mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: We introduced `node.meta["numeric_debug_handle"]` in https://github.com/pytorch/pytorch/pull/114315 to indicate the numeric debug handle for values in the graph, in this PR we supported preserving this field in prepare and convert so that we can use these for numerical debugging Next: we also want to preserve these in deepcopy of GraphModule as well Test Plan: python test/test_quantization.py -k test_quantize_pt2e_preserve_handle Reviewers: Subscribers: Tasks: Tags: Pull Request resolved: https://github.com/pytorch/pytorch/pull/116477 Approved by: https://github.com/tugsbayasgalan
255 lines
9.3 KiB
Python
255 lines
9.3 KiB
Python
import torch
|
|
from torch.fx import GraphModule
|
|
from torch.fx import Node
|
|
|
|
from .pt2e.prepare import prepare
|
|
from .pt2e.qat_utils import (
|
|
_fuse_conv_bn_qat,
|
|
_fold_conv_bn_qat,
|
|
)
|
|
from .pt2e.utils import (
|
|
_get_node_name_to_scope,
|
|
_fuse_conv_bn_,
|
|
_disallow_eval_train,
|
|
)
|
|
from .pt2e.representation import reference_representation_rewrite
|
|
from .quantize_fx import _convert_to_reference_decomposed_fx
|
|
from torch.ao.quantization.quantizer import ( # noqa: F401
|
|
Quantizer,
|
|
QuantizationSpecBase,
|
|
QuantizationSpec,
|
|
FixedQParamsQuantizationSpec,
|
|
SharedQuantizationSpec,
|
|
DerivedQuantizationSpec,
|
|
QuantizationAnnotation,
|
|
)
|
|
from torch.fx.passes.infra.pass_manager import PassManager
|
|
from torch.ao.quantization.pt2e.duplicate_dq_pass import DuplicateDQPass
|
|
from torch.ao.quantization.pt2e.port_metadata_pass import PortNodeMetaForQDQ
|
|
from torch._inductor.constant_folding import constant_fold
|
|
|
|
__all__ = [
|
|
"prepare_pt2e",
|
|
"prepare_qat_pt2e",
|
|
"convert_pt2e",
|
|
]
|
|
|
|
|
|
def prepare_pt2e(
|
|
model: GraphModule,
|
|
quantizer: Quantizer,
|
|
) -> GraphModule:
|
|
"""Prepare a model for post training quantization
|
|
|
|
Args:
|
|
* `model` (torch.fx.GraphModule): a model captured by `torch.export` API
|
|
in the short term we are using `torch._export.capture_pre_autograd_graph`,
|
|
in the long term we'll migrate to some `torch.export` API
|
|
* `quantizer`: A backend specific quantizer that conveys how user want the
|
|
model to be quantized. Tutorial for how to write a quantizer can be found here:
|
|
https://pytorch.org/tutorials/prototype/pt2e_quantizer.html
|
|
|
|
Return:
|
|
A GraphModule with observer (based on quantizer annotation), ready for calibration
|
|
|
|
Example::
|
|
|
|
import torch
|
|
from torch.ao.quantization.quantize_pt2e import prepare_pt2e
|
|
from torch._export import capture_pre_autograd_graph
|
|
from torch.ao.quantization.quantizer import (
|
|
XNNPACKQuantizer,
|
|
get_symmetric_quantization_config,
|
|
)
|
|
|
|
class M(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(5, 10)
|
|
|
|
def forward(self, x):
|
|
return self.linear(x)
|
|
|
|
# initialize a floating point model
|
|
float_model = M().eval()
|
|
|
|
# define calibration function
|
|
def calibrate(model, data_loader):
|
|
model.eval()
|
|
with torch.no_grad():
|
|
for image, target in data_loader:
|
|
model(image)
|
|
|
|
# Step 1. program capture
|
|
# NOTE: this API will be updated to torch.export API in the future, but the captured
|
|
# result shoud mostly stay the same
|
|
m = capture_pre_autograd_graph(m, *example_inputs)
|
|
# we get a model with aten ops
|
|
|
|
# Step 2. quantization
|
|
# backend developer will write their own Quantizer and expose methods to allow
|
|
# users to express how they
|
|
# want the model to be quantized
|
|
quantizer = XNNPACKQuantizer().set_global(get_symmetric_quantization_config())
|
|
m = prepare_pt2e(m, quantizer)
|
|
|
|
# run calibration
|
|
# calibrate(m, sample_inference_data)
|
|
"""
|
|
torch._C._log_api_usage_once("quantization_api.quantize_pt2e.prepare_pt2e")
|
|
original_graph_meta = model.meta
|
|
node_name_to_scope = _get_node_name_to_scope(model)
|
|
# TODO: check qconfig_mapping to make sure conv and bn are both configured
|
|
# to be quantized before fusion
|
|
# TODO: (maybe) rewrite this with subgraph_rewriter
|
|
_fuse_conv_bn_(model)
|
|
quantizer.transform_for_annotation(model)
|
|
quantizer.annotate(model)
|
|
quantizer.validate(model)
|
|
model = prepare(model, node_name_to_scope, is_qat=False)
|
|
model.meta.update(original_graph_meta)
|
|
model = _disallow_eval_train(model)
|
|
return model
|
|
|
|
def prepare_qat_pt2e(
|
|
model: GraphModule,
|
|
quantizer: Quantizer,
|
|
) -> GraphModule:
|
|
"""Prepare a model for quantization aware training
|
|
|
|
Args:
|
|
* `model` (torch.fx.GraphModule): see :func:`~torch.ao.quantization.quantize_pt2e.prepare_pt2e`
|
|
* `quantizer`: see :func:`~torch.ao.quantization.quantize_pt2e.prepare_pt2e`
|
|
|
|
Return:
|
|
A GraphModule with fake quant modules (based on quantizer annotation), ready for
|
|
quantization aware training
|
|
|
|
Example::
|
|
import torch
|
|
from torch.ao.quantization.quantize_pt2e import prepare_qat_pt2e
|
|
from torch._export import capture_pre_autograd_graph
|
|
from torch.ao.quantization.quantizer import (
|
|
XNNPACKQuantizer,
|
|
get_symmetric_quantization_config,
|
|
)
|
|
|
|
class M(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.linear = torch.nn.Linear(5, 10)
|
|
|
|
def forward(self, x):
|
|
return self.linear(x)
|
|
|
|
# initialize a floating point model
|
|
float_model = M().eval()
|
|
|
|
# define the training loop for quantization aware training
|
|
def train_loop(model, train_data):
|
|
model.train()
|
|
for image, target in data_loader:
|
|
...
|
|
|
|
# Step 1. program capture
|
|
# NOTE: this API will be updated to torch.export API in the future, but the captured
|
|
# result shoud mostly stay the same
|
|
m = capture_pre_autograd_graph(m, *example_inputs)
|
|
# we get a model with aten ops
|
|
|
|
# Step 2. quantization
|
|
# backend developer will write their own Quantizer and expose methods to allow
|
|
# users to express how they
|
|
# want the model to be quantized
|
|
quantizer = XNNPACKQuantizer().set_global(get_symmetric_quantization_config())
|
|
m = prepare_qat_pt2e(m, quantizer)
|
|
|
|
# run quantization aware training
|
|
train_loop(prepared_model, train_loop)
|
|
|
|
"""
|
|
torch._C._log_api_usage_once("quantization_api.quantize_pt2e.prepare_qat_pt2e")
|
|
original_graph_meta = model.meta
|
|
node_name_to_scope = _get_node_name_to_scope(model)
|
|
quantizer.transform_for_annotation(model)
|
|
quantizer.annotate(model)
|
|
quantizer.validate(model)
|
|
# Perform fusion after annotate to avoid quantizing ops in the new
|
|
# subgraph that don't need to be quantized
|
|
# TODO: only fuse if conv and bn are both configured to be quantized
|
|
_fuse_conv_bn_qat(model)
|
|
model = prepare(model, node_name_to_scope, is_qat=True)
|
|
model.meta.update(original_graph_meta)
|
|
model = _disallow_eval_train(model)
|
|
return model
|
|
|
|
_QUANT_OPS = [
|
|
torch.ops.quantized_decomposed.quantize_per_tensor.default,
|
|
torch.ops.quantized_decomposed.quantize_per_tensor.tensor,
|
|
torch.ops.quantized_decomposed.quantize_per_channel.default,
|
|
]
|
|
def _quant_node_constraint(n: Node) -> bool:
|
|
"""If there is any pure ops between get_attr and quantize op they will be const propagated
|
|
e.g. get_attr(weight) -> transpose -> quantize -> dequantize*
|
|
(Note: dequantize op is not going to be constant propagated)
|
|
|
|
This filter is added because we don't want to constant fold the things that are not
|
|
related to quantization
|
|
"""
|
|
return n.op == "call_function" and n.target in _QUANT_OPS
|
|
|
|
def convert_pt2e(
|
|
model: GraphModule,
|
|
use_reference_representation: bool = False,
|
|
fold_quantize: bool = False,
|
|
) -> GraphModule:
|
|
"""Convert a calibrated/trained model to a quantized model
|
|
|
|
Args:
|
|
* `model` (torch.fx.GraphModule): calibrated/trained model
|
|
* `use_reference_representation` (bool): boolean flag to indicate whether to produce referece representation or not
|
|
* `fold_quantize` (bool): boolean flag to indicate whether fold the quantize op or not
|
|
|
|
Note: please set `fold_quantize` to True whenever you can, we'll deprecate this flag and
|
|
make True the default option in the future, to make sure the change doesn't break BC for you, it's
|
|
better to set the flag to True now.
|
|
|
|
Returns:
|
|
quantized model, either in q/dq representation or reference representation
|
|
|
|
Example::
|
|
|
|
# prepared_model: the model produced by `prepare_pt2e`/`prepare_qat_pt2e` and calibration/training
|
|
# `convert_pt2e` produces a quantized model that represents quantized computation with
|
|
# quantize dequantize ops and fp32 ops by default.
|
|
# Please refer to
|
|
# https://pytorch.org/tutorials/prototype/pt2e_quant_ptq_static.html#convert-the-calibrated-model-to-a-quantized-model
|
|
# for detailed explanation of output quantized model
|
|
quantized_model = convert_pt2e(prepared_model)
|
|
|
|
""" # flake8: noqa
|
|
torch._C._log_api_usage_once("quantization_api.quantize_pt2e.convert_pt2e")
|
|
if not isinstance(use_reference_representation, bool):
|
|
raise ValueError(
|
|
"Unexpected argument type for `use_reference_representation`, "
|
|
f"please make sure you intend to pass argument {use_reference_representation} to convert_pt2e")
|
|
original_graph_meta = model.meta
|
|
model = _convert_to_reference_decomposed_fx(model)
|
|
model = _fold_conv_bn_qat(model)
|
|
|
|
pm = PassManager([DuplicateDQPass()])
|
|
model = pm(model).graph_module
|
|
|
|
pm = PassManager([PortNodeMetaForQDQ()])
|
|
model = pm(model).graph_module
|
|
|
|
if fold_quantize:
|
|
constant_fold(model, _quant_node_constraint)
|
|
|
|
if use_reference_representation:
|
|
model = reference_representation_rewrite(model)
|
|
|
|
model.meta.update(original_graph_meta)
|
|
model = _disallow_eval_train(model)
|
|
return model
|