_tensor_failures = {
# Needs complex-value support
xfail('polar'),
xfail('complex'),
xfail('linalg.eig'),
xfail('__getitem__', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('__rmatmul__', ''), # aten.new_empty.default - couldn't find symbolic meta function/decomposition
xfail('__rpow__', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('_masked.amax', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('_masked.amin', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('_masked.argmax', ''), # aten.argmax.default - couldn't find symbolic meta function/decomposition
xfail('_masked.argmin', ''), # aten.argmin.default - couldn't find symbolic meta function/decomposition
xfail('_masked.cumprod', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('_masked.cumsum', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('_masked.log_softmax', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('_masked.logaddexp', ''), # aten.logaddexp.default - couldn't find symbolic meta function/decomposition
xfail('_masked.logsumexp', ''), # Tensors of type TensorImpl do not have numel
xfail('_masked.mean', ''), # ones() received an invalid combination of arguments - got (torch.Size, device=torch.device, ...
xfail('_masked.median', ''), # aten.nanmedian.dim - couldn't find symbolic meta function/decomposition
xfail('_masked.norm', ''), # aten.linalg_vector_norm.default - couldn't find symbolic meta function/decomposition
xfail('_masked.normalize', ''), # aten.linalg_vector_norm.default - couldn't find symbolic meta function/decomposition
xfail('_masked.prod', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('_masked.softmax', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('_masked.softmin', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('_masked.std', ''), # ones() received an invalid combination of arguments - got (torch.Size, device=torch.device, d...
xfail('_masked.sum', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('_masked.var', ''), # ones() received an invalid combination of arguments - got (torch.Size, device=torch.device, d...
xfail('addbmm', ''), # aten.addbmm.default - couldn't find symbolic meta function/decomposition
xfail('addmm', ''), # aten.mm.default - couldn't find symbolic meta function/decomposition
xfail('addmm', 'decomposed'), # aten.mm.default - couldn't find symbolic meta function/decomposition
xfail('addmv', ''), # aten.addmv.default - couldn't find symbolic meta function/decomposition
xfail('addr', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('all', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type promotion!
xfail('aminmax', ''), # aten.aminmax.default - couldn't find symbolic meta function/decomposition
xfail('argmax', ''), # aten.argmax.default - couldn't find symbolic meta function/decomposition
xfail('argmin', ''), # aten.argmin.default - couldn't find symbolic meta function/decomposition
xfail('argsort', ''), # aten.sort.default - couldn't find symbolic meta function/decomposition
xfail('argwhere', ''), # aten.nonzero.default - couldn't find symbolic meta function/decomposition
xfail('as_strided', ''), # aten.as_strided.default - couldn't find symbolic meta function/decomposition
xfail('as_strided_scatter', ''), # aten.as_strided_scatter.default - couldn't find symbolic meta function/decomposition
xfail('baddbmm', ''), # aten.baddbmm.default - couldn't find symbolic meta function/decomposition
xfail('bernoulli', ''), # aten.bernoulli.default - couldn't find symbolic meta function/decomposition
xfail('bfloat16', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('bmm', ''), # aten.bmm.default - couldn't find symbolic meta function/decomposition
xfail('bool', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('broadcast_tensors', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('bucketize', ''), # aten.bucketize.Tensor - couldn't find symbolic meta function/decomposition
xfail('byte', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('cartesian_prod', ''), # Tensors of type TensorImpl do not have numel
xfail('cdist', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('chalf', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('char', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('cholesky_solve', ''), # Could not run 'aten::_cholesky_solve_helper' with arguments from the 'Meta' back...
xfail('chunk', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('clamp_max', ''), # Received type <class 'NoneType'> that is neither a tensor or a number!
xfail('clone', ''), # aten.clone.default - couldn't find symbolic meta function/decomposition
xfail('column_stack', ''), # Tensors of type TensorImpl do not have numel
xfail('constant_pad_nd', ''), # aten.fill.Scalar - couldn't find symbolic meta function/decomposition
xfail('count_nonzero', ''), # Could not run 'aten::count_nonzero.dim_IntList' with arguments from the 'Meta' ba...
xfail('cross', ''), # aten.linalg_cross.default - couldn't find symbolic meta function/decomposition
xfail('cummax', ''), # aten.cummax.default - couldn't find symbolic meta function/decomposition
xfail('cummin', ''), # aten.cummin.default - couldn't find symbolic meta function/decomposition
xfail('cumprod', ''), # aten.cumprod.default - couldn't find symbolic meta function/decomposition
xfail('cumsum', ''), # aten.cumsum.default - couldn't find symbolic meta function/decomposition
xfail('cumulative_trapezoid', ''), # aten.slice.Tensor - couldn't find symbolic meta function/decomposition
xfail('deg2rad', ''), # aten.deg2rad.default - couldn't find symbolic meta function/decomposition
xfail('diag_embed', ''), # aten.diag_embed.default - couldn't find symbolic meta function/decomposition
xfail('diagflat', ''), # Tensors of type TensorImpl do not have numel
xfail('diagonal', ''), # aten.diagonal.default - couldn't find symbolic meta function/decomposition
xfail('diagonal_scatter', ''), # aten.diagonal_scatter.default - couldn't find symbolic meta function/decomposition
xfail('diff', ''), # aten.empty_like.default - couldn't find symbolic meta function/decomposition
xfail('dist', ''), # aten.dist.default - couldn't find symbolic meta function/decomposition
xfail('double', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('dsplit', ''), # aten.slice.Tensor - couldn't find symbolic meta function/decomposition
xfail('eig', ''), # aten.eig.default - couldn't find symbolic meta function/decomposition
xfail('einsum', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('expand_as', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.fft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.fft', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.fftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.fftshift', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.hfft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.hfft', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('fft.hfftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.ifft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.ifft', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.ifftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.ifftshift', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.ihfft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.ihfft', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.ihfftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.irfft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.irfft', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('fft.irfftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.rfft2', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.rfft', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fft.rfftn', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('fill', ''), # The underlying op of 'aten.stride' has no overload name '_schema'
xfail('flatten', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('float', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('float_power', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('frexp', ''), # aten.frexp.Tensor - couldn't find symbolic meta function/decomposition
xfail('full_like', ''), # aten.full_like.default - couldn't find symbolic meta function/decomposition
xfail('gather', ''), # aten.gather.default - couldn't find symbolic meta function/decomposition
xfail('geqrf', ''), # aten.geqrf.default - couldn't find symbolic meta function/decomposition
xfail('gradient', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('half', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('histc', ''), # Could not run 'aten::histc' with arguments from the 'Meta' backend. This could be because...
xfail('histogram', ''), # Could not run 'aten::histogram.bin_ct' with arguments from the 'Meta' backend. This c...
xfail('histogramdd', ''), # aten._histogramdd_bin_edges.default - couldn't find symbolic meta function/decomposition
xfail('hsplit', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('i0', ''), # aten.i0.default - couldn't find symbolic meta function/decomposition
xfail('index_add', ''), # Float
xfail('index_copy', ''), # Expected a long tensor for index, but got Float
xfail('index_fill', ''), # aten.index_fill.int_Scalar - couldn't find symbolic meta function/decomposition
xfail('index_put', ''), # aten.index_put.default - couldn't find symbolic meta function/decomposition
xfail('index_reduce', ''), # Float
xfail('inner', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('int', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('inverse', ''), # Tensors of type TensorImpl do not have numel
xfail('isclose', ''), # The underlying op of 'aten.stride' has no overload name '_schema'
xfail('isin', ''), # aten.isin.Tensor_Tensor - couldn't find symbolic meta function/decomposition
xfail('isreal', ''), # aten.empty_like.default - couldn't find symbolic meta function/decomposition
xfail('kron', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('kthvalue', ''), # aten.kthvalue.default - couldn't find symbolic meta function/decomposition
xfail('lerp', ''), # aten.lerp.Scalar - couldn't find symbolic meta function/decomposition
xfail('linalg.cholesky', ''), # aten.linalg_cholesky_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.cholesky_ex', ''), # aten.linalg_cholesky_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.cond', ''), # Tensors of type TensorImpl do not have numel
xfail('linalg.cross', ''), # aten.linalg_cross.default - couldn't find symbolic meta function/decomposition
xfail('linalg.det', ''), # aten._linalg_det.default - couldn't find symbolic meta function/decomposition
xfail('linalg.eigh', ''), # aten._linalg_eigh.default - couldn't find symbolic meta function/decomposition
xfail('linalg.eigvalsh', ''), # aten._linalg_eigh.default - couldn't find symbolic meta function/decomposition
xfail('linalg.householder_product', ''), # aten.linalg_householder_product.default - couldn't find symbolic meta funct...
xfail('linalg.inv', ''), # aten.linalg_inv_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.inv_ex', ''), # aten.linalg_inv_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.ldl_factor', ''), # aten.linalg_ldl_factor_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.ldl_factor_ex', ''), # aten.linalg_ldl_factor_ex.default - couldn't find symbolic meta function/decompos...
xfail('linalg.ldl_solve', ''), # aten.linalg_ldl_solve.default - couldn't find symbolic meta function/decomposition
xfail('linalg.lu', ''), # aten.linalg_lu.default - couldn't find symbolic meta function/decomposition
xfail('linalg.lu_factor', ''), # aten.linalg_lu_factor_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.lu_factor_ex', ''), # aten.linalg_lu_factor_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.lu_solve', ''), # aten.linalg_lu_solve.default - couldn't find symbolic meta function/decomposition
xfail('linalg.matrix_power'), # RuntimeError: Trying to call aten.size on a tensor with symbolic shape
xfail('linalg.matrix_norm', ''), # aten.linalg_vector_norm.default - couldn't find symbolic meta function/decomposition
xfail('linalg.matrix_rank', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('linalg.matrix_rank', 'hermitian'), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('linalg.multi_dot', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('linalg.norm', ''), # TensorImpl do not have numel
xfail('linalg.norm', 'subgradients_at_zero'), # TensorImpl do not have numel
xfail('linalg.pinv', ''), # aten.linalg_pinv.atol_rtol_tensor - couldn't find symbolic meta function/decomposition
xfail('linalg.pinv', 'singular'), # aten.linalg_cholesky_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.pinv', 'hermitian'), # aten.linalg_pinv.atol_rtol_tensor - couldn't find symbolic meta function/decompo...
xfail('linalg.qr', ''), # aten.linalg_qr.default - couldn't find symbolic meta function/decomposition
xfail('linalg.slogdet', ''), # aten._linalg_slogdet.default - couldn't find symbolic meta function/decomposition
xfail('linalg.solve', ''), # aten._linalg_solve_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.solve_ex', ''), # aten._linalg_solve_ex.default - couldn't find symbolic meta function/decomposition
xfail('linalg.solve_triangular', ''), # aten.linalg_solve_triangular.default - couldn't find symbolic meta function/de...
xfail('linalg.svd', ''), # aten._linalg_svd.default - couldn't find symbolic meta function/decomposition
xfail('linalg.svdvals', ''), # aten._linalg_svd.default - couldn't find symbolic meta function/decomposition
xfail('linalg.tensorinv', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('linalg.tensorsolve', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('linalg.vander', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('linalg.vecdot', ''), # Could not run 'aten::vdot' with arguments from the 'Meta' backend. This could be ...
xfail('linalg.vector_norm', ''), # TensorImpl do not have numel
xfail('log_softmax', 'dtype'), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('logaddexp2', ''), # aten.logaddexp2.default - couldn't find symbolic meta function/decomposition
xfail('logaddexp', ''), # aten.logaddexp.default - couldn't find symbolic meta function/decomposition
xfail('logcumsumexp', ''), # aten.logcumsumexp.default - couldn't find symbolic meta function/decomposition
xfail('logdet', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('long', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('lu', ''), # aten.linalg_lu_factor_ex.default - couldn't find symbolic meta function/decomposition
xfail('lu_solve', ''), # aten.linalg_lu_solve.default - couldn't find symbolic meta function/decomposition
xfail('lu_unpack', ''), # aten.lu_unpack.default - couldn't find symbolic meta function/decomposition
xfail('masked_fill', ''), # expected predicate to be bool, got torch.float32
xfail('masked_scatter', ''), # aten.masked_scatter.default - couldn't find symbolic meta function/decomposition
xfail('masked_select', ''), # aten.masked_select.default - couldn't find symbolic meta function/decomposition
xfail('matmul', ''), # aten.new_empty.default - couldn't find symbolic meta function/decomposition
xfail('matrix_exp', ''), # aten.linalg_matrix_exp.default - couldn't find symbolic meta function/decomposition
xfail('max', 'reduction_with_dim'), # aten.max.dim - couldn't find symbolic meta function/decomposition
xfail('mean', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type promotion!
xfail('median', ''), # Could not run 'aten::median' with arguments from the 'Meta' backend. This could be becau...
xfail('meshgrid', 'list_of_tensors'), # Tensors of type TensorImpl do not have numel
xfail('meshgrid', 'variadic_tensors'), # Tensors of type TensorImpl do not have numel
xfail('min', 'reduction_with_dim'), # aten.min.dim - couldn't find symbolic meta function/decomposition
xfail('mm', ''), # aten.mm.default - couldn't find symbolic meta function/decomposition
xfail('mode', ''), # aten.mode.default - couldn't find symbolic meta function/decomposition
xfail('msort', ''), # aten.sort.default - couldn't find symbolic meta function/decomposition
xfail('mv', ''), # aten.mv.default - couldn't find symbolic meta function/decomposition
xfail('nanmean', ''), # The underlying op of 'aten.stride' has no overload name '_schema'
xfail('narrow', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('native_layer_norm', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type promot...
xfail('nn.functional.adaptive_avg_pool1d', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.adaptive_avg_pool2d', ''), # argument 'size' must be tuple of ints, but found element o...
xfail('nn.functional.adaptive_avg_pool3d', ''), # aten._adaptive_avg_pool3d.default - couldn't find symbolic meta func...
xfail('nn.functional.adaptive_max_pool1d', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.adaptive_max_pool2d', ''), # aten.adaptive_max_pool2d.default - couldn't find symbolic meta funct...
xfail('nn.functional.adaptive_max_pool3d', ''), # argument 'output_size' (position 2) must be tupl...
xfail('nn.functional.avg_pool1d', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.avg_pool2d', ''), # aten.avg_pool2d.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.avg_pool3d', ''), # aten.avg_pool3d.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.batch_norm', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.bilinear', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.binary_cross_entropy', ''), # aten.new_empty.default - couldn't find symbolic meta function/decom...
xfail('nn.functional.binary_cross_entropy_with_logits', ''), # aten.binary_cross_entropy_with_logits.default - couldn'...
xfail('nn.functional.conv1d', ''), # aten.convolution.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.conv2d', ''), # aten.convolution.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.conv_transpose1d', ''), # aten.convolution.default - couldn't find symbolic meta function/decompo...
xfail('nn.functional.conv_transpose2d', ''), # aten.convolution.default - couldn't find symbolic meta function/decompo...
xfail('nn.functional.conv_transpose3d', ''), # aten.convolution.default - couldn't find symbolic meta function/decompo...
xfail('nn.functional.cosine_embedding_loss', ''), # The underlying op of 'aten.stride' has no overload name '_schema'
xfail('nn.functional.cosine_similarity', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.cross_entropy', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.dropout2d', ''), # Tensors of type TensorImpl do not have numel
xfail('nn.functional.dropout3d', ''), # Tensors of type TensorImpl do not have numel
xfail('nn.functional.dropout', ''), # Tensors of type TensorImpl do not have numel
xfail('nn.functional.embedding_bag', ''), # aten._embedding_bag_forward_only.default - couldn't find symbolic meta fun...
xfail('nn.functional.embedding', ''), # argument 'size' must be tuple of ints, but found element of type tor...
xfail('nn.functional.feature_alpha_dropout', 'with_train'), # Tensors of type TensorImpl do not have numel
xfail('nn.functional.fractional_max_pool2d', ''), # argument 'size' must be tuple of ints, but found element of t...
xfail('nn.functional.fractional_max_pool3d', ''), # argument 'size' must be tuple of ints, but found element of t...
xfail('nn.functional.glu', ''), # aten.glu.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.grid_sample', ''), # aten.grid_sampler_2d.default - couldn't find symbolic meta function/decompos...
xfail('nn.functional.group_norm', ''), # 'torch._C.SymIntNode' and 'int'
xfail('nn.functional.hardsigmoid', ''), # Received type <class 'NoneType'> that is neither a tensor or a number!
xfail('nn.functional.hardswish', ''), # Received type <class 'NoneType'> that is neither a tensor or a number!
xfail('nn.functional.hinge_embedding_loss', ''), # aten.empty_like.default - couldn't find symbolic meta function/deco...
xfail('nn.functional.huber_loss', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.instance_norm', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.interpolate', 'area'), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.interpolate', 'bicubic'), # aten.upsample_bicubic2d.vec - couldn't find symbolic meta function/d...
xfail('nn.functional.interpolate', 'bilinear'), # aten.upsample_bilinear2d.vec - couldn't find symbolic meta function...
xfail('nn.functional.interpolate', 'linear'), # aten.upsample_linear1d.vec - couldn't find symbolic meta function/dec...
xfail('nn.functional.interpolate', 'nearest'), # aten.upsample_nearest1d.vec - couldn't find symbolic meta function/d...
xfail('nn.functional.interpolate', 'trilinear'), # aten.upsample_trilinear3d.vec - couldn't find symbolic meta functi...
xfail('nn.functional.kl_div', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type pro...
xfail('nn.functional.l1_loss', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.layer_norm', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type...
xfail('nn.functional.linear', ''), # aten.mv.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.local_response_norm', ''), # Tensors of type TensorImpl do not have numel
xfail('nn.functional.margin_ranking_loss', ''), # The underlying op of 'aten.stride' has no overload name '_schema'
xfail('nn.functional.max_pool2d', ''), # aten.max_pool2d_with_indices.default - couldn't find symbolic meta function/d...
xfail('nn.functional.max_pool3d', ''), # aten.max_pool3d_with_indices.default - couldn't find symbolic meta function/d...
xfail('nn.functional.max_unpool1d', 'grad'), # aten.max_unpool2d.default - couldn't find symbolic meta function/decom...
xfail('nn.functional.max_unpool2d', 'grad'), # aten.max_unpool2d.default - couldn't find symbolic meta function/decom...
xfail('nn.functional.max_unpool3d', 'grad'), # aten.max_unpool3d.default - couldn't find symbolic meta function/decom...
xfail('nn.functional.mse_loss', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.multi_margin_loss', ''), # Could not run 'aten::multi_margin_loss' with arguments from the...
xfail('nn.functional.multilabel_margin_loss', ''), # Could not run 'aten::multilabel_margin_loss_forward' with ...
xfail('nn.functional.multilabel_soft_margin_loss', ''), # aten.new_empty.default - couldn't find symbolic meta functio...
xfail('nn.functional.normalize', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.pad', 'circular'), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.pad', 'constant'), # aten.fill.Scalar - couldn't find symbolic meta function/decomposition
xfail('nn.functional.pad', 'reflect'), # aten.reflection_pad1d.default - couldn't find symbolic meta function/decompo...
xfail('nn.functional.pad', 'replicate'), # aten.replication_pad1d.default - couldn't find symbolic meta function/deco...
xfail('nn.functional.pdist', ''), # Could not run 'aten::_pdist_forward' with arguments from the 'Meta' backend...
xfail('nn.functional.pixel_shuffle', ''), # aten.pixel_shuffle.default - couldn't find symbolic meta function/decompos...
xfail('nn.functional.pixel_unshuffle', ''), # aten.pixel_unshuffle.default - couldn't find symbolic meta function/deco...
xfail('nn.functional.poisson_nll_loss', ''), # The underlying op of 'aten.stride' has no overload name '_schema'
xfail('nn.functional.rrelu', ''), # aten.empty_like.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.smooth_l1_loss', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.soft_margin_loss', ''), # aten.soft_margin_loss.default - couldn't find symbolic meta function/de...
xfail('nn.functional.softmin', 'with_dtype'), # aten._to_copy.default - couldn't find symbolic meta function/decompos...
xfail('nn.functional.triplet_margin_loss', ''), # Unexpected type <class 'torch.SymIntNode'> when computing element...
xfail('nn.functional.triplet_margin_with_distance_loss', ''), # Unexpected type <class 'torch.SymIntNode'> when com...
xfail('nn.functional.unfold', ''), # aten.im2col.default - couldn't find symbolic meta function/decomposition
xfail('nn.functional.upsample_bilinear', ''), # aten.upsample_bilinear2d.vec - couldn't find symbolic meta function/de...
xfail('nn.functional.upsample_nearest', ''), # aten.upsample_nearest1d.vec - couldn't find symbolic meta function/deco...
xfail('norm', ''), # TensorImpl does not have numel
xfail('norm', 'nuc'), # aten._linalg_svd.default - couldn't find symbolic meta function/decomposition
xfail('normal', ''), # aten.normal.Tensor_Tensor - couldn't find symbolic meta function/decomposition
xfail('normal', 'number_mean'), # aten.normal.float_Tensor - couldn't find symbolic meta function/decomposition
xfail('ones_like', ''), # aten.ones_like.default - couldn't find symbolic meta function/decomposition
xfail('ormqr', ''), # aten.ormqr.default - couldn't find symbolic meta function/decomposition
xfail('outer', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('pca_lowrank', ''), # aten.mm.default - couldn't find symbolic meta function/decomposition
xfail('pinverse', ''), # aten.linalg_pinv.atol_rtol_tensor - couldn't find symbolic meta function/decomposition
xfail('polygamma', 'polygamma_n_0'), # aten.polygamma.default - couldn't find symbolic meta function/decomposition
xfail('polygamma', 'polygamma_n_1'), # aten.polygamma.default - couldn't find symbolic meta function/decomposition
xfail('polygamma', 'polygamma_n_2'), # aten.polygamma.default - couldn't find symbolic meta function/decomposition
xfail('polygamma', 'polygamma_n_3'), # aten.polygamma.default - couldn't find symbolic meta function/decomposition
xfail('polygamma', 'polygamma_n_4'), # aten.polygamma.default - couldn't find symbolic meta function/decomposition
xfail('put', ''), # aten.clone.default - couldn't find symbolic meta function/decomposition
xfail('qr', ''), # aten.linalg_qr.default - couldn't find symbolic meta function/decomposition
xfail('rad2deg', ''), # aten.rad2deg.default - couldn't find symbolic meta function/decomposition
xfail('rand_like', ''), # aten.randn_like.default - couldn't find symbolic meta function/decomposition
xfail('randint_like', ''), # aten.randint_like.default - couldn't find symbolic meta function/decomposition
xfail('randn_like', ''), # aten.randn_like.default - couldn't find symbolic meta function/decomposition
xfail('ravel', ''), # Tensors of type TensorImpl do not have numel
xfail('renorm', ''), # aten.renorm.default - couldn't find symbolic meta function/decomposition
xfail('repeat', ''), # aten.repeat.default - couldn't find symbolic meta function/decomposition
xfail('reshape_as', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('reshape', ''), # Tensors of type TensorImpl do not have numel
xfail('resize_', ''), # aten.clone.default - couldn't find symbolic meta function/decomposition
xfail('resize_as_', ''), # aten.clone.default - couldn't find symbolic meta function/decomposition
xfail('roll', ''), # Tensors of type TensorImpl do not have numel
xfail('rot90', ''), # aten.empty_like.default - couldn't find symbolic meta function/decomposition
xfail('round', ''), # aten.round.default - couldn't find symbolic meta function/decomposition
xfail('round', 'decimals_0'), # aten.round.decimals - couldn't find symbolic meta function/decomposition
xfail('round', 'decimals_3'), # aten.round.decimals - couldn't find symbolic meta function/decomposition
xfail('round', 'decimals_neg_3'), # aten.round.decimals - couldn't find symbolic meta function/decomposition
xfail('scatter_add', ''), # aten.scatter_add.default - couldn't find symbolic meta function/decomposition
xfail('scatter', ''), # aten.scatter.src - couldn't find symbolic meta function/decomposition
xfail('scatter_reduce', 'amax'), # aten.scatter_reduce.two - couldn't find symbolic meta function/decomposition
xfail('scatter_reduce', 'amin'), # aten.scatter_reduce.two - couldn't find symbolic meta function/decomposition
xfail('scatter_reduce', 'mean'), # aten.scatter_reduce.two - couldn't find symbolic meta function/decomposition
xfail('scatter_reduce', 'prod'), # aten.scatter_reduce.two - couldn't find symbolic meta function/decomposition
xfail('scatter_reduce', 'sum'), # aten.scatter_reduce.two - couldn't find symbolic meta function/decomposition
xfail('searchsorted', ''), # Could not run 'aten::searchsorted.Tensor' with arguments from the 'Meta' backend. ...
xfail('segment_reduce', 'offsets'), # aten.segment_reduce.default - couldn't find symbolic meta function/decomposition
xfail('select', ''), # aten.select.int - couldn't find symbolic meta function/decomposition
xfail('select_scatter', ''), # aten.select_scatter.default - couldn't find symbolic meta function/decomposition
xfail('sgn', ''), # aten.sgn.default - couldn't find symbolic meta function/decomposition
xfail('short', ''), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('sinc', ''), # aten.sinc.default - couldn't find symbolic meta function/decomposition
xfail('slice_scatter', ''), # aten.slice_scatter.default - couldn't find symbolic meta function/decomposition
xfail('softmax', 'with_dtype'), # aten._to_copy.default - couldn't find symbolic meta function/decomposition
xfail('sort', ''), # aten.sort.default - couldn't find symbolic meta function/decomposition
xfail('special.airy_ai', ''), # aten.special_airy_ai.default - couldn't find symbolic meta function/decomposition
xfail('special.bessel_j0', ''), # aten.special_bessel_j0.default - couldn't find symbolic meta function/decomposition
xfail('special.bessel_j1', ''), # aten.special_bessel_j1.default - couldn't find symbolic meta function/decomposition
xfail('special.bessel_y0', ''), # aten.special_bessel_y0.default - couldn't find symbolic meta function/decomposition
xfail('special.bessel_y1', ''), # aten.special_bessel_y1.default - couldn't find symbolic meta function/decomposition
xfail('special.chebyshev_polynomial_t', ''), # aten.special_chebyshev_polynomial_t.default - couldn't find symbolic me...
xfail('special.chebyshev_polynomial_u', ''), # aten.special_chebyshev_polynomial_u.default - couldn't find symbolic me...
xfail('special.entr', ''), # aten.special_entr.default - couldn't find symbolic meta function/decomposition
xfail('special.erfcx', ''), # aten.special_erfcx.default - couldn't find symbolic meta function/decomposition
xfail('special.hermite_polynomial_h', ''), # aten.special_hermite_polynomial_h.default - couldn't find symbolic meta f...
xfail('special.hermite_polynomial_he', ''), # aten.special_hermite_polynomial_he.default - couldn't find symbolic meta...
xfail('special.laguerre_polynomial_l', ''), # aten.special_laguerre_polynomial_l.default - couldn't find symbolic meta...
xfail('special.log_ndtr', ''), # aten.special_log_ndtr.default - couldn't find symbolic meta function/decomposition
xfail('special.modified_bessel_i0', ''), # aten.special_modified_bessel_i0.default - couldn't find symbolic meta funct...
xfail('special.modified_bessel_i1', ''), # aten.special_modified_bessel_i1.default - couldn't find symbolic meta funct...
xfail('special.modified_bessel_k0', ''), # aten.special_modified_bessel_k0.default - couldn't find symbolic meta funct...
xfail('special.modified_bessel_k1', ''), # aten.special_modified_bessel_k1.default - couldn't find symbolic meta funct...
xfail('special.ndtri', ''), # aten.special_ndtri.default - couldn't find symbolic meta function/decomposition
xfail('special.polygamma', 'special_polygamma_n_0'), # aten.polygamma.default - couldn't find symbolic meta function/...
xfail('special.scaled_modified_bessel_k0', ''), # aten.special_scaled_modified_bessel_k0.default - couldn't find symbo...
xfail('special.scaled_modified_bessel_k1', ''), # aten.special_scaled_modified_bessel_k1.default - couldn't find symbo...
xfail('special.spherical_bessel_j0', ''), # aten.special_spherical_bessel_j0.default - couldn't find symbolic meta fun...
xfail('special.xlog1py', ''), # aten.special_xlog1py.default - couldn't find symbolic meta function/decomposition
xfail('split', ''), # 'torch._C.SymIntNode' and 'int'
xfail('split', 'list_args'), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('split_with_sizes', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('stack', ''), # argument 'size' must be tuple of ints, but found element of type torch._C.SymIntNode a...
xfail('std', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type promotion!
xfail('std_mean', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type promotion!
xfail('stft', ''), # argument 'size' must be tuple of ints, but found element of type torch._C.SymIntNode at...
xfail('sum_to_size', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('svd', ''), # aten._linalg_svd.default - couldn't find symbolic meta function/decomposition
xfail('svd_lowrank', ''), # aten.mm.default - couldn't find symbolic meta function/decomposition
xfail('symeig', ''), # aten.symeig.default - couldn't find symbolic meta function/decomposition
xfail('take_along_dim', ''), # dtype of indices should be Long but got Float
xfail('take', ''), # aten.take.default - couldn't find symbolic meta function/decomposition
xfail('tensordot', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('tile', ''), # aten.repeat.default - couldn't find symbolic meta function/decomposition
xfail('topk', ''), # aten.topk.default - couldn't find symbolic meta function/decomposition
xfail('trapezoid', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('trapz', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('triangular_solve', ''), # aten.triangular_solve.default - couldn't find symbolic meta function/decomposition
xfail('tril', ''), # aten.tril.default - couldn't find symbolic meta function/decomposition
xfail('triu', ''), # aten.triu.default - couldn't find symbolic meta function/decomposition
xfail('unfold', ''), # aten.unfold.default - couldn't find symbolic meta function/decomposition
xfail('var_mean', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type promotion!
xfail('var', ''), # Unexpected type <class 'torch.SymIntNode'> when computing elementwise type promotion!
xfail('vdot', ''), # aten.vdot.default - couldn't find symbolic meta function/decomposition
xfail('view_as_complex', ''), # aten.view_as_complex.default - couldn't find symbolic meta function/decomposition
xfail('view_as', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('view', ''), # Tensors of type TensorImpl do not have numel
xfail('vsplit', ''), # aten.size.default - couldn't find symbolic meta function/decomposition
xfail('where', ''), # expected predicate to be bool, got torch.float32
xfail('zero_', ''), # aten.clone.default - couldn't find symbolic meta function/decomposition
xfail('zeros_like', ''), # aten.zeros_like.default - couldn't find symbolic meta function/decomposition
}
def _test_make_fx_helper(self, device, dtype, op, tracing_mode):
def f(args, kwargs):
return op.op(*args, **kwargs)
sample_inputs_itr = op.sample_inputs(device, dtype, requires_grad=False)
new_f = None
for sample_input in sample_inputs_itr:
args = [sample_input.input] + list(sample_input.args)
kwargs = sample_input.kwargs
try:
new_f = make_fx(f, tracing_mode=tracing_mode)(args, kwargs)
except DynamicOutputShapeException as e:
self.skipTest("Dynamic output shape operation in trace")
for arg in args:
if isinstance(arg, torch.Tensor) and arg.dtype == torch.float:
arg.uniform_(0, 1)
try:
old_out = f(args, kwargs)
except Exception:
continue
new_out = wrapper_set_seed(new_f, args, kwargs)
self.assertEqual(new_out, old_out)
class TestProxyTensorOpInfo(TestCase):
@ops(op_db, allowed_dtypes=(torch.float,))
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_exhaustive', make_fx_failures)
def test_make_fx_exhaustive(self, device, dtype, op):
_test_make_fx_helper(self, device, dtype, op, "real")
@ops(op_db, allowed_dtypes=(torch.float,))
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_fake_exhaustive', make_fx_failures.union(fake_tensor_failures))
def test_make_fx_fake_exhaustive(self, device, dtype, op):
_test_make_fx_helper(self, device, dtype, op, "fake")
@skipIfNoSympy
@ops(op_db, allowed_dtypes=(torch.float,))
@skipOps('TestProxyTensorOpInfo', 'test_make_fx_symbolic_exhaustive',
make_fx_failures | fake_tensor_failures | symbolic_tensor_failures)
def test_make_fx_symbolic_exhaustive(self, device, dtype, op):
_test_make_fx_helper(self, device, dtype, op, "symbolic")
only_for = ("cpu")
instantiate_device_type_tests(
TestProxyTensor,
globals(),
only_for=only_for,
)
instantiate_device_type_tests(TestProxyTensorOpInfo, globals(), only_for=only_for)
if __name__ == '__main__':
run_tests()