mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Updates flake8 to v6.1.0 and fixes a few lints using sed and some ruff tooling.
- Replace `assert(0)` with `raise AssertionError()`
- Remove extraneous parenthesis i.e.
- `assert(a == b)` -> `assert a == b`
- `if(x > y or y < z):`->`if x > y or y < z:`
- And `return('...')` -> `return '...'`
Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116591
Approved by: https://github.com/albanD, https://github.com/malfet
261 lines
9.1 KiB
Python
261 lines
9.1 KiB
Python
# Owner(s): ["oncall: jit"]
|
|
|
|
import os
|
|
import sys
|
|
import warnings
|
|
|
|
import torch
|
|
from typing import List, Dict, Optional
|
|
|
|
# Make the helper files in test/ importable
|
|
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
|
|
sys.path.append(pytorch_test_dir)
|
|
from torch.testing._internal.jit_utils import JitTestCase
|
|
|
|
if __name__ == '__main__':
|
|
raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
|
|
"\tpython test/test_jit.py TESTNAME\n\n"
|
|
"instead.")
|
|
|
|
class TestScriptModuleInstanceAttributeTypeAnnotation(JitTestCase):
|
|
|
|
# NB: There are no tests for `Tuple` or `NamedTuple` here. In fact,
|
|
# reassigning a non-empty Tuple to an attribute previously typed
|
|
# as containing an empty Tuple SHOULD fail. See note in `_check.py`
|
|
|
|
def test_annotated_falsy_base_type(self):
|
|
class M(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.x: int = 0
|
|
|
|
def forward(self, x: int):
|
|
self.x = x
|
|
return 1
|
|
|
|
with warnings.catch_warnings(record=True) as w:
|
|
self.checkModule(M(), (1,))
|
|
assert len(w) == 0
|
|
|
|
def test_annotated_nonempty_container(self):
|
|
class M(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.x: List[int] = [1, 2, 3]
|
|
|
|
def forward(self, x: List[int]):
|
|
self.x = x
|
|
return 1
|
|
|
|
with warnings.catch_warnings(record=True) as w:
|
|
self.checkModule(M(), ([1, 2, 3],))
|
|
assert len(w) == 0
|
|
|
|
def test_annotated_empty_tensor(self):
|
|
class M(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.x: torch.Tensor = torch.empty(0)
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
self.x = x
|
|
return self.x
|
|
|
|
with warnings.catch_warnings(record=True) as w:
|
|
self.checkModule(M(), (torch.rand(2, 3),))
|
|
assert len(w) == 0
|
|
|
|
def test_annotated_with_jit_attribute(self):
|
|
class M(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.x = torch.jit.Attribute([], List[int])
|
|
|
|
def forward(self, x: List[int]):
|
|
self.x = x
|
|
return self.x
|
|
|
|
with warnings.catch_warnings(record=True) as w:
|
|
self.checkModule(M(), ([1, 2, 3],))
|
|
assert len(w) == 0
|
|
|
|
def test_annotated_class_level_annotation_only(self):
|
|
class M(torch.nn.Module):
|
|
|
|
x: List[int]
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.x = []
|
|
|
|
def forward(self, y: List[int]):
|
|
self.x = y
|
|
return self.x
|
|
|
|
with warnings.catch_warnings(record=True) as w:
|
|
self.checkModule(M(), ([1, 2, 3],))
|
|
assert len(w) == 0
|
|
|
|
|
|
def test_annotated_class_level_annotation_and_init_annotation(self):
|
|
class M(torch.nn.Module):
|
|
|
|
x: List[int]
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.x: List[int] = []
|
|
|
|
def forward(self, y: List[int]):
|
|
self.x = y
|
|
return self.x
|
|
|
|
with warnings.catch_warnings(record=True) as w:
|
|
self.checkModule(M(), ([1, 2, 3],))
|
|
assert len(w) == 0
|
|
|
|
def test_annotated_class_level_jit_annotation(self):
|
|
class M(torch.nn.Module):
|
|
|
|
x: List[int]
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.x: List[int] = torch.jit.annotate(List[int], [])
|
|
|
|
def forward(self, y: List[int]):
|
|
self.x = y
|
|
return self.x
|
|
|
|
with warnings.catch_warnings(record=True) as w:
|
|
self.checkModule(M(), ([1, 2, 3],))
|
|
assert len(w) == 0
|
|
|
|
def test_annotated_empty_list(self):
|
|
class M(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.x: List[int] = []
|
|
|
|
def forward(self, x: List[int]):
|
|
self.x = x
|
|
return 1
|
|
|
|
with self.assertRaisesRegexWithHighlight(RuntimeError,
|
|
"Tried to set nonexistent attribute",
|
|
"self.x = x"):
|
|
with self.assertWarnsRegex(UserWarning, "doesn't support "
|
|
"instance-level annotations on "
|
|
"empty non-base types"):
|
|
torch.jit.script(M())
|
|
|
|
def test_annotated_empty_dict(self):
|
|
class M(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.x: Dict[str, int] = {}
|
|
|
|
def forward(self, x: Dict[str, int]):
|
|
self.x = x
|
|
return 1
|
|
|
|
with self.assertRaisesRegexWithHighlight(RuntimeError,
|
|
"Tried to set nonexistent attribute",
|
|
"self.x = x"):
|
|
with self.assertWarnsRegex(UserWarning, "doesn't support "
|
|
"instance-level annotations on "
|
|
"empty non-base types"):
|
|
torch.jit.script(M())
|
|
|
|
def test_annotated_empty_optional(self):
|
|
class M(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.x: Optional[str] = None
|
|
|
|
def forward(self, x: Optional[str]):
|
|
self.x = x
|
|
return 1
|
|
|
|
with self.assertRaisesRegexWithHighlight(RuntimeError,
|
|
"Wrong type for attribute assignment",
|
|
"self.x = x"):
|
|
with self.assertWarnsRegex(UserWarning, "doesn't support "
|
|
"instance-level annotations on "
|
|
"empty non-base types"):
|
|
torch.jit.script(M())
|
|
|
|
def test_annotated_with_jit_empty_list(self):
|
|
class M(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.x = torch.jit.annotate(List[int], [])
|
|
|
|
def forward(self, x: List[int]):
|
|
self.x = x
|
|
return 1
|
|
|
|
with self.assertRaisesRegexWithHighlight(RuntimeError,
|
|
"Tried to set nonexistent attribute",
|
|
"self.x = x"):
|
|
with self.assertWarnsRegex(UserWarning, "doesn't support "
|
|
"instance-level annotations on "
|
|
"empty non-base types"):
|
|
torch.jit.script(M())
|
|
|
|
def test_annotated_with_jit_empty_dict(self):
|
|
class M(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.x = torch.jit.annotate(Dict[str, int], {})
|
|
|
|
def forward(self, x: Dict[str, int]):
|
|
self.x = x
|
|
return 1
|
|
|
|
with self.assertRaisesRegexWithHighlight(RuntimeError,
|
|
"Tried to set nonexistent attribute",
|
|
"self.x = x"):
|
|
with self.assertWarnsRegex(UserWarning, "doesn't support "
|
|
"instance-level annotations on "
|
|
"empty non-base types"):
|
|
torch.jit.script(M())
|
|
|
|
def test_annotated_with_jit_empty_optional(self):
|
|
class M(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.x = torch.jit.annotate(Optional[str], None)
|
|
|
|
def forward(self, x: Optional[str]):
|
|
self.x = x
|
|
return 1
|
|
|
|
with self.assertRaisesRegexWithHighlight(RuntimeError,
|
|
"Wrong type for attribute assignment",
|
|
"self.x = x"):
|
|
with self.assertWarnsRegex(UserWarning, "doesn't support "
|
|
"instance-level annotations on "
|
|
"empty non-base types"):
|
|
torch.jit.script(M())
|
|
|
|
def test_annotated_with_torch_jit_import(self):
|
|
from torch import jit
|
|
|
|
class M(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.x = jit.annotate(Optional[str], None)
|
|
|
|
def forward(self, x: Optional[str]):
|
|
self.x = x
|
|
return 1
|
|
|
|
with self.assertRaisesRegexWithHighlight(RuntimeError,
|
|
"Wrong type for attribute assignment",
|
|
"self.x = x"):
|
|
with self.assertWarnsRegex(UserWarning, "doesn't support "
|
|
"instance-level annotations on "
|
|
"empty non-base types"):
|
|
torch.jit.script(M())
|