mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Add script::Module C++ class to represent script modules switch AST -> IR conversion to work on Modules/Methods rather than raw graphs function-only AST -> IR conversion is just a simplified case where there is only one module with a single method and no parameters. introduce SugaredValue in compiler.h to represent values in scope in a script function that are not first-class and that get desugared. This is used to represent the module's self parameter, as well as python function calls, and method calls on tensor provide a Python ScriptModule that provides a nice API on top of script::Module allowing for the definition of script modules with methods, parameters, and submodules Not in this PR but intended for the future: ScriptModule actually subclasses nn.Module, with most methods implemented Unification of tracedmodule and script module functionality into one container class. Detailed changelog: * Switch compiler over to using Module, but don't use them yet. * Remove intermediate attribute encoding in compiler * Create SugaredValue object to handle resolution of compiled module. * switch to_ir to modules, implement Select * hacky python wrappers * Private ScriptModule * Add `define` to script module * Attributes use TK_LIST_LITERAL this anticipates adding a real list literal expression to the language. * Add a metaclass to make sure script stubs are registered * Add a test * Doc createResolutionCallback * Docs and minor editing * Address PR comments * Document * Fix unicode issue
222 lines
8.0 KiB
C++
222 lines
8.0 KiB
C++
#include "torch/csrc/jit/script/init.h"
|
|
#include "torch/csrc/jit/script/compiler.h"
|
|
|
|
namespace torch {
|
|
namespace jit {
|
|
namespace script {
|
|
|
|
using ResolutionCallback = std::function<py::function(std::string)>;
|
|
|
|
// The visibility attribute is to avoid a warning about storing a field in the
|
|
// struct that has a different visibility (from pybind) than the struct.
|
|
#ifdef _WIN32
|
|
#define VISIBILITY_HIDDEN
|
|
#else
|
|
#define VISIBILITY_HIDDEN __attribute__((visibility("hidden")))
|
|
#endif
|
|
|
|
|
|
|
|
static void ensureSizeMatches(SourceRange loc, size_t expected, size_t actual, const std::string& what) {
|
|
if(expected != actual) {
|
|
throw ErrorReport(loc) << "expected " << expected << " " << what << " but found " << actual;
|
|
}
|
|
}
|
|
|
|
struct VISIBILITY_HIDDEN PythonValue : public SugaredValue {
|
|
PythonValue(py::object self)
|
|
: self(std::move(self)) {}
|
|
|
|
// call it like a function, e.g. `outputs = this(inputs)`
|
|
virtual std::vector<Value*> call(SourceRange loc, Method & m, at::ArrayRef<Value*> inputs, List<Attribute> attributes, size_t n_outputs) override {
|
|
ensureSizeMatches(loc, 0, attributes.size(), "keyword arguments");
|
|
// Release the function object so we can wrap it in a PythonOp
|
|
Graph& g = *m.graph();
|
|
py::object func = self;
|
|
std::string cconv(inputs.size(), 't');
|
|
Node* new_node = g.insertNode(g.createPythonOp(
|
|
THPObjectPtr(func.release().ptr()), cconv, false, {}, {}, false));
|
|
for(auto i : inputs)
|
|
new_node->addInput(i);
|
|
std::vector<Value*> outputs;
|
|
for(size_t i = 0; i < n_outputs; ++i)
|
|
outputs.push_back(new_node->addOutput());
|
|
return outputs;
|
|
}
|
|
|
|
virtual std::string kind() const override {
|
|
std::stringstream ss;
|
|
ss << "python value'" << py::repr(self) << "'";
|
|
return ss.str();
|
|
}
|
|
private:
|
|
py::object self;
|
|
};
|
|
|
|
Resolver pythonResolver(ResolutionCallback rcb) {
|
|
return [=](const std::string& name) -> std::shared_ptr<SugaredValue> {
|
|
AutoGIL ag;
|
|
py::object obj = rcb(name);
|
|
if(obj.is(py::none())) {
|
|
return nullptr;
|
|
}
|
|
return std::make_shared<PythonValue>(obj);
|
|
};
|
|
}
|
|
|
|
// defines how modules/methods behave inside the script subset.
|
|
// for now this does not have any interaction with python.
|
|
// in the future, we will add the ability to resolve `self.foo` to python
|
|
// {functions, modules, contants} so this SugaredValue is defined here
|
|
// anticipating we will eventually need to replace Module with a py::object
|
|
// holding the actual nn.Module class.
|
|
|
|
// defines how a method obtained from a module behaves in script
|
|
struct MethodValue : public SugaredValue {
|
|
MethodValue(std::shared_ptr<Module> module, Method& method)
|
|
: module(std::move(module)) //insurance that method stays alive
|
|
, method(method) {}
|
|
std::string kind() const override {
|
|
return "method";
|
|
}
|
|
virtual std::vector<Value*> call(SourceRange loc, Method & caller, at::ArrayRef<Value*> inputs, List<Attribute> attributes, size_t n_outputs) override {
|
|
if(attributes.size() != 0) {
|
|
throw ErrorReport(loc) << "not yet implemented - calls to python functions using keyword arguments";
|
|
}
|
|
ensureSizeMatches(loc, caller.num_inputs(), inputs.size(), "inputs");
|
|
auto outputs = caller.emit_call_to(method, inputs);
|
|
ensureSizeMatches(loc, outputs.size(), n_outputs, "outputs");
|
|
return outputs;
|
|
}
|
|
private:
|
|
std::shared_ptr<Module> module;
|
|
Method& method;
|
|
|
|
};
|
|
|
|
|
|
struct ModuleValue : public SugaredValue {
|
|
ModuleValue(std::shared_ptr<Module> module)
|
|
: module(std::move(module)) {}
|
|
|
|
virtual std::string kind() const override {
|
|
return "module";
|
|
}
|
|
|
|
// select an attribute on it, e.g. `this.field`
|
|
virtual std::shared_ptr<SugaredValue> attr(SourceRange loc, Method & m, const std::string& field) override {
|
|
auto kind = module->find_attribute(field);
|
|
switch(kind) {
|
|
case NamedMember::None:
|
|
throw ErrorReport(loc) << "module has no attribute '" << field << "'";
|
|
case NamedMember::Module:
|
|
return std::make_shared<ModuleValue>(module->get_module(field));
|
|
case NamedMember::Method:
|
|
return std::make_shared<MethodValue>(module, module->get_method(field));
|
|
case NamedMember::Parameter:
|
|
return std::make_shared<SimpleValue>(m.get_or_add_parameter(module->parameter_slot(field)));
|
|
}
|
|
return nullptr; // silence warning
|
|
}
|
|
// call module.forward
|
|
virtual std::vector<Value*> call(SourceRange loc, Method & caller, at::ArrayRef<Value*> inputs, List<Attribute> attributes, size_t n_outputs) override {
|
|
return attr(loc, caller, "forward")->call(loc, caller, inputs, attributes, n_outputs);
|
|
}
|
|
private:
|
|
std::shared_ptr<Module> module;
|
|
};
|
|
|
|
// TODO: dedup with other init
|
|
|
|
// we cannot use the default py:cast<autograd::Variable> because it currently
|
|
// unwraps the data tensor in the conversion process
|
|
|
|
variable_tensor_list createVariableTensorList(py::tuple tuple, size_t reserve_extra_space = 0) {
|
|
variable_tensor_list result;
|
|
result.reserve(tuple.size() + reserve_extra_space);
|
|
for(auto e : tuple) {
|
|
result.push_back(py::cast<autograd::Variable>(e));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
py::object unpackVariableTensorList(std::vector<at::Tensor> outputs) {
|
|
// if we don't tell pybind these are variables it chokes on the
|
|
// conversion.
|
|
// TODO: fix conversions to be sane and make sure this works.
|
|
if(outputs.size() == 1) {
|
|
return py::cast(static_cast<autograd::Variable&>(outputs[0]));
|
|
} else {
|
|
py::tuple tuple(outputs.size());
|
|
for(size_t i = 0; i < outputs.size(); i++) {
|
|
tuple[i] = py::cast(static_cast<autograd::Variable&>(outputs[i]));
|
|
}
|
|
return tuple;
|
|
}
|
|
}
|
|
|
|
void initJitScriptBindings(PyObject* module) {
|
|
auto m = py::handle(module).cast<py::module>();
|
|
// torch.jit.ScriptModule is a subclass of this C++ object.
|
|
// Methods here are prefixed with _ since they should not be
|
|
// public.
|
|
py::class_<Module, std::shared_ptr<Module>>(m, "ScriptModule")
|
|
.def(py::init<bool>())
|
|
.def(
|
|
"_define",
|
|
[](Module& m,
|
|
const std::string& script,
|
|
ResolutionCallback rcb, bool has_self) {
|
|
auto self = has_self ? std::make_shared<ModuleValue>(m.shared_from_this()) : nullptr;
|
|
return defineMethodsInModule(m, script, pythonResolver(rcb), self);
|
|
})
|
|
.def("_create_method", [](Module& m, Def def, ResolutionCallback rcb) {
|
|
defineMethodsInModule(
|
|
m,
|
|
{ def },
|
|
pythonResolver(rcb),
|
|
std::make_shared<ModuleValue>(m.shared_from_this()));
|
|
})
|
|
.def("_get_method",
|
|
[](Module& self, const std::string& name) -> const Method& {
|
|
return self.get_method(name);
|
|
}, py::return_value_policy::reference_internal)
|
|
.def("_register_or_set_parameter", &Module::register_or_set_parameter)
|
|
.def("_register_module", &Module::register_module)
|
|
.def("_set_parameter", &Module::set_parameter)
|
|
.def("_get_parameter", &Module::get_parameter)
|
|
.def("_get_module", &Module::get_module)
|
|
.def("_get_attribute",[](Module& self, const std::string& name) -> py::object {
|
|
switch(self.find_attribute(name)) {
|
|
case NamedMember::Parameter:
|
|
return py::cast(static_cast<const autograd::Variable&>(self.get_parameter(name)));
|
|
case NamedMember::Module:
|
|
return py::cast(self.get_module(name));
|
|
case NamedMember::Method:
|
|
return py::cast(self.get_method(name), py::return_value_policy::reference_internal, py::cast(self));
|
|
case NamedMember::None:
|
|
default: {
|
|
return py::none();
|
|
}
|
|
}
|
|
});
|
|
|
|
py::class_<Method>(m, "ScriptMethod")
|
|
.def("graph", [&](Method& self) {
|
|
return self.graph();
|
|
})
|
|
.def("__call__", [](Method& m, py::args args) -> py::object {
|
|
auto inputs = createVariableTensorList(args);
|
|
auto outputs = m.run(std::move(inputs));
|
|
return unpackVariableTensorList(std::move(outputs));
|
|
});
|
|
|
|
m.def("_jit_script_compile", [](Def def, ResolutionCallback rcb) {
|
|
return compileFunction(def, pythonResolver(rcb));
|
|
});
|
|
}
|
|
|
|
} // namespace script
|
|
} // namespace jit
|
|
} // namespace torch
|