mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/46991 This change is motivated by a problem bdhirsh observed which is that in internal builds that include both SchemaRegister.cpp and TypeDefault.cpp, some operators have their schemas defined multiple times. Instead of dumping schema registrations in multiple files, it seems better to just toggle how many schemas we write into TypeDefault.cpp. ljk53 observes that technically SchemaRegister.cpp is only needed by full-JIT frontend, and not by light interpreter (to resolve schema lookups). However, in practice, the registration file seems to be unconditionally loaded. This change will make it harder to do the optimization where we drop schemas in the light interpreter, but you probably want to architect this differently (similar to per-op registrations, DON'T do any registrations in ATen, and then write out the schema registrations in a separate library.) I took this opportunity to also simplify the TypeDefault generation logic by reworking things so that we only ever call with None argument when registering. Soon, we should be able to just split these files up entirely. Signed-off-by: Edward Z. Yang <ezyang@fb.com> Test Plan: Imported from OSS Reviewed By: ljk53 Differential Revision: D24593704 Pulled By: ezyang fbshipit-source-id: f01ea22a3999493da77b6e254d188da0ce9adf2f
1113 lines
45 KiB
Python
1113 lines
45 KiB
Python
import os
|
|
import contextlib
|
|
import textwrap
|
|
import itertools
|
|
from typing import List, Dict, Optional, Iterator, Tuple, Set, Callable, Any, TypeVar, Union, Sequence
|
|
import yaml
|
|
from enum import Enum
|
|
from collections import OrderedDict, defaultdict
|
|
import argparse
|
|
import pathlib
|
|
import functools
|
|
import json
|
|
|
|
from tools.codegen.code_template import CodeTemplate
|
|
from tools.codegen.model import *
|
|
from tools.codegen.api.types import *
|
|
import tools.codegen.api.cpp as cpp
|
|
import tools.codegen.api.dispatcher as dispatcher
|
|
import tools.codegen.api.native as native
|
|
import tools.codegen.local as local
|
|
from tools.codegen.selective_build.selector import SelectiveBuilder
|
|
|
|
try:
|
|
# use faster C loader if available
|
|
from yaml import CLoader as Loader
|
|
except ImportError:
|
|
from yaml import Loader # type: ignore
|
|
|
|
# Welcome to the ATen code generator v2! The ATen code generator is
|
|
# responsible for parsing native_functions.yaml and then generating
|
|
# various generated files (e.g., TypeDefault.cpp) based on the operators
|
|
# defined in this file. This means that the code generator knows how to
|
|
# parse function schema, and then translate this into various C++ types
|
|
# and boilerplate code.
|
|
#
|
|
# Some things to know about this file when you modify it:
|
|
#
|
|
# - This file has STRICT mypy typechecking. Typecheck it with
|
|
# `mypy --config mypy-strict.ini` in the root source directory
|
|
#
|
|
# - Most of the heavy lifting lives in external modules:
|
|
# - 'model' has the data model for native_functions.yaml. The classes
|
|
# in those file represent what you see when you look at
|
|
# a native_functions.yaml
|
|
# - 'api' has conversions for how to translate JIT schema into
|
|
# the various C++ APIs that the codegen interacts with. There
|
|
# are in fact THREE different C++ APIs: the public C++ API,
|
|
# the dispatcher API, and the legacy disaptcher API. See each
|
|
# of these respective files for more information
|
|
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
#
|
|
# HELPER FUNCTIONS
|
|
#
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
|
|
# Conveniently add error context to exceptions raised. Lets us
|
|
# easily say that an error occurred while processing a specific
|
|
# context.
|
|
@contextlib.contextmanager
|
|
def context(msg: str) -> Iterator[None]:
|
|
try:
|
|
yield
|
|
except Exception as e:
|
|
# TODO: this does the wrong thing with KeyError
|
|
msg = textwrap.indent(msg, ' ')
|
|
msg = f'{e.args[0]}\n{msg}' if e.args else msg
|
|
e.args = (msg,) + e.args[1:]
|
|
raise
|
|
|
|
# A custom loader for YAML to let us also keep track of line numbers
|
|
# of each entry in the YAML file
|
|
class LineLoader(Loader):
|
|
def construct_mapping(self, node, deep=False): # type: ignore
|
|
mapping = super().construct_mapping(node, deep=deep) # type: ignore
|
|
# Add 1 so line numbering starts at 1
|
|
mapping['__line__'] = node.start_mark.line + 1
|
|
return mapping
|
|
|
|
# Parse native_functions.yaml into a sequence of NativeFunctions
|
|
def parse_native_yaml(path: str) -> List[NativeFunction]:
|
|
with open(path, 'r') as f:
|
|
es = yaml.load(f, Loader=LineLoader)
|
|
assert isinstance(es, list)
|
|
rs: List[NativeFunction] = []
|
|
for e in es:
|
|
assert isinstance(e.get('__line__'), int), e
|
|
loc = Location(path, e['__line__'])
|
|
funcs = e.get('func')
|
|
with context(f'in {loc}:\n {funcs}'):
|
|
rs.append(NativeFunction.from_yaml(e, loc))
|
|
return rs
|
|
|
|
T = TypeVar('T')
|
|
S = TypeVar('S')
|
|
|
|
# Given a function that operates on NativeFunction, wrap it into a new function
|
|
# that sets some appropriate context managers for that native function.
|
|
# YOU MUST WRAP FUNCTIONS IN THIS for calls to api modules to be sound
|
|
# (you will get an error if we try to access the local variables without having
|
|
# set them).
|
|
def with_native_function(func: Callable[[NativeFunction], T]) -> Callable[[NativeFunction], T]:
|
|
@functools.wraps(func)
|
|
def wrapper(f: NativeFunction) -> T:
|
|
with context(f'in {f.loc}:\n {f.func}'):
|
|
with local.parametrize(
|
|
use_c10_dispatcher=f.use_c10_dispatcher,
|
|
):
|
|
return func(f)
|
|
return wrapper
|
|
|
|
# These two functions purposely return generators in analogy to map()
|
|
# so that you don't mix up when you need to list() them
|
|
|
|
# Map over function that may return None; omit Nones from output sequence
|
|
def mapMaybe(func: Callable[[T], Optional[S]], xs: Sequence[T]) -> Iterator[S]:
|
|
for x in xs:
|
|
r = func(x)
|
|
if r is not None:
|
|
yield r
|
|
|
|
# Map over function that returns sequences and cat them all together
|
|
def concatMap(func: Callable[[T], Sequence[S]], xs: Sequence[T]) -> Iterator[S]:
|
|
for x in xs:
|
|
for r in func(x):
|
|
yield r
|
|
|
|
def cpp_string(s: str) -> str:
|
|
"""Convert a python string into a c++ string literal """
|
|
s = s.replace('\\', '\\\\')
|
|
s = s.replace('"', '\\"')
|
|
s = s.replace('\a', '\\a')
|
|
s = s.replace('\b', '\\b')
|
|
s = s.replace('\f', '\\f')
|
|
s = s.replace('\n', '\\n')
|
|
s = s.replace('\v', '\\v')
|
|
s = s.replace('\t', '\\t')
|
|
return f'"{s}"'
|
|
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
#
|
|
# C++ CODE GENERATION
|
|
#
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
|
|
# Most functions in this section are curried: they consist of a function
|
|
# that takes some parameters (e.g., what is to be generated) which itself
|
|
# returns a function that actually maps NativeFunction to the code
|
|
# to be generated. This pattern makes it convenient to use map, concatMap
|
|
# and similar functional combinators.
|
|
|
|
# Many of these functions share logic for defining both the definition
|
|
# and declaration (for example, the function signature is the same), so
|
|
# we organize them into one function that takes a Target to say which
|
|
# code we want.
|
|
Target = Enum('Target', ('DEFINITION', 'DECLARATION', 'REGISTRATION'))
|
|
|
|
# Dispatch keywords in native_functions.yaml that support all backends.
|
|
KEYWORD_ALL_BACKENDS = ('DefaultBackend', 'Math')
|
|
|
|
# Generates {dispatch}Type.cpp and {dispatch}Type.h (e.g., CPUType.cpp
|
|
# and CPUType.h). This function is also reused to implement per-operator
|
|
# registration. It also generates TypeDefault.cpp and TypeDefault.h when
|
|
# dispatch target is for all backends (dispatch is None or dispatch in
|
|
# KEYWORD_ALL_BACKENDS).
|
|
#
|
|
# {dispatch}Type.cpp
|
|
# - The primary function of this file is to register all of the
|
|
# implementations for the given dispatch key to the dispatcher,
|
|
# so they are available for use in PyTorch. If dispatch is
|
|
# None, we generate schema (def) registrations and catchall
|
|
# registrations.
|
|
# - The secondary function of this file is to generate a wrapper
|
|
# around functions. In CPUType these wrappers do nothing
|
|
# (and should be removed), but in other cases they handle
|
|
# DeviceGuard. A small extra benefit of wrappers is they
|
|
# are not overloaded, so they can be used in the registration
|
|
# API without having to disambiguate which overload you want
|
|
# (as would be the case if you directly registered native::
|
|
# functions).
|
|
#
|
|
# {dispatch}Type.h
|
|
# - In principle, this file shouldn't exist at all; historically,
|
|
# it existed so that we could directly access these functions
|
|
# outside of the registration API for the implementation of
|
|
# static dispatch. Should be deleted now!
|
|
#
|
|
# This function is also used for a secondary purpose: the registration
|
|
# logic is also reused to implement per-operator registration.
|
|
def compute_type_method(
|
|
dispatch: Optional[str], *,
|
|
target: Target,
|
|
# Selector object to determine which operators to generate
|
|
# registration code for.
|
|
selector: SelectiveBuilder
|
|
) -> Callable[[NativeFunction], Optional[str]]:
|
|
|
|
if dispatch is None:
|
|
assert target == Target.REGISTRATION
|
|
|
|
@with_native_function
|
|
def func(f: NativeFunction) -> Optional[str]:
|
|
if dispatch is not None:
|
|
if dispatch not in f.dispatch:
|
|
return None
|
|
|
|
op_name = f"aten::{f.func.name}"
|
|
if target is Target.REGISTRATION and not selector.is_operator_selected(op_name):
|
|
return None
|
|
|
|
name = native.name(f.func)
|
|
returns_type = native.returns_type(f.func.returns)
|
|
args = native.arguments(f.func)
|
|
args_str = ', '.join(map(str, args))
|
|
dispatch_to_all_backends = dispatch is not None and dispatch in KEYWORD_ALL_BACKENDS
|
|
|
|
if target is Target.DECLARATION:
|
|
assert dispatch is not None
|
|
return f"{returns_type} {name}({args_str});"
|
|
elif target is Target.DEFINITION:
|
|
assert dispatch is not None
|
|
impl_name = f"at::native::{f.dispatch[dispatch]}"
|
|
|
|
args_exprs_str = ', '.join(a.name for a in args)
|
|
|
|
return_kw = " return "
|
|
|
|
cuda_guard = ""
|
|
if dispatch_to_all_backends or 'CUDA' in dispatch:
|
|
self_args = (a for a in f.func.arguments if a.name == "self")
|
|
|
|
# There is precedence for which argument we use to do
|
|
# device guard. This describes the precedence order.
|
|
candidate_args = itertools.chain(self_args, f.func.out_arguments, f.func.arguments)
|
|
|
|
# Only tensor like arguments are eligible
|
|
device_of = next((f'{a.name}' for a in candidate_args if a.type.is_tensor_like()), None)
|
|
|
|
has_tensor_options = any(isinstance(a.argument, TensorOptionsArguments) for a in args)
|
|
|
|
if local.use_c10_dispatcher() == UseC10Dispatcher.full:
|
|
cuda_guard_from_tensor_options = """\
|
|
const DeviceGuard device_guard(device_or_default(device));
|
|
"""
|
|
else:
|
|
assert local.use_c10_dispatcher() in [UseC10Dispatcher.with_codegenerated_unboxing_wrapper,
|
|
UseC10Dispatcher.hacky_wrapper_for_legacy_signatures]
|
|
cuda_guard_from_tensor_options = """\
|
|
const DeviceGuard device_guard(options.device());
|
|
"""
|
|
|
|
# TODO: There is probably a simpler version of this that
|
|
# works just as well.
|
|
if f.device_guard and dispatch_to_all_backends and has_tensor_options:
|
|
cuda_guard = cuda_guard_from_tensor_options
|
|
elif f.device_guard and dispatch is not None and 'CUDA' in dispatch and has_tensor_options:
|
|
cuda_guard = f"""\
|
|
globalContext().lazyInitCUDA();
|
|
{cuda_guard_from_tensor_options}
|
|
"""
|
|
elif f.device_guard and device_of is not None:
|
|
cuda_guard = f"""\
|
|
const OptionalDeviceGuard device_guard(device_of({device_of}));
|
|
"""
|
|
else:
|
|
cuda_guard = """\
|
|
// DeviceGuard omitted
|
|
"""
|
|
|
|
return f"""\
|
|
{returns_type} {name}({args_str}) {{
|
|
{cuda_guard}{return_kw}{impl_name}({args_exprs_str});
|
|
}}
|
|
"""
|
|
|
|
elif target is Target.REGISTRATION:
|
|
if dispatch is None:
|
|
return f'm.def({cpp_string(str(f.func))});\n'
|
|
elif f.manual_kernel_registration:
|
|
return None
|
|
else:
|
|
if dispatch_to_all_backends:
|
|
type_name = f'TypeDefault::{name}'
|
|
else:
|
|
type_name = f'{dispatch}Type::{name}'
|
|
|
|
dispatcher_sig = DispatcherSignature.from_schema(f.func)
|
|
|
|
# Figure out which signature the function is
|
|
if local.use_c10_dispatcher() is UseC10Dispatcher.full:
|
|
payload = f"TORCH_FN({type_name})"
|
|
elif local.use_c10_dispatcher() is UseC10Dispatcher.hacky_wrapper_for_legacy_signatures:
|
|
payload = "c10::impl::hacky_wrapper_for_legacy_signatures<" \
|
|
f"{dispatcher_sig.type()}>(TORCH_FN({type_name}))"
|
|
|
|
else:
|
|
assert local.use_c10_dispatcher() is UseC10Dispatcher.with_codegenerated_unboxing_wrapper
|
|
payload = f"torch::CppFunction::makeUnboxedOnly(&{type_name})"
|
|
|
|
# Annotate it with dispatch information if necessary
|
|
#
|
|
# NB: In the ordinary, TypeDerived code generation work flow, specification
|
|
# of the backend is handled by the enclosing block, so the torch::dispatch
|
|
# invocation here is strictly unnecessary. However, in the fbcode mobile
|
|
# only workflow using per-op registration, these registrations will get dumped
|
|
# in a TORCH_LIBRARY_FRAGMENT that does not have an ambient backend. So
|
|
# the torch::dispatch specification here is important! See
|
|
# Note [Redundancy in registration code is OK] for how we handle redundant info.
|
|
if dispatch is not None:
|
|
payload = f"torch::dispatch(DispatchKey::{dispatch},\n{payload})\n"
|
|
|
|
return f'm.impl("{f.func.name}",\n{payload});\n'
|
|
else:
|
|
assert_never(target)
|
|
|
|
return func
|
|
|
|
# Generates Function.cpp and Function.h. These files provide the
|
|
# functional public C++ API, and the scaffolding to call into
|
|
# the dispatcher from these functions. See also compute_tensor_method.
|
|
def compute_function(*, target: Target) -> Callable[[NativeFunction], Optional[str]]:
|
|
@with_native_function
|
|
def go(f: NativeFunction) -> Optional[str]:
|
|
if f.manual_kernel_registration:
|
|
return None
|
|
if Variant.function not in f.variants:
|
|
return None
|
|
|
|
name = cpp.name(f.func)
|
|
|
|
sig_group = CppSignatureGroup.from_schema(f.func, method=False)
|
|
|
|
if target is Target.DECLARATION:
|
|
result = f"CAFFE2_API {sig_group.signature.decl()};\n"
|
|
if sig_group.faithful_signature is not None:
|
|
result += f"CAFFE2_API {sig_group.faithful_signature.decl()};\n"
|
|
return result
|
|
|
|
assert target is Target.DEFINITION
|
|
|
|
def generate_defn(sig: CppSignature) -> str:
|
|
dispatcher_sig = DispatcherSignature.from_schema(f.func)
|
|
|
|
dispatcher_exprs = dispatcher.cpparguments_exprs(sig.argument_packs())
|
|
dispatcher_exprs_str = ', '.join(a.expr for a in dispatcher_exprs)
|
|
|
|
return f"""
|
|
// aten::{f.func}
|
|
{sig.defn()} {{
|
|
static auto op = c10::Dispatcher::singleton()
|
|
.findSchemaOrThrow("aten::{f.func.name.name}", "{f.func.name.overload_name}")
|
|
.typed<{dispatcher_sig.type()}>();
|
|
return op.call({dispatcher_exprs_str});
|
|
}}
|
|
"""
|
|
|
|
result = generate_defn(sig_group.signature)
|
|
if sig_group.faithful_signature is not None:
|
|
if local.use_c10_dispatcher().dispatcher_uses_new_style():
|
|
result += generate_defn(sig_group.faithful_signature)
|
|
|
|
return result
|
|
|
|
return go
|
|
|
|
# Generates TensorBody.h (sic) and TensorMethods.cpp. These files provide the
|
|
# object-oriented (method-based) public C++ API, and the scaffolding to call into
|
|
# the dispatcher from these functions. See also compute_function.
|
|
def compute_tensor_method(*, target: Target) -> Callable[[NativeFunction], Optional[str]]:
|
|
@with_native_function
|
|
def go(f: NativeFunction) -> Optional[str]:
|
|
if Variant.method not in f.variants:
|
|
return None
|
|
|
|
assert not f.func.is_out_fn()
|
|
assert len(f.func.arguments) > 0
|
|
assert sum(a.name == 'self' for a in f.func.arguments) == 1
|
|
|
|
name = cpp.name(f.func)
|
|
|
|
sig_group = CppSignatureGroup.from_schema(f.func, method=True)
|
|
|
|
if target is Target.DECLARATION:
|
|
result = f"{sig_group.signature.decl()} const;\n"
|
|
if sig_group.faithful_signature is not None:
|
|
result += f"{sig_group.faithful_signature.decl()} const;\n"
|
|
return result
|
|
|
|
assert target is Target.DEFINITION
|
|
|
|
def generate_defn(sig: CppSignature) -> str:
|
|
dispatcher_sig = DispatcherSignature.from_schema(f.func)
|
|
|
|
dispatcher_exprs = dispatcher.cpparguments_exprs(sig.argument_packs())
|
|
dispatcher_exprs_str = ', '.join(a.expr for a in dispatcher_exprs)
|
|
|
|
return f"""
|
|
// aten::{f.func}
|
|
{sig.defn(prefix="Tensor::")} const {{
|
|
static auto op = c10::Dispatcher::singleton()
|
|
.findSchemaOrThrow("aten::{f.func.name.name}", "{f.func.name.overload_name}")
|
|
.typed<{dispatcher_sig.type()}>();
|
|
return op.call({dispatcher_exprs_str});
|
|
}}
|
|
"""
|
|
|
|
result = generate_defn(sig_group.signature)
|
|
if sig_group.faithful_signature is not None:
|
|
result += generate_defn(sig_group.faithful_signature)
|
|
|
|
return result
|
|
|
|
return go
|
|
|
|
# Generates ATenOpList.cpp, a runtime accessible list of all aten
|
|
# operators.
|
|
# TODO: This was historically used to help some JIT interop code
|
|
# figure out whether or not to treat aten namespace'd operators
|
|
# one way or another, we should reevaluate if this is actually needed.
|
|
@with_native_function
|
|
def compute_aten_op(f: NativeFunction) -> str:
|
|
return f'{{"aten::{f.func.name.name}", "{f.func.name.overload_name}"}},'
|
|
|
|
# Generates NativeFunctions.h, a list of forward declarations of all
|
|
# actual kernel definitions we keep in aten/src/ATen/native/
|
|
@with_native_function
|
|
def compute_native_function_declaration(f: NativeFunction) -> List[str]:
|
|
ns = list(f.dispatch.values())
|
|
|
|
rs = []
|
|
# Sometimes a function name shows up multiple times; only generate
|
|
# it once!
|
|
seen = set()
|
|
for n in ns:
|
|
if n in seen:
|
|
continue
|
|
if "legacy::" in n:
|
|
continue
|
|
seen.add(n)
|
|
returns_type = native.returns_type(f.func.returns)
|
|
args = native.arguments(f.func)
|
|
rs.append(f"CAFFE2_API {returns_type} {n}({', '.join(a.str_with_default() for a in args)});")
|
|
|
|
return rs
|
|
|
|
# Generates BackendSelectRegister.cpp, a series of kernels which provide
|
|
# specialized computation of dispatch key for operator signatures which cannot
|
|
# be easily done automatically using templating.
|
|
def compute_backend_select(*, target: Target) -> Callable[[NativeFunction], Optional[str]]:
|
|
@with_native_function
|
|
def go(f: NativeFunction) -> Optional[str]:
|
|
if str(f.func.name.name).endswith('_like') or str(f.func.name.name).startswith('new_'):
|
|
return None
|
|
|
|
name = native.name(f.func)
|
|
native_sig = NativeSignature.from_schema(f.func)
|
|
|
|
if not any(isinstance(a.argument, TensorOptionsArguments) for a in native_sig.arguments()):
|
|
return None
|
|
|
|
native_tensor_args = [
|
|
a for a in native_sig.arguments()
|
|
if isinstance(a.argument, Argument) and a.argument.type.is_tensor_like()
|
|
]
|
|
|
|
dispatcher_sig = DispatcherSignature.from_schema(f.func)
|
|
|
|
sig: Union[NativeSignature, DispatcherSignature]
|
|
if local.use_c10_dispatcher().dispatcher_uses_new_style():
|
|
sig = dispatcher_sig
|
|
dispatcher_exprs = dispatcher_sig.exprs()
|
|
dispatch_key = "c10::computeDispatchKey(dtype, layout, device)"
|
|
else:
|
|
sig = native_sig
|
|
dispatcher_exprs = native_sig.dispatcher_exprs()
|
|
dispatch_key = "options.computeDispatchKey()"
|
|
|
|
if target is Target.DEFINITION:
|
|
# I don't think there's actually a good reason to generate
|
|
# these two cases differently
|
|
# The first case could probably be improved though- it calls dispatchTypeId(),
|
|
# which looks at TLS dispatch keys- there should not be any by the time we reach backend select.
|
|
if native_tensor_args:
|
|
tensor_args = ', '.join(a.name for a in native_tensor_args)
|
|
compute_dk = f"""\
|
|
DispatchKeySet _dk_set = c10::DispatchKeySet({dispatch_key}) | c10::detail::multi_dispatch_key_set({tensor_args});
|
|
DispatchKeySet _dk_mask = c10::DispatchKeySet(DispatchKeySet::FULL_AFTER, DispatchKey::BackendSelect);
|
|
DispatchKey _dk = c10::impl::dispatchTypeId(_dk_set, _dk_mask);"""
|
|
else:
|
|
compute_dk = f"DispatchKey _dk = {dispatch_key};"
|
|
return f"""\
|
|
// aten::{f.func}
|
|
{sig.defn(name)} {{
|
|
static auto op = c10::Dispatcher::singleton()
|
|
.findSchemaOrThrow("aten::{f.func.name.name}", "{f.func.name.overload_name}")
|
|
.typed<{dispatcher_sig.type()}>();
|
|
{compute_dk}
|
|
return op.callWithDispatchKey(_dk, {', '.join(a.expr for a in dispatcher_exprs)});
|
|
}}
|
|
"""
|
|
elif target is Target.REGISTRATION:
|
|
if local.use_c10_dispatcher() is UseC10Dispatcher.full:
|
|
return f"""m.impl("aten::{f.func.name}", TORCH_FN({name}));"""
|
|
elif local.use_c10_dispatcher() is UseC10Dispatcher.hacky_wrapper_for_legacy_signatures:
|
|
return f"""m.impl("aten::{f.func.name}",
|
|
c10::impl::hacky_wrapper_for_legacy_signatures<{dispatcher_sig.type()}>(
|
|
TORCH_FN({name})));"""
|
|
else:
|
|
assert local.use_c10_dispatcher() is UseC10Dispatcher.with_codegenerated_unboxing_wrapper
|
|
return f"""m.impl_UNBOXED("aten::{f.func.name}", {name});"""
|
|
elif target is Target.DECLARATION:
|
|
raise AssertionError()
|
|
else:
|
|
assert_never(target)
|
|
return go
|
|
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
#
|
|
# YAML CODE GENERATION
|
|
#
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
|
|
def dict_representer(dumper: Any, data: Any) -> Any:
|
|
return dumper.represent_dict(data.items())
|
|
|
|
def format_yaml(data: object) -> str:
|
|
noalias_dumper = yaml.dumper.SafeDumper
|
|
noalias_dumper.ignore_aliases = lambda self, data: True # type: ignore
|
|
# Support serializing OrderedDict
|
|
noalias_dumper.add_representer(OrderedDict, dict_representer) # type: ignore
|
|
# Some yaml parsers (e.g. Haskell's) don't understand line breaks.
|
|
# width=float('Inf') turns off optional line breaks and improves
|
|
# the portability of the outputted yaml.
|
|
return yaml.dump(data, default_flow_style=False, Dumper=noalias_dumper, width=float('Inf')) # type: ignore
|
|
|
|
# For some reason, some defaults we write to YAML are written as native
|
|
# YAML objects, rather than doing them uniformly as strings. This
|
|
# function detects those cases and converts them into native Python
|
|
# objects.
|
|
def pythonify_default(s: str) -> object:
|
|
if s == 'true':
|
|
return True
|
|
elif s == 'false':
|
|
return False
|
|
|
|
try:
|
|
return int(s)
|
|
except ValueError:
|
|
try:
|
|
return float(s)
|
|
except ValueError:
|
|
return s
|
|
|
|
# What is a dynamic type? Over time, the semantic meaning of
|
|
# dynamic type has degraded to meaninglessness (in the old days,
|
|
# it captured dtype-ness of types, but that has gone away with
|
|
# the removal of TH). These days, it's mostly the same thing as
|
|
# the C++ API argument type, except that Tensor and Tensor?
|
|
# arguments simply present as Tensor.
|
|
#
|
|
# TODO: Get rid of dynamic_type, after getting tools/autograd
|
|
# to use the new codegen framework
|
|
def dynamic_type(t: Type) -> str:
|
|
if isinstance(t, OptionalType):
|
|
return dynamic_type(t.elem)
|
|
# Note we don't use t.is_tensor_like() here because it would
|
|
# also include Tensor[]
|
|
if str(t) == 'Tensor':
|
|
return 'Tensor'
|
|
return cpp.argumenttype_type(t, mutable=False)
|
|
|
|
def compute_method_of_yaml(variants: Set[Variant]) -> List[str]:
|
|
# This is written out explicitly to ensure that Tensor and
|
|
# namespace are put into the list in the right order
|
|
method_of = ['Type']
|
|
if Variant.method in variants:
|
|
method_of.append('Tensor')
|
|
if Variant.function in variants:
|
|
method_of.append('namespace')
|
|
return method_of
|
|
|
|
def compute_returns_yaml(f: NativeFunction) -> Tuple[List[Dict[str, str]], Dict[str, str]]:
|
|
# Note [name and field_name]
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
# To understand name_to_field_name, we must first talk about this
|
|
# schema:
|
|
#
|
|
# lstsq.X(Tensor self, Tensor A, *, Tensor(a!) X, Tensor(b!) qr) -> (Tensor(a!) solution, Tensor(b!) QR)
|
|
#
|
|
# There is something very odd about this schema: it is an out
|
|
# variant of the function (that is to say, it will convert into
|
|
# at::lstsq_out() in the C++ API), but the names of the output
|
|
# return arguments don't match the keyword argument names of
|
|
# the inputs. It TURNS OUT that in this situation, the historical
|
|
# Declarations.yaml we want to output is this (abbreviated to
|
|
# only show relevant fields):
|
|
#
|
|
# arguments:
|
|
# ...
|
|
# - field_name: solution
|
|
# name: X
|
|
# - field_name: QR
|
|
# name: qr
|
|
# ...
|
|
#
|
|
# returns:
|
|
# - field_name: solution
|
|
# name: X
|
|
# - field_name: QR
|
|
# name: qr
|
|
#
|
|
# The name of the return fields is stored in 'field_name', and the
|
|
# name of the arguments is stored in 'name'. So when we process
|
|
# arguments, we need a way to get at the corresponding return. At
|
|
# the moment, this is most conveniently done by constructing a
|
|
# mapping from name (the argument concept) to field_name (the
|
|
# return concept) while processing return arguments, since we don't
|
|
# directly maintain this correspondence in the modeling of function
|
|
# schema itself.
|
|
#
|
|
# See also https://github.com/pytorch/pytorch/issues/43114
|
|
name_to_field_name: Dict[str, str] = {}
|
|
|
|
# Compute the returns field of the YAML entry
|
|
returns = []
|
|
for i, r in enumerate(f.func.returns):
|
|
# If we have an inplace function, the return argument is
|
|
# implicitly named self.
|
|
# TODO: Consider incorporating this into the data model
|
|
if f.func.name.name.inplace:
|
|
assert i == 0, "illegal inplace function with multiple returns"
|
|
name = 'self'
|
|
# If we are out function, the name is the name of the
|
|
# corresponding output function (r.name will get recorded
|
|
# in field_name later.)
|
|
elif f.func.is_out_fn():
|
|
name = f.func.out_arguments[i].name
|
|
# If the return argument is explicitly named...
|
|
elif r.name:
|
|
name_conflict = any(r.name == a.name for a in f.func.schema_order_arguments())
|
|
if name_conflict and not f.func.is_out_fn():
|
|
name = f'{r.name}_return'
|
|
else:
|
|
name = r.name
|
|
# If there is no explicit name, we just name the output result,
|
|
# unless it's a multi-return, in which case it's result0,
|
|
# result1, etc (zero-indexed)
|
|
else:
|
|
name = 'result' if len(f.func.returns) == 1 else f'result{i}'
|
|
|
|
ret = {
|
|
'dynamic_type': dynamic_type(r.type),
|
|
'name': name,
|
|
'type': cpp.return_type(r),
|
|
}
|
|
|
|
if r.name:
|
|
# See Note [name and field_name]
|
|
ret['field_name'] = r.name
|
|
if f.func.is_out_fn():
|
|
name_to_field_name[f.func.out_arguments[i].name] = r.name
|
|
|
|
returns.append(ret)
|
|
|
|
return returns, name_to_field_name
|
|
|
|
# arguments in yaml roughly corresponds to the public C++ API
|
|
def compute_cpp_argument_yaml(cpp_a: CppArgument, *, schema_order: bool, kwarg_only_set: Set[str],
|
|
out_arg_set: Set[str], name_to_field_name: Dict[str, str]) -> object:
|
|
if isinstance(cpp_a.argument, TensorOptionsArguments):
|
|
arg: Dict[str, object] = {
|
|
'annotation': None,
|
|
'dynamic_type': 'TensorOptions',
|
|
'is_nullable': False,
|
|
'name': cpp_a.name,
|
|
'type': cpp_a.type,
|
|
'kwarg_only': True,
|
|
}
|
|
if cpp_a.default is not None:
|
|
arg['default'] = cpp_a.default
|
|
return arg
|
|
elif isinstance(cpp_a.argument, ThisArgument):
|
|
raise AssertionError()
|
|
elif isinstance(cpp_a.argument, Argument):
|
|
return compute_argument_yaml(
|
|
cpp_a.argument, schema_order=schema_order,
|
|
kwarg_only_set=kwarg_only_set, out_arg_set=out_arg_set, name_to_field_name=name_to_field_name)
|
|
|
|
def compute_argument_yaml(a: Argument, *, schema_order: bool, kwarg_only_set: Set[str],
|
|
out_arg_set: Set[str], name_to_field_name: Dict[str, str]) -> object:
|
|
arg: Dict[str, object] = {
|
|
'annotation': str(a.annotation) if a.annotation else None,
|
|
'dynamic_type': dynamic_type(a.type),
|
|
'is_nullable': a.type.is_nullable(),
|
|
'name': a.name,
|
|
'type': cpp.argument_type(a),
|
|
}
|
|
if a.default is not None:
|
|
arg['default'] = pythonify_default(cpp.default_expr(a.default, a.type))
|
|
if a.name in kwarg_only_set:
|
|
arg['kwarg_only'] = True
|
|
if a.name in out_arg_set:
|
|
arg['output'] = True
|
|
arg['allocate'] = True
|
|
# See Note [name and field_name]
|
|
if a.name in name_to_field_name:
|
|
arg['field_name'] = name_to_field_name[a.name]
|
|
# Historically, booleans don't get their size recorded, because it
|
|
# is already built into the cpp type (e.g., std::array<bool, 4>)
|
|
l = a.type.is_list_like()
|
|
if l is not None and l.size is not None and str(l.elem) != 'bool':
|
|
arg['size'] = l.size
|
|
return arg
|
|
|
|
@with_native_function
|
|
def compute_declaration_yaml(f: NativeFunction) -> object:
|
|
returns, name_to_field_name = compute_returns_yaml(f)
|
|
|
|
# These sets are used to conveniently test if an argument is a
|
|
# kwarg-only or out argument
|
|
kwarg_only_set = set(a.name for a in f.func.kwarg_only_arguments)
|
|
out_arg_set = set(a.name for a in f.func.out_arguments)
|
|
|
|
sig_group = CppSignatureGroup.from_schema(f.func, method=False)
|
|
cpp_args = sig_group.signature.arguments()
|
|
arguments = [
|
|
compute_cpp_argument_yaml(
|
|
cpp_a, schema_order=False,
|
|
kwarg_only_set=kwarg_only_set, out_arg_set=out_arg_set, name_to_field_name=name_to_field_name)
|
|
for cpp_a in cpp_args
|
|
]
|
|
|
|
schema_order_jit_arguments = list(f.func.schema_order_arguments())
|
|
|
|
schema_order_arguments = [
|
|
compute_argument_yaml(
|
|
a, schema_order=True,
|
|
kwarg_only_set=kwarg_only_set, out_arg_set=out_arg_set, name_to_field_name=name_to_field_name)
|
|
for a in schema_order_jit_arguments
|
|
]
|
|
|
|
cpp_schema_order_types = [cpp.argument(a).type for a in schema_order_jit_arguments]
|
|
cpp_returns = cpp.returns_type(f.func.returns)
|
|
schema_order_cpp_signature = f"{cpp_returns} ({', '.join(cpp_schema_order_types)})"
|
|
|
|
is_factory_method = any(isinstance(a.argument, TensorOptionsArguments) for a in cpp_args) \
|
|
and Variant.method not in f.variants
|
|
|
|
is_abstract = f.dispatch.keys() != {'Math'}
|
|
|
|
return OrderedDict([
|
|
('name', cpp.name(f.func)),
|
|
('operator_name', str(f.func.name.name)),
|
|
('overload_name', str(f.func.name.overload_name)),
|
|
('use_c10_dispatcher', f.use_c10_dispatcher.name),
|
|
('manual_kernel_registration', f.manual_kernel_registration),
|
|
('category_override', f.category_override if f.category_override is not None else ''),
|
|
('matches_jit_signature', True),
|
|
('schema_string', f'aten::{f.func}'),
|
|
('arguments', arguments),
|
|
('schema_order_cpp_signature', schema_order_cpp_signature),
|
|
('schema_order_arguments', schema_order_arguments),
|
|
('method_of', compute_method_of_yaml(f.variants)),
|
|
('mode', 'native'),
|
|
('python_module', '' if f.python_module is None else f.python_module),
|
|
('returns', returns),
|
|
('inplace', f.func.name.name.inplace),
|
|
('is_factory_method', is_factory_method),
|
|
# Note [Abstract ATen methods]
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
# An abstract ATen method is one whose dispatch differs between
|
|
# types. These are implemented in derived types (with a
|
|
# standard (throwing) definition in Type). A concrete ATen
|
|
# method is one which has the same dispatch for all types;
|
|
# we just implement it in the base Type. This is exposed
|
|
# in Declarations.yaml via a field named 'abstract'.
|
|
#
|
|
# Although this is what we have historically exposed, it is
|
|
# actually not all that useful for end users, who are also interested
|
|
# whether or not there is an explicit entry in derivatives.yaml
|
|
# for the entry or not (as this affects whether or not the operation is
|
|
# overrideable or not.) Once this all gets cleaned up, this
|
|
# property will be obsolete.
|
|
('abstract', is_abstract),
|
|
('device_guard', f.device_guard),
|
|
('with_gil', False),
|
|
('deprecated', False),
|
|
('has_math_kernel', 'Math' in f.dispatch),
|
|
])
|
|
|
|
@with_native_function
|
|
def compute_registration_declarations(f: NativeFunction) -> str:
|
|
name = dispatcher.name(f.func)
|
|
returns_type = dispatcher.returns_type(f.func.returns)
|
|
args = dispatcher.arguments(f.func)
|
|
args_str = ', '.join(map(str, args))
|
|
comment_data : Dict[str, str] = {
|
|
'schema': f'aten::{f.func}',
|
|
# TODO: What exactly is the semantics of the 'dispatch' field?
|
|
'dispatch': str(f.dispatch.keys() != {'Math'}),
|
|
'default': str(any(k in f.dispatch for k in KEYWORD_ALL_BACKENDS))
|
|
}
|
|
return f"""{returns_type} {name}({args_str}); // {json.dumps(comment_data)}
|
|
"""
|
|
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
#
|
|
# RUN IT ALL
|
|
#
|
|
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
|
|
|
@functools.lru_cache(maxsize=None)
|
|
def _read_template(template_fn: str) -> CodeTemplate:
|
|
return CodeTemplate.from_file(template_fn)
|
|
|
|
# A small abstraction for writing out generated files and keeping track
|
|
# of what files have been written (so you can write out a list of output
|
|
# files)
|
|
class FileManager:
|
|
install_dir: str
|
|
template_dir: str
|
|
dry_run: bool
|
|
filenames: Set[str]
|
|
|
|
def __init__(self, install_dir: str, template_dir: str, dry_run: bool) -> None:
|
|
self.install_dir = install_dir
|
|
self.template_dir = template_dir
|
|
self.filenames = set()
|
|
self.dry_run = dry_run
|
|
|
|
def _write_if_changed(self, filename: str, contents: str) -> None:
|
|
old_contents: Optional[str]
|
|
try:
|
|
with open(filename, 'r') as f:
|
|
old_contents = f.read()
|
|
except IOError:
|
|
old_contents = None
|
|
if contents != old_contents:
|
|
with open(filename, 'w') as f:
|
|
f.write(contents)
|
|
|
|
def write_with_template(self, filename: str, template_fn: str,
|
|
env_callable: Callable[[], Union[str, Dict[str, object]]]) -> None:
|
|
filename = '{}/{}'.format(self.install_dir, filename)
|
|
assert filename not in self.filenames, "duplicate file write {filename}"
|
|
self.filenames.add(filename)
|
|
if not self.dry_run:
|
|
env = env_callable()
|
|
if isinstance(env, dict):
|
|
# TODO: Update the comment reference to the correct location
|
|
comment = "@" + "generated by aten/src/ATen/gen.py"
|
|
comment += " from {}".format(os.path.basename(template_fn))
|
|
env['generated_comment'] = comment
|
|
template = _read_template(os.path.join(self.template_dir, template_fn))
|
|
self._write_if_changed(filename, template.substitute(env))
|
|
elif isinstance(env, str):
|
|
self._write_if_changed(filename, env)
|
|
else:
|
|
assert_never(env)
|
|
|
|
|
|
def write(self, filename: str, env_callable: Callable[[], Union[str, Union[str, Dict[str, object]]]]) -> None:
|
|
self.write_with_template(filename, filename, env_callable)
|
|
|
|
def write_outputs(self, filename: str) -> None:
|
|
"""Write a file containing the list of all outputs which are
|
|
generated by this script."""
|
|
self._write_if_changed(
|
|
filename,
|
|
''.join(name + ";" for name in sorted(self.filenames)))
|
|
|
|
def get_custom_build_selector(
|
|
provided_op_registration_allowlist: Optional[List[str]],
|
|
op_selection_yaml_path: Optional[str]) -> SelectiveBuilder:
|
|
assert not (
|
|
provided_op_registration_allowlist is not None and
|
|
op_selection_yaml_path is not None), (
|
|
"Both provided_op_registration_allowlist and " +
|
|
"op_selection_yaml_path can NOT be provided at the " +
|
|
"same time.")
|
|
|
|
op_registration_allowlist: Optional[Set[str]] = None
|
|
if provided_op_registration_allowlist is not None:
|
|
op_registration_allowlist = set(provided_op_registration_allowlist)
|
|
|
|
if op_registration_allowlist is not None:
|
|
selector = SelectiveBuilder.from_legacy_op_registration_allow_list(
|
|
op_registration_allowlist,
|
|
True,
|
|
False,
|
|
)
|
|
elif op_selection_yaml_path is not None:
|
|
selector = SelectiveBuilder.from_yaml_path(op_selection_yaml_path)
|
|
else:
|
|
selector = SelectiveBuilder.get_nop_selector()
|
|
|
|
return selector
|
|
|
|
def main() -> None:
|
|
parser = argparse.ArgumentParser(description='Generate ATen source files')
|
|
parser.add_argument(
|
|
'-s',
|
|
'--source-path',
|
|
help='path to source directory for ATen',
|
|
default='aten/src/ATen')
|
|
parser.add_argument(
|
|
'-o',
|
|
'--output-dependencies',
|
|
help='output a list of dependencies into the given file and exit')
|
|
parser.add_argument(
|
|
'-d', '--install_dir', help='output directory',
|
|
default='build/aten/src/ATen')
|
|
parser.add_argument(
|
|
'--rocm',
|
|
action='store_true',
|
|
help='reinterpret CUDA as ROCm/HIP and adjust filepaths accordingly')
|
|
# TODO: --op_registration_whitelist will be removed when all call-sites
|
|
# for gen.py are moved over to using the operator YAML file for mobile
|
|
# custom build.
|
|
parser.add_argument(
|
|
'--op_registration_whitelist',
|
|
nargs='*',
|
|
help='filter op registrations by the whitelist (if set); '
|
|
'each item is `namespace`::`operator name` without overload name; '
|
|
'e.g.: aten::empty aten::conv2d ...')
|
|
parser.add_argument(
|
|
'--op_selection_yaml_path',
|
|
help='Provide a path to the operator selection (for custom build) YAML '
|
|
'that contains the information about the set of selected operators '
|
|
'and their categories (training, ...). Each operator is either a '
|
|
'full operator name with overload or just a bare operator name. '
|
|
'The operator names also contain the namespace prefix (e.g. aten::)')
|
|
parser.add_argument(
|
|
'--backend_whitelist',
|
|
nargs='*',
|
|
help='filter dispatch backend by the whitelist (if set), '
|
|
'e.g.: CPU CUDA QuantizedCPU ...')
|
|
parser.add_argument(
|
|
'--force_schema_registration',
|
|
action='store_true',
|
|
help='force it to generate schema-only registrations for all ops, including'
|
|
'those that are not listed on --op_registration_whitelist')
|
|
options = parser.parse_args()
|
|
|
|
selector = get_custom_build_selector(
|
|
options.op_registration_whitelist,
|
|
options.op_selection_yaml_path,
|
|
)
|
|
|
|
native_functions = parse_native_yaml(os.path.join(options.source_path, 'native/native_functions.yaml'))
|
|
|
|
pre_grouped_native_functions: Dict[FunctionSchema, Dict[SchemaKind, NativeFunction]]
|
|
pre_grouped_native_functions = defaultdict(dict)
|
|
for f in native_functions:
|
|
d = pre_grouped_native_functions[f.func.signature()]
|
|
assert f.func.kind() not in d
|
|
d[f.func.kind()] = f
|
|
grouped_native_functions = [NativeFunctionGroup.from_dict(v) for v in pre_grouped_native_functions.values()]
|
|
# NB: At the moment, grouped_native_functions isn't used by anything,
|
|
# this code lives here to help potential future consumers; for a live
|
|
# example see https://github.com/pytorch/pytorch/pull/45277
|
|
|
|
template_dir = os.path.join(options.source_path, "templates")
|
|
|
|
# NB: It is mandatory to NOT use os.path.join here, as the install directory
|
|
# will eventually be ingested by cmake, which does not respect Windows style
|
|
# path slashes. If you switch this to use os.path.join, you'll get an error
|
|
# like:
|
|
#
|
|
# Syntax error in cmake code when parsing string
|
|
#
|
|
# C:/Jenkins/workspace/pytorch-builds/pytorch-win-ws2016-cuda9-cudnn7-py3-build/build/aten/src/ATen\core/TensorMethods.h
|
|
#
|
|
# Invalid character escape '\c'.
|
|
core_install_dir = f'{options.install_dir}/core'
|
|
pathlib.Path(core_install_dir).mkdir(parents=True, exist_ok=True)
|
|
|
|
def make_file_manager(install_dir: str) -> FileManager:
|
|
return FileManager(install_dir=install_dir, template_dir=template_dir, dry_run=options.output_dependencies)
|
|
|
|
core_fm = make_file_manager(core_install_dir)
|
|
cpu_fm = make_file_manager(options.install_dir)
|
|
cuda_fm = make_file_manager(options.install_dir)
|
|
|
|
extra_cuda_headers = '''\
|
|
#include <ATen/cuda/ATenCUDAGeneral.h>
|
|
#include <ATen/cuda/CUDADevice.h>
|
|
#include <ATen/cuda/CUDAContext.h>'''
|
|
if options.rocm:
|
|
extra_cuda_headers = '''\
|
|
#include <ATen/hip/ATenHIPGeneral.h>
|
|
#include <ATen/hip/HIPDevice.h>
|
|
#include <ATen/hip/HIPContext.h>'''
|
|
|
|
backends = [
|
|
"CPU",
|
|
"SparseCPU",
|
|
"MkldnnCPU",
|
|
"CUDA",
|
|
"SparseCUDA",
|
|
"QuantizedCPU",
|
|
"QuantizedCUDA",
|
|
]
|
|
if options.backend_whitelist:
|
|
backends = [b for b in backends if b in options.backend_whitelist]
|
|
|
|
for dispatch in backends:
|
|
h_template = 'TypeDerived.h'
|
|
cpp_template = 'TypeDerived.cpp'
|
|
|
|
fm = cuda_fm if 'CUDA' in dispatch else cpu_fm
|
|
|
|
fm.write_with_template(f'{dispatch}Type.h', h_template, lambda: {
|
|
'Type': f'{dispatch}Type',
|
|
'type_derived_method_declarations': list(mapMaybe(
|
|
compute_type_method(dispatch, target=Target.DECLARATION, selector=selector),
|
|
native_functions
|
|
)),
|
|
})
|
|
fm.write_with_template(f'{dispatch}Type.cpp', cpp_template, lambda: {
|
|
'Type': f'{dispatch}Type',
|
|
'extra_cuda_headers': extra_cuda_headers if 'CUDA' in dispatch else '',
|
|
'legacy_th_headers':
|
|
'#include <ATen/LegacyTHFunctionsCPU.h>' if dispatch == "CPU" else
|
|
'#include <ATen/LegacyTHFunctionsCUDA.h>' if dispatch == "CUDA" else
|
|
'',
|
|
'Backend': dispatch,
|
|
'type_derived_method_definitions': list(mapMaybe(
|
|
compute_type_method(dispatch, target=Target.DEFINITION, selector=selector),
|
|
native_functions
|
|
)),
|
|
'function_registrations': list(mapMaybe(
|
|
compute_type_method(
|
|
dispatch, target=Target.REGISTRATION, selector=selector),
|
|
native_functions
|
|
)),
|
|
})
|
|
del fm
|
|
|
|
cpu_fm.write('TypeDefault.h', lambda: {
|
|
'type_method_declarations':
|
|
list(mapMaybe(
|
|
compute_type_method('Math', target=Target.DECLARATION, selector=selector),
|
|
native_functions)) +
|
|
list(mapMaybe(
|
|
compute_type_method('DefaultBackend', target=Target.DECLARATION, selector=selector),
|
|
native_functions)),
|
|
})
|
|
|
|
schema_selector = selector
|
|
if options.force_schema_registration:
|
|
schema_selector = SelectiveBuilder.get_nop_selector()
|
|
|
|
# TODO: split this file into separate files
|
|
cpu_fm.write('TypeDefault.cpp', lambda: {
|
|
'type_method_definitions':
|
|
list(mapMaybe(
|
|
compute_type_method('Math', target=Target.DEFINITION, selector=selector),
|
|
native_functions)) +
|
|
list(mapMaybe(
|
|
compute_type_method('DefaultBackend', target=Target.DEFINITION, selector=selector),
|
|
native_functions)),
|
|
|
|
'function_registrations': list(mapMaybe(
|
|
compute_type_method(None, target=Target.REGISTRATION, selector=schema_selector),
|
|
native_functions)),
|
|
|
|
'math_function_registrations': list(mapMaybe(
|
|
compute_type_method('Math', target=Target.REGISTRATION, selector=selector),
|
|
native_functions)),
|
|
|
|
'default_backend_function_registrations': list(mapMaybe(
|
|
compute_type_method('DefaultBackend', target=Target.REGISTRATION, selector=selector),
|
|
native_functions)),
|
|
})
|
|
cpu_fm.write('Functions.h', lambda: {
|
|
'function_declarations': list(mapMaybe(compute_function(target=Target.DECLARATION), native_functions)),
|
|
})
|
|
cpu_fm.write('Functions.cpp', lambda: {
|
|
'function_definitions': list(mapMaybe(compute_function(target=Target.DEFINITION), native_functions)),
|
|
})
|
|
core_fm.write('TensorBody.h', lambda: {
|
|
'tensor_method_declarations': list(mapMaybe(compute_tensor_method(target=Target.DECLARATION), native_functions)),
|
|
})
|
|
core_fm.write('TensorMethods.cpp', lambda: {
|
|
'tensor_method_definitions': list(mapMaybe(compute_tensor_method(target=Target.DEFINITION), native_functions)),
|
|
})
|
|
core_fm.write('ATenOpList.cpp', lambda: {
|
|
'aten_ops': list(mapMaybe(compute_aten_op, native_functions)),
|
|
})
|
|
cpu_fm.write('NativeFunctions.h', lambda: {
|
|
'native_function_declarations': list(concatMap(compute_native_function_declaration, native_functions)),
|
|
})
|
|
cpu_fm.write('BackendSelectRegister.cpp', lambda: {
|
|
'backend_select_method_definitions':
|
|
list(mapMaybe(compute_backend_select(target=Target.DEFINITION), native_functions)),
|
|
'backend_select_function_registrations':
|
|
list(mapMaybe(compute_backend_select(target=Target.REGISTRATION), native_functions)),
|
|
})
|
|
|
|
cpu_fm.write('Declarations.yaml', lambda: format_yaml([compute_declaration_yaml(f) for f in native_functions]))
|
|
cpu_fm.write('RegistrationDeclarations.h', lambda: {
|
|
'registration_declarations': [compute_registration_declarations(f) for f in native_functions],
|
|
})
|
|
|
|
if options.output_dependencies:
|
|
cpu_fm.write_outputs(options.output_dependencies)
|
|
core_fm.write_outputs(f"{options.output_dependencies}-core")
|
|
cuda_fm.write_outputs(f"{options.output_dependencies}-cuda")
|
|
|
|
if __name__ == '__main__':
|
|
main()
|