pytorch/test/cpp/api/dataloader.cpp
Thiago Crepaldi 3d4d7b9082 Refactor ChunkDataReader API + fix missing headers (#19485)
Summary:
This PR restricts the BatchType template argument of ChunkDataReader to STL
vectors only. Internally, ChunkDataReader was assuming BatchType was a
vector, but the user could pass any type to the template argument,
leading to compiling issues during CPP extensions.

Additionally to the proposed API change, this PR adds missing include
headers to chunk.h. Currently the current implementation works but if
users try to create C++ extensions that implements new ChunkDataReaders
to be along with the existing ChunkDataset, the build will fail due to
the missing headers.

In terms of functionality, nothing has changed. This PR simply makes the
implementation slightly more robust for future extensions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19485

Differential Revision: D15261725

Pulled By: soumith

fbshipit-source-id: 38c9465d665392ae6a2d12c5a520a4f501e1a6ca
2019-05-08 22:20:19 -07:00

1883 lines
59 KiB
C++

#include <gtest/gtest.h>
#include <torch/data.h>
#include <torch/data/detail/sequencers.h>
#include <torch/serialize.h>
#include <torch/types.h>
#include <test/cpp/api/support.h>
#include <c10/util/ArrayRef.h>
#include <algorithm>
#include <chrono>
#include <future>
#include <iostream>
#include <iterator>
#include <limits>
#include <mutex>
#include <numeric>
#include <stdexcept>
#include <string>
#include <thread>
#include <unordered_set>
#include <vector>
using namespace torch::data; // NOLINT
const std::chrono::milliseconds kMillisecond(1);
struct DummyDataset : datasets::Dataset<DummyDataset, int> {
explicit DummyDataset(size_t size = 100) : size_(size) {}
int get(size_t index) override {
return 1 + index;
}
torch::optional<size_t> size() const override {
return size_;
}
size_t size_;
};
TEST(DataTest, DatasetCallsGetCorrectly) {
DummyDataset d;
std::vector<int> batch = d.get_batch({0, 1, 2, 3, 4});
std::vector<int> expected = {1, 2, 3, 4, 5};
ASSERT_EQ(batch, expected);
}
TEST(DataTest, TransformCallsGetApplyCorrectly) {
struct T : transforms::Transform<int, std::string> {
std::string apply(int input) override {
return std::to_string(input);
}
};
auto d = DummyDataset{}.map(T{});
std::vector<std::string> batch = d.get_batch({0, 1, 2, 3, 4});
std::vector<std::string> expected = {"1", "2", "3", "4", "5"};
ASSERT_EQ(batch, expected);
}
// dummy chunk data reader with 3 chunks and 35 examples in total. Each chunk
// contains 10, 5, 20 examples respectively.
struct DummyChunkDataReader
: public datasets::ChunkDataReader<int> {
public:
using BatchType = datasets::ChunkDataReader<int>::ChunkType;
using DataType = datasets::ChunkDataReader<int>::ExampleType;
/// Read an entire chunk.
BatchType read_chunk(size_t chunk_index) override {
BatchType batch_data;
int start_index = chunk_index == 0
? 0
: std::accumulate(chunk_sizes, chunk_sizes + chunk_index, 0);
batch_data.resize(chunk_sizes[chunk_index]);
std::iota(batch_data.begin(), batch_data.end(), start_index);
return batch_data;
}
size_t chunk_count() override {
return chunk_count_;
};
void reset() override{};
const static size_t chunk_count_ = 3;
size_t chunk_sizes[chunk_count_] = {10, 5, 20};
};
TEST(DataTest, ChunkDataSetWithInvalidInitParameter) {
DummyChunkDataReader data_reader;
samplers::SequentialSampler sampler(0);
auto initialization_function =
[&](size_t preloader_count, size_t batch_size, size_t cache_size) {
datasets::SharedBatchDataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>
dataset = datasets::make_shared_dataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>(
data_reader,
sampler,
sampler,
datasets::ChunkDatasetOptions(
preloader_count, batch_size, cache_size));
};
ASSERT_THROWS_WITH(
initialization_function(0, 1, 1),
"Preloader count is 0. At least one preloader needs to be specified.");
ASSERT_THROWS_WITH(
initialization_function(1, 0, 1),
"Batch size is 0. A positive batch size needs to be specified.");
ASSERT_THROWS_WITH(
initialization_function(1, 1, 0),
"Cache size is 0. A positive cache size needs to be specified.");
ASSERT_THROWS_WITH(
initialization_function(1, 10, 5),
"Cache size is less than batch size. Cache needs to be large enough to "
"hold at least one batch.");
}
struct InfiniteStreamDataset
: datasets::StreamDataset<InfiniteStreamDataset, std::vector<int>> {
std::vector<int> get_batch(size_t batch_size) override {
std::vector<int> batch(batch_size);
for (auto& i : batch) {
i = counter++;
}
return batch;
}
torch::optional<size_t> size() const override {
return torch::nullopt;
}
size_t counter = 0;
};
TEST(DataTest, InfiniteStreamDataset) {
const size_t kBatchSize = 13;
auto dataset = InfiniteStreamDataset().map(
transforms::Lambda<int>([](int x) { return x + 1; }));
auto data_loader = torch::data::make_data_loader(
std::move(dataset),
samplers::StreamSampler(/*epoch_size=*/39),
kBatchSize);
size_t batch_index = 0;
for (auto& batch : *data_loader) {
ASSERT_LT(batch_index, 3);
ASSERT_EQ(batch.size(), kBatchSize);
for (size_t j = 0; j < kBatchSize; ++j) {
ASSERT_EQ(batch.at(j), 1 + (batch_index * kBatchSize) + j);
}
batch_index += 1;
}
ASSERT_EQ(batch_index, 3);
}
TEST(DataTest, NoSequencerIsIdentity) {
using namespace torch::data::detail::sequencers; // NOLINT
NoSequencer<int> no_sequencer;
const auto value = no_sequencer.next([] { return 5; }).value();
ASSERT_EQ(value, 5);
}
TEST(DataTest, OrderedSequencerIsSetUpWell) {
using namespace torch::data::detail::sequencers; // NOLINT
struct S {
size_t sequence_number;
};
const size_t kMaxJobs = 5;
OrderedSequencer<S> sequencer(kMaxJobs);
ASSERT_EQ(sequencer.next_sequence_number_, 0);
ASSERT_EQ(sequencer.buffer_.size(), kMaxJobs);
}
TEST(DataTest, OrderedSequencerReOrdersValues) {
using namespace torch::data::detail::sequencers; // NOLINT
struct S {
size_t sequence_number;
};
const size_t kMaxJobs = 5;
OrderedSequencer<S> sequencer(kMaxJobs);
std::vector<size_t> v = {0, 2, 4, 3, 1};
size_t index = 0;
auto getter = [&v, &index]() { return S{v.at(index++)}; };
// Let's say the sequence number matches for the batch one, then it should
// return immediately.
const auto batch = sequencer.next(getter);
ASSERT_EQ(batch.value().sequence_number, 0);
ASSERT_EQ(index, 1);
// Now it should call the getter until it gets the next value.
ASSERT_EQ(1, sequencer.next(getter).value().sequence_number);
ASSERT_EQ(index, 5);
// The next three should come in order.
for (size_t i = 2; i <= 4; ++i) {
// New value doesn't matter. In fact, it shouldn't be accessed.
ASSERT_EQ(i, sequencer.next(getter).value().sequence_number);
// The index doesn't change.
ASSERT_EQ(index, 5);
}
}
TEST(DataTest, BatchLambdaAppliesFunctionToBatch) {
using InputBatch = std::vector<int>;
using OutputBatch = std::string;
DummyDataset d;
auto e = d.map(transforms::BatchLambda<InputBatch, OutputBatch>(
[](std::vector<int> input) {
return std::to_string(std::accumulate(input.begin(), input.end(), 0));
}));
ASSERT_EQ(e.get_batch({1, 2, 3, 4, 5}), std::string("20"));
}
TEST(DataTest, LambdaAppliesFunctionToExample) {
auto d = DummyDataset().map(transforms::Lambda<int, std::string>(
static_cast<std::string (*)(int)>(std::to_string)));
std::vector<std::string> expected = {"1", "2", "3", "4", "5"};
ASSERT_EQ(d.get_batch({0, 1, 2, 3, 4}), expected);
}
TEST(DataTest, CollateReducesBatch) {
auto d =
DummyDataset().map(transforms::Collate<int>([](std::vector<int> input) {
return std::accumulate(input.begin(), input.end(), 0);
}));
ASSERT_EQ(d.get_batch({1, 2, 3, 4, 5}), 20);
}
TEST(DataTest, CollationReducesBatch) {
struct Summer : transforms::Collation<int> {
int apply_batch(std::vector<int> input) override {
return std::accumulate(input.begin(), input.end(), 0);
}
};
auto d = DummyDataset().map(Summer{});
ASSERT_EQ(d.get_batch({1, 2, 3, 4, 5}), 20);
}
TEST(DataTest, SequentialSamplerReturnsIndicesInOrder) {
samplers::SequentialSampler sampler(10);
ASSERT_EQ(sampler.next(3).value(), std::vector<size_t>({0, 1, 2}));
ASSERT_EQ(sampler.next(5).value(), std::vector<size_t>({3, 4, 5, 6, 7}));
ASSERT_EQ(sampler.next(2).value(), std::vector<size_t>({8, 9}));
ASSERT_FALSE(sampler.next(2).has_value());
}
TEST(DataTest, SequentialSamplerReturnsLessValuesForLastBatch) {
samplers::SequentialSampler sampler(5);
ASSERT_EQ(sampler.next(3).value(), std::vector<size_t>({0, 1, 2}));
ASSERT_EQ(sampler.next(100).value(), std::vector<size_t>({3, 4}));
ASSERT_FALSE(sampler.next(2).has_value());
}
TEST(DataTest, SequentialSamplerResetsWell) {
samplers::SequentialSampler sampler(5);
ASSERT_EQ(sampler.next(5).value(), std::vector<size_t>({0, 1, 2, 3, 4}));
ASSERT_FALSE(sampler.next(2).has_value());
sampler.reset();
ASSERT_EQ(sampler.next(5).value(), std::vector<size_t>({0, 1, 2, 3, 4}));
ASSERT_FALSE(sampler.next(2).has_value());
}
TEST(DataTest, SequentialSamplerResetsWithNewSizeWell) {
samplers::SequentialSampler sampler(5);
ASSERT_EQ(sampler.next(5).value(), std::vector<size_t>({0, 1, 2, 3, 4}));
ASSERT_FALSE(sampler.next(2).has_value());
sampler.reset(7);
ASSERT_EQ(
sampler.next(7).value(), std::vector<size_t>({0, 1, 2, 3, 4, 5, 6}));
ASSERT_FALSE(sampler.next(2).has_value());
sampler.reset(3);
ASSERT_EQ(sampler.next(3).value(), std::vector<size_t>({0, 1, 2}));
ASSERT_FALSE(sampler.next(2).has_value());
}
TEST(DataTest, CanSaveAndLoadSequentialSampler) {
{
samplers::SequentialSampler a(10);
ASSERT_EQ(a.index(), 0);
std::stringstream stream;
torch::save(a, stream);
samplers::SequentialSampler b(10);
torch::load(b, stream);
ASSERT_EQ(b.index(), 0);
}
{
samplers::SequentialSampler a(10);
a.next(3);
a.next(4);
ASSERT_EQ(a.index(), 7);
std::stringstream stream;
torch::save(a, stream);
samplers::SequentialSampler b(10);
torch::load(b, stream);
ASSERT_EQ(b.index(), 7);
}
}
TEST(DataTest, RandomSamplerReturnsIndicesInCorrectRange) {
samplers::RandomSampler sampler(10);
std::vector<size_t> indices = sampler.next(3).value();
for (auto i : indices) {
ASSERT_GE(i, 0);
ASSERT_LT(i, 10);
}
indices = sampler.next(5).value();
for (auto i : indices) {
ASSERT_GE(i, 0);
ASSERT_LT(i, 10);
}
indices = sampler.next(2).value();
for (auto i : indices) {
ASSERT_GE(i, 0);
ASSERT_LT(i, 10);
}
ASSERT_FALSE(sampler.next(10).has_value());
}
TEST(DataTest, RandomSamplerReturnsLessValuesForLastBatch) {
samplers::RandomSampler sampler(5);
ASSERT_EQ(sampler.next(3).value().size(), 3);
ASSERT_EQ(sampler.next(100).value().size(), 2);
ASSERT_FALSE(sampler.next(2).has_value());
}
TEST(DataTest, RandomSamplerResetsWell) {
samplers::RandomSampler sampler(5);
ASSERT_EQ(sampler.next(5).value().size(), 5);
ASSERT_FALSE(sampler.next(2).has_value());
sampler.reset();
ASSERT_EQ(sampler.next(5).value().size(), 5);
ASSERT_FALSE(sampler.next(2).has_value());
}
TEST(DataTest, RandomSamplerResetsWithNewSizeWell) {
samplers::RandomSampler sampler(5);
ASSERT_EQ(sampler.next(5).value().size(), 5);
ASSERT_FALSE(sampler.next(2).has_value());
sampler.reset(7);
ASSERT_EQ(sampler.next(7).value().size(), 7);
ASSERT_FALSE(sampler.next(2).has_value());
sampler.reset(3);
ASSERT_EQ(sampler.next(3).value().size(), 3);
ASSERT_FALSE(sampler.next(2).has_value());
}
TEST(DataTest, SavingAndLoadingRandomSamplerYieldsSameSequence) {
{
samplers::RandomSampler a(10);
std::stringstream stream;
torch::save(a, stream);
samplers::RandomSampler b(10);
torch::load(b, stream);
ASSERT_EQ(a.next(10).value(), b.next(10).value());
}
{
samplers::RandomSampler a(10);
a.next(3);
ASSERT_EQ(a.index(), 3);
std::stringstream stream;
torch::save(a, stream);
samplers::RandomSampler b(10);
torch::load(b, stream);
ASSERT_EQ(b.index(), 3);
auto b_sequence = b.next(10).value();
ASSERT_EQ(b_sequence.size(), 7);
ASSERT_EQ(a.next(10).value(), b_sequence);
}
}
TEST(DataTest, StreamSamplerReturnsTheBatchSizeAndThenRemainder) {
samplers::StreamSampler sampler(/*epoch_size=*/100);
ASSERT_EQ(sampler.next(10).value(), 10);
ASSERT_EQ(sampler.next(2).value(), 2);
ASSERT_EQ(sampler.next(85).value(), 85);
ASSERT_EQ(sampler.next(123).value(), 3);
ASSERT_FALSE(sampler.next(1).has_value());
}
TEST(DataTest, StreamSamplerResetsWell) {
samplers::StreamSampler sampler(/*epoch_size=*/5);
ASSERT_EQ(sampler.next(5).value().size(), 5);
ASSERT_FALSE(sampler.next(2).has_value());
sampler.reset();
ASSERT_EQ(sampler.next(5).value().size(), 5);
ASSERT_FALSE(sampler.next(2).has_value());
}
TEST(DataTest, StreamSamplerResetsWithNewSizeWell) {
samplers::StreamSampler sampler(/*epoch_size=*/5);
ASSERT_EQ(sampler.next(5).value().size(), 5);
ASSERT_FALSE(sampler.next(2).has_value());
sampler.reset(7);
ASSERT_EQ(sampler.next(7).value().size(), 7);
ASSERT_FALSE(sampler.next(2).has_value());
sampler.reset(3);
ASSERT_EQ(sampler.next(3).value().size(), 3);
ASSERT_FALSE(sampler.next(2).has_value());
}
TEST(DataTest, TensorDatasetConstructsFromSingleTensor) {
datasets::TensorDataset dataset(torch::eye(5));
ASSERT_TRUE(
torch::tensor({0, 0, 1, 0, 0}, torch::kFloat32).allclose(dataset.get(2)));
}
TEST(DataTest, TensorDatasetConstructsFromInitializerListOfTensors) {
std::vector<torch::Tensor> vector = torch::eye(5).chunk(5);
datasets::TensorDataset dataset(vector);
ASSERT_TRUE(
torch::tensor({0, 0, 1, 0, 0}, torch::kFloat32).allclose(dataset.get(2)));
}
TEST(DataTest, StackTransformWorksForExample) {
struct D : public datasets::Dataset<D> {
Example<> get(size_t index) override {
return {tensor[index], 1 + tensor[index]};
}
torch::optional<size_t> size() const override {
return tensor.size(0);
}
torch::Tensor tensor{torch::eye(4)};
};
auto d = D().map(transforms::Stack<Example<>>());
Example<> batch = d.get_batch({0, 1});
ASSERT_TRUE(batch.data.allclose(torch::eye(4).slice(/*dim=*/0, 0, 2)));
ASSERT_TRUE(batch.target.allclose(1 + torch::eye(4).slice(/*dim=*/0, 0, 2)));
Example<> second = d.get_batch({2, 3});
ASSERT_TRUE(second.data.allclose(torch::eye(4).slice(/*dim=*/0, 2, 4)));
ASSERT_TRUE(second.target.allclose(1 + torch::eye(4).slice(/*dim=*/0, 2, 4)));
}
TEST(DataTest, StackTransformWorksForTensorExample) {
auto d = datasets::TensorDataset(torch::eye(4))
.map(transforms::Stack<TensorExample>());
TensorExample batch = d.get_batch({0, 1});
ASSERT_TRUE(batch.data.allclose(torch::eye(4).slice(/*dim=*/0, 0, 2)));
TensorExample second = d.get_batch({2, 3});
ASSERT_TRUE(second.data.allclose(torch::eye(4).slice(/*dim=*/0, 2, 4)));
}
// Template classes cannot be nested in functions.
template <typename Target>
struct T : transforms::TensorTransform<Target> {
torch::Tensor operator()(torch::Tensor input) override {
return input * 2;
}
};
struct TensorStringDataset
: datasets::
Dataset<TensorStringDataset, Example<torch::Tensor, std::string>> {
Example<torch::Tensor, std::string> get(size_t index) override {
return {torch::tensor(static_cast<double>(index)), std::to_string(index)};
}
torch::optional<size_t> size() const override {
return 100;
}
};
TEST(DataTest, TensorTransformWorksForAnyTargetType) {
auto d = TensorStringDataset().map(T<std::string>{});
std::vector<Example<torch::Tensor, std::string>> batch = d.get_batch({1, 2});
ASSERT_EQ(batch.size(), 2);
ASSERT_TRUE(batch[0].data.allclose(torch::tensor(2.0)));
ASSERT_EQ(batch[0].target, "1");
ASSERT_TRUE(batch[1].data.allclose(torch::tensor(4.0)));
ASSERT_EQ(batch[1].target, "2");
}
TEST(DataTest, TensorLambdaWorksforAnyTargetType) {
auto d = TensorStringDataset().map(transforms::TensorLambda<std::string>(
[](torch::Tensor input) { return input * 2; }));
std::vector<Example<torch::Tensor, std::string>> batch = d.get_batch({1, 2});
ASSERT_EQ(batch.size(), 2);
ASSERT_TRUE(batch[0].data.allclose(torch::tensor(2.0)));
ASSERT_EQ(batch[0].target, "1");
ASSERT_TRUE(batch[1].data.allclose(torch::tensor(4.0)));
ASSERT_EQ(batch[1].target, "2");
}
struct DummyTensorDataset
: datasets::Dataset<DummyTensorDataset, Example<torch::Tensor, int>> {
Example<torch::Tensor, int> get(size_t index) override {
const auto channels = static_cast<int64_t>(index);
torch::Tensor tensor =
(channels > 0) ? torch::ones({channels, 4, 4}) : torch::ones({4, 4});
return {tensor, static_cast<int>(channels)};
}
torch::optional<size_t> size() const override {
return 100;
}
};
TEST(DataTest, NormalizeTransform) {
auto dataset = DummyTensorDataset().map(transforms::Normalize<int>(0.5, 0.1));
// Works for zero (one implicit) channels
std::vector<Example<torch::Tensor, int>> output = dataset.get_batch(0);
ASSERT_EQ(output.size(), 1);
// (1 - 0.5) / 0.1 = 5
ASSERT_TRUE(output[0].data.allclose(torch::ones({4, 4}) * 5))
<< output[0].data;
// Works for one explicit channel
output = dataset.get_batch(1);
ASSERT_EQ(output.size(), 1);
ASSERT_EQ(output[0].data.size(0), 1);
ASSERT_TRUE(output[0].data.allclose(torch::ones({1, 4, 4}) * 5))
<< output[0].data;
// Works for two channels with different moments
dataset = DummyTensorDataset().map(
transforms::Normalize<int>({0.5, 1.5}, {0.1, 0.2}));
output = dataset.get_batch(2);
ASSERT_EQ(output.size(), 1);
ASSERT_EQ(output[0].data.size(0), 2);
ASSERT_TRUE(output[0]
.data.slice(/*dim=*/0, /*start=*/0, /*end=*/1)
.allclose(torch::ones({1, 4, 4}) * 5))
<< output[0].data;
ASSERT_TRUE(output[0]
.data.slice(/*dim=*/0, /*start=*/1)
.allclose(torch::ones({1, 4, 4}) * -2.5))
<< output[0].data;
// Works for three channels with one moment value
dataset = DummyTensorDataset().map(transforms::Normalize<int>(1.5, 0.2));
output = dataset.get_batch(3);
ASSERT_EQ(output.size(), 1);
ASSERT_EQ(output[0].data.size(0), 3);
ASSERT_TRUE(output[0].data.allclose(torch::ones({3, 4, 4}) * -2.5))
<< output[0].data;
// Works for three channels with different moments
dataset = DummyTensorDataset().map(
transforms::Normalize<int>({0.5, 1.5, -1.5}, {0.1, 0.2, 0.2}));
output = dataset.get_batch(3);
ASSERT_EQ(output.size(), 1);
ASSERT_EQ(output[0].data.size(0), 3);
ASSERT_TRUE(output[0]
.data.slice(/*dim=*/0, /*start=*/0, /*end=*/1)
.allclose(torch::ones({1, 4, 4}) * 5))
<< output[0].data;
ASSERT_TRUE(output[0]
.data.slice(/*dim=*/0, /*start=*/1, /*end=*/2)
.allclose(torch::ones({1, 4, 4}) * -2.5))
<< output[0].data;
ASSERT_TRUE(output[0]
.data.slice(/*dim=*/0, /*start=*/2)
.allclose(torch::ones({1, 4, 4}) * 12.5))
<< output[0].data;
}
struct UnCopyableDataset : public datasets::Dataset<UnCopyableDataset> {
UnCopyableDataset() = default;
UnCopyableDataset(const UnCopyableDataset&) = delete;
UnCopyableDataset& operator=(const UnCopyableDataset&) = delete;
UnCopyableDataset(UnCopyableDataset&&) = default;
UnCopyableDataset& operator=(UnCopyableDataset&&) = default;
~UnCopyableDataset() = default;
Example<> get(size_t index) override {
return {torch::tensor(static_cast<int64_t>(index)),
torch::tensor(static_cast<int64_t>(index))};
}
torch::optional<size_t> size() const override {
return 100;
}
};
TEST(DataTest, MapDoesNotCopy) {
auto dataset = UnCopyableDataset()
.map(transforms::TensorLambda<>(
[](torch::Tensor tensor) { return tensor + 1; }))
.map(transforms::TensorLambda<>(
[](torch::Tensor tensor) { return tensor + 2; }))
.map(transforms::TensorLambda<>(
[](torch::Tensor tensor) { return tensor + 3; }));
auto data = dataset.get_batch(1).at(0).data;
ASSERT_EQ(data.numel(), 1);
ASSERT_EQ(data[0].item<float>(), 7);
}
TEST(DataTest, QueuePushAndPopFromSameThread) {
torch::data::detail::Queue<int> queue;
queue.push(1);
queue.push(2);
ASSERT_EQ(queue.pop(), 1);
ASSERT_EQ(queue.pop(), 2);
}
TEST(DataTest, QueuePopWithTimeoutThrowsUponTimeout) {
torch::data::detail::Queue<int> queue;
ASSERT_THROWS_WITH(
queue.pop(10 * kMillisecond),
"Timeout in DataLoader queue while waiting for next batch "
"(timeout was 10 ms)");
}
TEST(DataTest, QueuePushAndPopFromDifferentThreads) {
using torch::data::detail::Queue;
// First test: push batch and the pop in thread.
{
Queue<int> queue;
queue.push(1);
auto future =
std::async(std::launch::async, [&queue] { return queue.pop(); });
ASSERT_EQ(future.get(), 1);
}
// Second test: attempt to pop batch (and block), then push.
{
Queue<int> queue;
std::thread thread([&queue] {
std::this_thread::sleep_for(20 * kMillisecond);
queue.push(123);
});
ASSERT_EQ(queue.pop(), 123);
thread.join();
}
}
TEST(DataTest, QueueClearEmptiesTheQueue) {
torch::data::detail::Queue<int> queue;
queue.push(1);
queue.push(2);
queue.push(3);
ASSERT_EQ(queue.clear(), 3);
ASSERT_THROWS_WITH(queue.pop(1 * kMillisecond), "Timeout");
}
TEST(DataTest, DataShuttleCanPushAndPopJob) {
torch::data::detail::DataShuttle<int, int> shuttle;
shuttle.push_job(1);
shuttle.push_job(2);
ASSERT_EQ(shuttle.pop_job(), 1);
ASSERT_EQ(shuttle.pop_job(), 2);
}
TEST(DataTest, DataShuttleCanPushAndPopResult) {
torch::data::detail::DataShuttle<int, int> shuttle;
// pop_result() will only attempt to pop if there was a push_job() batch.
shuttle.push_job(1);
shuttle.push_job(2);
shuttle.pop_job();
shuttle.push_result(1);
ASSERT_EQ(shuttle.pop_result().value(), 1);
shuttle.pop_job();
shuttle.push_result(2);
ASSERT_EQ(shuttle.pop_result().value(), 2);
}
TEST(DataTest, DataShuttlePopResultReturnsNulloptWhenNoJobsInFlight) {
torch::data::detail::DataShuttle<int, int> shuttle;
ASSERT_FALSE(shuttle.pop_result().has_value());
shuttle.push_job(1);
shuttle.pop_job();
shuttle.push_result(1);
ASSERT_EQ(shuttle.pop_result().value(), 1);
ASSERT_FALSE(shuttle.pop_result().has_value());
ASSERT_FALSE(shuttle.pop_result().has_value());
}
TEST(DataTest, DataShuttleDrainMeansPopResultReturnsNullopt) {
torch::data::detail::DataShuttle<int, int> shuttle;
shuttle.push_job(1);
shuttle.push_result(1);
shuttle.drain();
ASSERT_FALSE(shuttle.pop_result().has_value());
}
TEST(DataTest, DataShuttlePopResultTimesOut) {
torch::data::detail::DataShuttle<int, int> shuttle;
shuttle.push_job(1);
ASSERT_THROWS_WITH(shuttle.pop_result(10 * kMillisecond), "Timeout");
}
struct UncopyableDataset : datasets::Dataset<UncopyableDataset, int> {
UncopyableDataset(const std::string& /* unused */) {}
UncopyableDataset(UncopyableDataset&&) = default;
UncopyableDataset& operator=(UncopyableDataset&&) = default;
UncopyableDataset(const UncopyableDataset&) = delete;
UncopyableDataset& operator=(const UncopyableDataset&) = delete;
int get(size_t index) override {
return 1 + index;
}
torch::optional<size_t> size() const override {
return 100;
}
};
TEST(DataTest, SharedBatchDatasetReallyIsShared) {
// This test will only compile if we really are not making any copies.
// There is otherwise no logic to test and because it is not deterministic
// how many and when worker threads access the shareddataset, we don't have
// any additional assertions here.
auto shared_dataset =
torch::data::datasets::make_shared_dataset<UncopyableDataset>(
"uncopyable");
auto data_loader = torch::data::make_data_loader(
shared_dataset, torch::data::DataLoaderOptions().workers(3));
for (auto batch : *data_loader) {
/* exhaust */
}
}
TEST(DataTest, SharedBatchDatasetDoesNotIncurCopyWhenPassedDatasetObject) {
// This will not compile if a copy is made.
auto shared_dataset =
torch::data::datasets::make_shared_dataset<UncopyableDataset>(
UncopyableDataset("uncopyable"));
ASSERT_EQ(shared_dataset.size().value(), 100);
}
struct TestIndex : public torch::data::samplers::CustomBatchRequest {
explicit TestIndex(size_t offset, std::vector<size_t> index)
: offset(offset), index(std::move(index)) {}
size_t size() const override {
return index.size();
}
size_t offset;
std::vector<size_t> index;
};
struct TestIndexDataset
: datasets::BatchDataset<TestIndexDataset, std::vector<int>, TestIndex> {
explicit TestIndexDataset(size_t size) : data(size) {
std::iota(data.begin(), data.end(), size_t(0));
}
std::vector<int> get_batch(TestIndex index) override {
std::vector<int> batch;
for (auto i : index.index) {
batch.push_back(index.offset + data.at(i));
}
return batch;
}
torch::optional<size_t> size() const override {
return data.size();
}
std::vector<int> data;
};
struct TestIndexSampler : public samplers::Sampler<TestIndex> {
explicit TestIndexSampler(size_t size) : size_(size) {}
void reset(torch::optional<size_t> new_size = torch::nullopt) override {}
torch::optional<TestIndex> next(size_t batch_size) override {
if (index_ >= size_) {
return torch::nullopt;
}
std::vector<size_t> indices(batch_size);
std::iota(indices.begin(), indices.end(), size_t(0));
index_ += batch_size;
return TestIndex(batch_size, std::move(indices));
}
void save(torch::serialize::OutputArchive& archive) const override {}
void load(torch::serialize::InputArchive& archive) override {}
size_t index_ = 0;
size_t size_;
};
TEST(DataTest, CanUseCustomTypeAsIndexType) {
const int kBatchSize = 10;
auto data_loader = torch::data::make_data_loader(
TestIndexDataset(23), TestIndexSampler(23), kBatchSize);
size_t i = 0;
for (auto batch : *data_loader) {
for (int j = 0; j < kBatchSize; ++j) {
ASSERT_EQ(batch.at(j), 10 + j);
}
i += 1;
}
}
TEST(DataTest, DistributedRandomSamplerSingleReplicaProduceCorrectSamples) {
size_t sample_count = 10;
samplers::DistributedRandomSampler drs(sample_count);
std::vector<size_t> res;
torch::optional<std::vector<size_t>> idx;
while ((idx = drs.next(3)).has_value()) {
res.insert(std::end(res), std::begin(*idx), std::end(*idx));
}
ASSERT_EQ(res.size(), sample_count);
std::sort(res.begin(), res.end());
for (size_t i = 0; i < res.size(); ++i) {
ASSERT_EQ(res[i], i);
}
}
TEST(DataTest, DistributedRandomSamplerMultiReplicaProduceCorrectSamples) {
size_t sample_count = 10;
size_t num_replicas = 3;
auto test_function = [&](bool allow_duplicates,
size_t local_sample_count,
std::vector<size_t>& output,
size_t batch_size) {
std::vector<std::unique_ptr<samplers::DistributedRandomSampler>> samplers;
for (size_t i = 0; i < num_replicas; ++i) {
samplers.emplace_back(
torch::make_unique<samplers::DistributedRandomSampler>(
sample_count, num_replicas, i, allow_duplicates));
}
std::vector<size_t> res;
for (size_t i = 0; i < num_replicas; ++i) {
(*samplers[i]).reset();
torch::optional<std::vector<size_t>> idx;
while ((idx = (*samplers[i]).next(batch_size)).has_value()) {
res.insert(std::end(res), std::begin(*idx), std::end(*idx));
}
ASSERT_EQ(res.size(), local_sample_count * (i + 1));
}
std::sort(res.begin(), res.end());
ASSERT_EQ(res, output);
};
for (size_t batch_size = 1; batch_size <= 3; ++batch_size) {
size_t local_sample_count =
static_cast<size_t>(std::ceil(sample_count * 1.0 / num_replicas));
std::vector<size_t> output1{0, 0, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9};
test_function(true, local_sample_count, output1, batch_size);
local_sample_count =
static_cast<size_t>(std::floor(sample_count * 1.0 / num_replicas));
std::vector<size_t> output2{0, 1, 2, 3, 4, 5, 6, 7, 8};
test_function(false, local_sample_count, output2, batch_size);
}
}
TEST(DataTest, CanSaveAndLoadDistributedRandomSampler) {
{
samplers::DistributedRandomSampler a(10);
ASSERT_EQ(a.index(), 0);
std::stringstream stream;
torch::save(a, stream);
samplers::DistributedRandomSampler b(10);
torch::load(b, stream);
ASSERT_EQ(b.index(), 0);
}
{
samplers::DistributedRandomSampler a(10);
a.next(3);
a.next(4);
ASSERT_EQ(a.index(), 7);
std::stringstream stream;
torch::save(a, stream);
samplers::DistributedRandomSampler b(10);
torch::load(b, stream);
ASSERT_EQ(b.index(), 7);
}
{
samplers::DistributedRandomSampler a(10);
a.set_epoch(3);
std::stringstream stream;
torch::save(a, stream);
samplers::DistributedRandomSampler b(10);
torch::load(b, stream);
ASSERT_EQ(b.epoch(), 3);
}
}
TEST(DataTest, DistributedSequentialSamplerSingleReplicaProduceCorrectSamples) {
size_t sample_count = 10;
size_t batch_size = 3;
samplers::DistributedSequentialSampler dss(sample_count);
std::vector<size_t> res;
torch::optional<std::vector<size_t>> idx;
while ((idx = dss.next(batch_size)).has_value()) {
res.insert(std::end(res), std::begin(*idx), std::end(*idx));
}
ASSERT_EQ(res.size(), sample_count);
std::sort(res.begin(), res.end());
for (size_t i = 0; i < res.size(); ++i) {
ASSERT_EQ(res[i], i);
}
}
TEST(DataTest, DistributedSequentialSamplerMultiReplicaProduceCorrectSamples) {
size_t sample_count = 10;
size_t num_replicas = 3;
auto test_function = [&](bool allow_duplicates,
size_t local_sample_count,
std::vector<size_t>& output,
size_t batch_size) {
std::vector<std::unique_ptr<samplers::DistributedSequentialSampler>>
samplers;
for (size_t i = 0; i < num_replicas; ++i) {
samplers.emplace_back(
torch::make_unique<samplers::DistributedSequentialSampler>(
sample_count, num_replicas, i, allow_duplicates));
}
std::vector<size_t> res;
for (size_t i = 0; i < num_replicas; ++i) {
(*samplers[i]).reset();
torch::optional<std::vector<size_t>> idx;
while ((idx = (*samplers[i]).next(batch_size)).has_value()) {
res.insert(std::end(res), std::begin(*idx), std::end(*idx));
}
ASSERT_EQ(res.size(), local_sample_count * (i + 1));
}
std::sort(res.begin(), res.end());
ASSERT_EQ(res, output);
};
for (size_t batch_size = 1; batch_size <= 3; ++batch_size) {
size_t local_sample_count =
static_cast<size_t>(std::ceil(sample_count * 1.0 / num_replicas));
std::vector<size_t> output1{0, 0, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9};
test_function(true, local_sample_count, output1, batch_size);
local_sample_count =
static_cast<size_t>(std::floor(sample_count * 1.0 / num_replicas));
std::vector<size_t> output2{0, 1, 2, 3, 4, 5, 6, 7, 8};
test_function(false, local_sample_count, output2, batch_size);
}
}
TEST(DataTest, CanSaveAndLoadDistributedSequentialSampler) {
{
samplers::DistributedSequentialSampler a(10);
ASSERT_EQ(a.index(), 0);
std::stringstream stream;
torch::save(a, stream);
samplers::DistributedSequentialSampler b(10);
torch::load(b, stream);
ASSERT_EQ(b.index(), 0);
}
{
samplers::DistributedSequentialSampler a(10);
a.next(3);
a.next(4);
ASSERT_EQ(a.index(), 7);
std::stringstream stream;
torch::save(a, stream);
samplers::DistributedSequentialSampler b(10);
torch::load(b, stream);
ASSERT_EQ(b.index(), 7);
}
}
TEST(DataLoaderTest, DataLoaderOptionsDefaultAsExpected) {
DataLoaderOptions partial_options;
FullDataLoaderOptions full_options(partial_options);
ASSERT_EQ(full_options.batch_size, 1);
ASSERT_FALSE(full_options.drop_last);
ASSERT_EQ(full_options.workers, 0);
ASSERT_EQ(full_options.max_jobs, 0);
ASSERT_FALSE(full_options.timeout.has_value());
ASSERT_TRUE(full_options.enforce_ordering);
}
TEST(DataLoaderTest, DataLoaderOptionsCoalesceOptionalValues) {
auto partial_options = DataLoaderOptions(32).workers(10);
FullDataLoaderOptions full_options(partial_options);
ASSERT_EQ(full_options.batch_size, 32);
ASSERT_EQ(full_options.max_jobs, 2 * 10);
}
TEST(DataLoaderTest, MakeDataLoaderDefaultsAsExpected) {
auto data_loader = torch::data::make_data_loader(
DummyDataset().map(transforms::Lambda<int>([](int x) { return x + 1; })));
ASSERT_EQ(data_loader->options().batch_size, 1);
}
struct UnsizedDataset : public datasets::Dataset<UnsizedDataset> {
torch::data::Example<> get(size_t i) {
return {torch::ones(i), torch::ones(i)};
}
torch::optional<size_t> size() const noexcept {
return torch::nullopt;
}
};
TEST(
DataLoaderTest,
MakeDataLoaderThrowsWhenConstructingSamplerWithUnsizedDataset) {
ASSERT_THROWS_WITH(
torch::data::make_data_loader(UnsizedDataset{}),
"Expected the dataset to be sized in order to construct the Sampler");
}
TEST(DataLoaderTest, IteratorsCompareEqualToThemselves) {
auto data_loader = torch::data::make_data_loader(DummyDataset(), 32);
auto begin = data_loader->begin();
ASSERT_EQ(begin, begin);
auto end = data_loader->end();
ASSERT_EQ(end, end);
}
TEST(DataLoaderTest, ValidIteratorsCompareUnequalToEachOther) {
auto data_loader = torch::data::make_data_loader(DummyDataset(), 32);
auto i = data_loader->begin();
auto j = data_loader->begin();
ASSERT_NE(i, j);
++j;
ASSERT_NE(i, j);
}
TEST(DataLoaderTest, SentinelIteratorsCompareEqualToEachOther) {
auto data_loader = torch::data::make_data_loader(DummyDataset(), 32);
auto i = data_loader->end();
auto j = data_loader->end();
ASSERT_EQ(i, j);
}
TEST(DataLoaderTest, IteratorsCompareEqualToSentinelWhenExhausted) {
DummyDataset dataset;
auto data_loader =
torch::data::make_data_loader(dataset, dataset.size().value() / 4);
auto i = data_loader->begin();
auto end = data_loader->end();
ASSERT_NE(i, end);
++i;
ASSERT_NE(i, end);
++i;
ASSERT_NE(i, end);
++i;
ASSERT_NE(i, end);
++i;
ASSERT_EQ(i, end);
}
TEST(DataLoaderTest, IteratorsShareState) {
DummyDataset dataset;
auto data_loader =
torch::data::make_data_loader(dataset, dataset.size().value() / 2);
auto i = data_loader->begin();
auto j = i;
auto end = data_loader->end();
ASSERT_NE(i, end);
ASSERT_NE(j, end);
++i;
ASSERT_NE(i, end);
ASSERT_NE(j, end);
++j;
ASSERT_EQ(i, end);
ASSERT_EQ(j, end);
}
TEST(DataLoaderTest, CanDereferenceIteratorMultipleTimes) {
DummyDataset dataset;
auto data_loader =
torch::data::make_data_loader<torch::data::samplers::SequentialSampler>(
dataset,
/*batch_size=*/1);
auto iterator = data_loader->begin();
std::vector<int> expected = {1};
ASSERT_EQ(*iterator, expected);
ASSERT_EQ(*iterator, expected);
++iterator;
expected[0] = 2;
ASSERT_EQ(*iterator, expected);
ASSERT_EQ(*iterator, expected);
++iterator;
expected[0] = 3;
ASSERT_EQ(*iterator, expected);
ASSERT_EQ(*iterator, expected);
}
TEST(DataLoaderTest, CanUseIteratorAlgorithms) {
struct D : datasets::BatchDataset<D, int> {
int get_batch(torch::ArrayRef<size_t> indices) override {
return 1 + indices.front();
}
torch::optional<size_t> size() const override {
return 10;
}
};
D dataset;
auto data_loader =
torch::data::make_data_loader<torch::data::samplers::SequentialSampler>(
dataset, 1);
std::vector<int> values;
std::copy(
data_loader->begin(), data_loader->end(), std::back_inserter(values));
std::vector<int> expected(dataset.size().value());
std::iota(expected.begin(), expected.end(), size_t(1));
ASSERT_EQ(values, expected);
}
TEST(DataLoaderTest, CallingBeginWhileOtherIteratorIsInFlightThrows) {
DummyDataset dataset;
auto data_loader =
torch::data::make_data_loader(dataset, DataLoaderOptions(1).workers(2));
auto i = data_loader->begin();
ASSERT_THROWS_WITH(
data_loader->begin(),
"Attempted to get a new DataLoader iterator "
"while another iterator is not yet exhausted");
}
TEST(DataLoaderTest, IncrementingExhaustedValidIteratorThrows) {
DummyDataset dataset;
auto data_loader =
torch::data::make_data_loader(dataset, dataset.size().value());
auto i = data_loader->begin();
ASSERT_NO_THROW(++i);
ASSERT_THROWS_WITH(++i, "Attempted to increment iterator past the end");
}
TEST(DataLoaderTest, DereferencingExhaustedValidIteratorThrows) {
DummyDataset dataset;
auto data_loader =
torch::data::make_data_loader(dataset, dataset.size().value());
auto i = data_loader->begin();
ASSERT_NO_THROW(++i);
ASSERT_THROWS_WITH(
*i, "Attempted to dereference iterator that was past the end");
}
TEST(DataLoaderTest, IncrementingSentinelIteratorThrows) {
DummyDataset dataset;
auto data_loader =
torch::data::make_data_loader(dataset, dataset.size().value());
auto i = data_loader->end();
ASSERT_THROWS_WITH(
++i,
"Incrementing the DataLoader's past-the-end iterator is not allowed");
}
TEST(DataLoaderTest, DereferencingSentinelIteratorThrows) {
DummyDataset dataset;
auto data_loader =
torch::data::make_data_loader(dataset, dataset.size().value());
auto i = data_loader->end();
ASSERT_THROWS_WITH(
*i,
"Dereferencing the DataLoader's past-the-end iterator is not allowed");
}
TEST(DataLoaderTest, YieldsCorrectBatchSize) {
DummyDataset dataset;
auto data_loader = torch::data::make_data_loader(dataset, 25);
auto iterator = data_loader->begin();
ASSERT_EQ(iterator->size(), 25);
ASSERT_EQ((++iterator)->size(), 25);
ASSERT_EQ((++iterator)->size(), 25);
ASSERT_EQ((++iterator)->size(), 25);
ASSERT_EQ(++iterator, data_loader->end());
}
TEST(
DataLoaderTest,
ReturnsLastBatchWhenSmallerThanBatchSizeWhenDropLastIsFalse) {
DummyDataset dataset;
auto data_loader = torch::data::make_data_loader(
dataset, DataLoaderOptions(33).drop_last(false));
auto iterator = data_loader->begin();
ASSERT_EQ(iterator->size(), 33);
ASSERT_EQ((++iterator)->size(), 33);
ASSERT_EQ((++iterator)->size(), 33);
ASSERT_EQ((++iterator)->size(), 1);
ASSERT_EQ(++iterator, data_loader->end());
}
TEST(
DataLoaderTest,
DoesNotReturnLastBatchWhenSmallerThanBatchSizeWhenDropLastIsTrue) {
DummyDataset dataset;
auto data_loader = torch::data::make_data_loader(
dataset, DataLoaderOptions(33).drop_last(true));
auto iterator = data_loader->begin();
ASSERT_EQ(iterator->size(), 33);
ASSERT_EQ((++iterator)->size(), 33);
ASSERT_EQ((++iterator)->size(), 33);
ASSERT_EQ(++iterator, data_loader->end());
}
TEST(DataLoaderTest, RespectsTimeout) {
struct Baton {
std::condition_variable cv;
std::mutex mutex;
};
struct D : datasets::Dataset<DummyDataset, int> {
D(std::shared_ptr<Baton> b) : baton(std::move(b)) {}
int get(size_t index) override {
std::unique_lock<std::mutex> lock(baton->mutex);
baton->cv.wait_for(lock, 1000 * kMillisecond);
return 0;
}
torch::optional<size_t> size() const override {
return 100;
}
std::shared_ptr<Baton> baton;
};
auto baton = std::make_shared<Baton>();
auto data_loader = torch::data::make_data_loader(
D{baton}, DataLoaderOptions().workers(1).timeout(10 * kMillisecond));
auto start = std::chrono::system_clock::now();
ASSERT_THROWS_WITH(*data_loader->begin(), "Timeout");
baton->cv.notify_one();
auto end = std::chrono::system_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::seconds>(end - start);
ASSERT_LT(duration.count(), 1);
}
// stackoverflow.com/questions/24465533/implementing-boostbarrier-in-c11
struct Barrier {
explicit Barrier(size_t target) : counter_(target) {}
void wait() {
std::unique_lock<std::mutex> lock(mutex_);
if (--counter_ == 0) {
cv_.notify_all();
} else {
cv_.wait(lock, [this] { return this->counter_ == 0; });
}
}
size_t counter_;
std::condition_variable cv_;
std::mutex mutex_;
};
// On the OrderingTest: This test is intended to verify that the
// `enforce_ordering` option of the dataloader works correctly. The reason this
// flag exists is because when the dataloader has multiple workers (threads)
// enabled and this flag is not set, the order in which worker threads finish
// loading their respective batch and push it back to the dataloader's main
// thread (for outside consumption) is not deterministic. Imagine the sampler is
// a SequentialSampler with indices 0, 1, 2, 3. With batch size 1, each index
// will be a single "job". Inside the dataloader, worker threads block until a
// job is available. It is not deterministic which worker thread wakes up batch
// to dequeue a particular batch. Further, some worker threads may take longer
// than others to read the data for their index. As such, it could be that
// worker thread 2 finishes before all other threads and returns its batch to
// the main thread. In that case, the dataloader iterator would return the datum
// at index 2 batch, and afterwards the datum from whatever thread finishes
// next. As such, the user may see data from indices 2, 0, 3, 1. On another run
// of the same dataloader on the same data, threads may be scheduled differently
// and return in order 0, 2, 3, 1. To force this ordering to deterministically
// be 0, 1, 2, 3, the `enforce_ordering` flag can be set to true. In that case,
// the dataloader will use a *sequencer* internally which keeps track of which
// datum is expected next, and buffers any other results until that next
// expected value arrives. For example, workers 1, 2, 3 may finish before worker
// 0. If `enforce_ordering` is true, the sequencer will internally buffer the
// results from 1, 2, 3 until worker 0 finishes. Only then does the dataloader
// return the datum from worker 0 to the user (and then datum 1 the next time,
// then 2 and so on).
//
// The way the test works is that we start
// `kNumberOfWorkers` workers in the dataloader, which each get an index from a
// `SequentialSampler` in the range `0...kNumberOfWorkers-1`. Each worker thread
// has a copy of the dataset, and thus `get_batch()` is called on the
// thread-local copy in each worker. We want to simulate out-of-order completion
// of these threads. For this, we batch set a barrier in the `get_batch()`
// method to make sure every worker has some index to fetch assigned. Further,
// each worker thread has a unique ID in `0...kNumberOfWorkers-1`.
// There is a hard-coded ordering, `kOrderInWhichWorkersReturnTheirBatch`, in
// which we want the worker threads to return. For this, an iterator into this
// order is maintained. When the derferenced iterator (the current order index)
// matches the thread ID of a worker, it knows it can now return its index as
// well as progress the iterator. Inside the dataloader, the sequencer should
// buffer these indices such that they are ultimately returned in order.
namespace ordering_test {
namespace {
const size_t kNumberOfWorkers = 10;
const std::vector<size_t> kOrderInWhichWorkersReturnTheirBatch =
{3, 7, 0, 5, 4, 8, 2, 1, 9, 6};
} // namespace
struct Dataset : datasets::BatchDataset<Dataset, size_t> {
Dataset() = default;
// This copy constructor will be called when we copy the dataset into a
// particular thread.
Dataset(const Dataset& other) {
static std::atomic<size_t> counter{0};
thread_id_ = counter.fetch_add(1);
}
Dataset(Dataset&& other) noexcept = default;
Dataset& operator=(const Dataset& other) = delete;
Dataset& operator=(Dataset&& other) noexcept = delete;
size_t get_batch(torch::ArrayRef<size_t> indices) override {
static Barrier barrier(kNumberOfWorkers);
static auto order_iterator = kOrderInWhichWorkersReturnTheirBatch.begin();
static std::condition_variable cv;
static std::mutex mutex;
// Wait for all threads to get an index batch and arrive here.
barrier.wait();
std::unique_lock<std::mutex> lock(mutex);
cv.wait(lock, [this] { return *order_iterator == this->thread_id_; });
++order_iterator;
lock.unlock();
cv.notify_all();
return indices.front();
}
torch::optional<size_t> size() const override {
return kNumberOfWorkers;
}
size_t thread_id_ = 0;
};
} // namespace ordering_test
TEST(DataLoaderTest, EnforcesOrderingAmongThreadsWhenConfigured) {
auto data_loader = torch::data::make_data_loader(
ordering_test::Dataset{},
torch::data::samplers::SequentialSampler(ordering_test::kNumberOfWorkers),
DataLoaderOptions()
.batch_size(1)
.workers(ordering_test::kNumberOfWorkers)
.enforce_ordering(true));
std::vector<size_t> output;
for (size_t value : *data_loader) {
output.push_back(value);
}
std::vector<size_t> expected(ordering_test::kNumberOfWorkers);
std::iota(expected.begin(), expected.end(), size_t(0));
ASSERT_EQ(expected, output);
}
TEST(DataLoaderTest, Reset) {
DummyDataset dataset;
auto data_loader =
torch::data::make_data_loader(dataset, dataset.size().value() / 2);
auto end = data_loader->end();
auto iterator = data_loader->begin();
ASSERT_NE(iterator, end);
ASSERT_NE(++iterator, end);
ASSERT_EQ(++iterator, end);
iterator = data_loader->begin();
ASSERT_NE(iterator, end);
ASSERT_NE(++iterator, end);
ASSERT_EQ(++iterator, end);
iterator = data_loader->begin();
ASSERT_NE(iterator, end);
ASSERT_NE(++iterator, end);
ASSERT_EQ(++iterator, end);
}
TEST(DataLoaderTest, TestExceptionsArePropagatedFromWorkers) {
struct D : datasets::Dataset<DummyDataset, int> {
int get(size_t index) override {
throw std::invalid_argument("badness");
}
torch::optional<size_t> size() const override {
return 100;
}
};
auto data_loader = torch::data::make_data_loader(
D{}, samplers::RandomSampler(100), DataLoaderOptions().workers(2));
auto iterator = data_loader->begin();
try {
(void)*iterator;
} catch (torch::data::WorkerException& e) {
ASSERT_EQ(
e.what(),
std::string("Caught exception in DataLoader worker thread. "
"Original message: badness"));
ASSERT_THROW(
std::rethrow_exception(e.original_exception), std::invalid_argument);
}
}
TEST(DataLoaderTest, StatefulDatasetWithNoWorkers) {
const int kNumberOfExamplesAfterWhichTheDatasetExhausts = 10;
struct D : datasets::StatefulDataset<D, int, size_t> {
torch::optional<int> get_batch(size_t) override {
if (counter < kNumberOfExamplesAfterWhichTheDatasetExhausts) {
return counter++;
}
return torch::nullopt;
}
torch::optional<size_t> size() const override {
return 100;
}
void reset() override {
counter = 0;
}
int counter = 0;
};
auto data_loader = torch::data::make_data_loader(D{});
for (size_t i = 0; i < 10; ++i) {
const auto number_of_iterations =
std::distance(data_loader->begin(), data_loader->end());
ASSERT_EQ(
number_of_iterations, kNumberOfExamplesAfterWhichTheDatasetExhausts)
<< "epoch " << i;
}
for (const int i : *data_loader) {
ASSERT_LT(i, kNumberOfExamplesAfterWhichTheDatasetExhausts);
}
}
TEST(DataLoaderTest, StatefulDatasetWithManyWorkers) {
const int kNumberOfExamplesAfterWhichTheDatasetExhausts = 10;
const int kNumberOfWorkers = 4;
struct D : datasets::StatefulDataset<D, int, size_t> {
torch::optional<int> get_batch(size_t) override {
std::lock_guard<std::mutex> lock(mutex);
if (counter < kNumberOfExamplesAfterWhichTheDatasetExhausts) {
return counter++;
}
return torch::nullopt;
}
torch::optional<size_t> size() const override {
return 100;
}
void reset() override {
counter = 0;
}
int counter = 0;
std::mutex mutex;
};
auto data_loader = torch::data::make_data_loader(
torch::data::datasets::make_shared_dataset<D>(),
DataLoaderOptions().workers(kNumberOfWorkers));
for (size_t i = 0; i < 10; ++i) {
const auto number_of_iterations =
std::distance(data_loader->begin(), data_loader->end());
ASSERT_EQ(
number_of_iterations, kNumberOfExamplesAfterWhichTheDatasetExhausts)
<< "epoch " << i;
}
for (const int i : *data_loader) {
ASSERT_LT(i, kNumberOfExamplesAfterWhichTheDatasetExhausts);
}
}
TEST(DataLoaderTest, StatefulDatasetWithMap) {
const int kNumberOfExamplesAfterWhichTheDatasetExhausts = 10;
struct D : datasets::StatefulDataset<D, int, size_t> {
torch::optional<int> get_batch(size_t) override {
if (counter < kNumberOfExamplesAfterWhichTheDatasetExhausts) {
return counter++;
}
return torch::nullopt;
}
torch::optional<size_t> size() const override {
return 100;
}
void reset() override {
counter = 0;
}
int counter = 0;
};
auto data_loader = torch::data::make_data_loader(
D().map(transforms::BatchLambda<int, std::string>(
[](int x) { return std::to_string(x); }))
.map(transforms::BatchLambda<std::string, torch::Tensor>(
[](const std::string& x) {
return torch::tensor(static_cast<int64_t>(std::stoi(x)));
})),
DataLoaderOptions{});
for (size_t i = 0; i < 10; ++i) {
const auto number_of_iterations =
std::distance(data_loader->begin(), data_loader->end());
ASSERT_EQ(
number_of_iterations, kNumberOfExamplesAfterWhichTheDatasetExhausts)
<< "epoch " << i;
}
for (const torch::Tensor& t : *data_loader) {
ASSERT_LT(t.item<int64_t>(), kNumberOfExamplesAfterWhichTheDatasetExhausts);
}
}
TEST(DataLoaderTest, StatefulDatasetWithCollate) {
const int kNumberOfExamplesAfterWhichTheDatasetExhausts = 10;
struct D : datasets::StatefulDataset<D> {
torch::optional<std::vector<Example<>>> get_batch(
size_t batch_size) override {
if (counter < kNumberOfExamplesAfterWhichTheDatasetExhausts) {
counter += batch_size;
std::vector<Example<>> batch(
/*count=*/batch_size,
Example<>{torch::ones(batch_size + 1),
torch::zeros(batch_size - 1)});
return batch;
}
return torch::nullopt;
}
torch::optional<size_t> size() const override {
return 100;
}
void reset() override {
counter = 0;
}
int counter = 0;
};
auto d = D().map(transforms::Stack<Example<>>());
const size_t kBatchSize = 5;
// Notice that the `get_batch()` of the dataset returns a vector<Example>, but
// the `Stack` collation stacks the tensors into one.
torch::optional<Example<>> batch = d.get_batch(kBatchSize);
ASSERT_TRUE(batch.has_value());
ASSERT_EQ(batch->data.size(0), kBatchSize);
ASSERT_EQ(batch->data.size(1), kBatchSize + 1);
ASSERT_EQ(batch->target.size(0), kBatchSize);
ASSERT_EQ(batch->target.size(1), kBatchSize - 1);
ASSERT_TRUE(batch->data[0].allclose(torch::ones(kBatchSize + 1)));
ASSERT_TRUE(batch->target[0].allclose(torch::zeros(kBatchSize - 1)));
}
// This test tests the core function for iterate through a chunk dataset. It
// contains test cases with different parameter combination. (For example,
// different prefetch count, batch size and data loader worker count). It
// verifies the return batches size and content when the order is deterministic.
TEST(DataLoaderTest, ChunkDataSetGetBatch) {
// different prefetch count for testing.
const size_t prefetch_counts[] = {1, 2, 3, 4};
// different batch size for testing.
const size_t batch_sizes[] = {5, 7};
// test with/without worker threads
const size_t dataloader_worker_counts[] = {0, 2};
const size_t total_example_count = 35;
DummyChunkDataReader data_reader;
samplers::SequentialSampler sampler(0);
// test functionality across epoch boundary
const int epoch_count = 2;
for (auto prefetch_count : prefetch_counts) {
for (auto batch_size : batch_sizes) {
for (auto dataloader_worker_count : dataloader_worker_counts) {
datasets::SharedBatchDataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>
dataset = datasets::make_shared_dataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>(
data_reader,
sampler,
sampler,
datasets::ChunkDatasetOptions(prefetch_count, batch_size));
auto data_loader = torch::data::make_data_loader(
dataset,
DataLoaderOptions(batch_size).workers(dataloader_worker_count));
for (int epoch_index = 0; epoch_index < epoch_count; ++epoch_index) {
std::vector<bool> result(total_example_count, false);
int iteration_count = 0;
for (auto iterator = data_loader->begin();
iterator != data_loader->end();
++iterator, ++iteration_count) {
DummyChunkDataReader::BatchType& batch = *iterator;
ASSERT_EQ(batch.size(), batch_size);
// When prefetch_count is equal to 1 and no worker thread, the batch
// order is deterministic. So we can verify elements in each batch.
if (prefetch_count == 1 && dataloader_worker_count == 0) {
for (size_t j = 0; j < batch_size; ++j) {
ASSERT_EQ(batch[j], iteration_count * batch_size + j);
}
}
for (size_t j = 0; j < batch_size; ++j) {
result[batch[j]] = true;
}
}
for (auto data : result) {
ASSERT_EQ(data, true);
}
}
}
}
}
}
TEST(DataLoaderTest, ChunkDataSetWithBatchSizeMismatch) {
const size_t prefetch_count = 1;
const size_t batch_size = 5;
const size_t requested_batch_size = 6;
DummyChunkDataReader data_reader;
samplers::SequentialSampler sampler(0);
datasets::SharedBatchDataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>
dataset = datasets::make_shared_dataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>(
data_reader,
sampler,
sampler,
datasets::ChunkDatasetOptions(prefetch_count, batch_size));
auto data_loader = torch::data::make_data_loader(
dataset,
DataLoaderOptions(requested_batch_size).workers(0));
std::string exception_msg =
"The requested batch size does not match with the initialized batch "
"size.\n The requested batch size is 6, while the dataset is created"
" with batch size equal to 5";
ASSERT_THROWS_WITH(*(data_loader->begin()), exception_msg);
}
TEST(DataLoaderTest, ChunkDataSetWithEmptyBatch) {
struct DummyEmptyChunkDataReader
: datasets::ChunkDataReader<int> {
public:
using BatchType = datasets::ChunkDataReader<int>::ChunkType;
BatchType read_chunk(size_t chunk_index) override {
return {};
}
size_t chunk_count() override {
return 1;
};
void reset() override{};
};
const size_t prefetch_count = 1;
const size_t batch_size = 5;
DummyEmptyChunkDataReader data_reader;
samplers::SequentialSampler sampler(0);
datasets::SharedBatchDataset<datasets::ChunkDataset<
DummyEmptyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>
dataset = datasets::make_shared_dataset<datasets::ChunkDataset<
DummyEmptyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>(
data_reader,
sampler,
sampler,
datasets::ChunkDatasetOptions(prefetch_count, batch_size));
auto data_loader = torch::data::make_data_loader(
dataset, DataLoaderOptions(batch_size).workers(0));
for (auto iterator = data_loader->begin(); iterator != data_loader->end();
++iterator) {
ASSERT_EQ(iterator->size(), 0);
}
}
TEST(DataLoaderTest, ChunkDataSetGetBatchWithUnevenBatchSize) {
struct D : public datasets::ChunkDataReader<int> {
public:
using BatchType = datasets::ChunkDataReader<int>::ChunkType;
BatchType read_chunk(size_t chunk_index) override {
BatchType batch_data(10, 0);
return batch_data;
}
size_t chunk_count() override {
return 2;
};
void reset() override{};
};
const size_t batch_sizes[] = {17, 30};
D data_reader;
samplers::SequentialSampler sampler(0);
for (auto batch_size : batch_sizes) {
datasets::SharedBatchDataset<datasets::ChunkDataset<
D,
samplers::SequentialSampler,
samplers::SequentialSampler>>
dataset = datasets::make_shared_dataset<datasets::ChunkDataset<
D,
samplers::SequentialSampler,
samplers::SequentialSampler>>(
data_reader,
sampler,
sampler,
datasets::ChunkDatasetOptions(1, batch_size));
auto data_loader = torch::data::make_data_loader(
dataset, DataLoaderOptions(batch_size).workers(0));
for (auto iterator = data_loader->begin(); iterator != data_loader->end();
++iterator) {
DummyChunkDataReader::BatchType batch = *iterator;
auto batch_size = batch.size();
if (batch_size == 17) {
ASSERT_TRUE(batch.size() == 17 || batch.size() == 3);
}
if (batch_size == 30) {
ASSERT_TRUE(batch.size() == 20);
}
}
}
}
TEST(DataLoaderTest, CanAccessChunkSamplerWithChunkDataSet) {
const size_t prefetch_count = 2;
const size_t batch_size = 5;
DummyChunkDataReader data_reader;
samplers::SequentialSampler sampler(0);
datasets::SharedBatchDataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>
dataset = datasets::make_shared_dataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>(
data_reader,
sampler,
sampler,
datasets::ChunkDatasetOptions(prefetch_count, batch_size));
samplers::SequentialSampler& chunk_sampler = dataset->chunk_sampler();
auto data_loader = torch::data::make_data_loader(
dataset.map(transforms::BatchLambda<DummyChunkDataReader::BatchType, DummyChunkDataReader::DataType>(
[](DummyChunkDataReader::BatchType batch) {
return std::accumulate(batch.begin(), batch.end(), 0);
})),
DataLoaderOptions(batch_size).workers(0));
// before we start, the index should be 0.
ASSERT_EQ(chunk_sampler.index(), 0);
size_t sum = 0;
for (auto iterator = data_loader->begin(); iterator != data_loader->end();
++iterator) {
sum += *iterator;
}
ASSERT_EQ(sum, 595); // sum([0, 35))
// 3 chunks, and when exhausted the value is already incremented.
ASSERT_EQ(chunk_sampler.index(), 3);
}
TEST(DataLoaderTest, ChunkDatasetDoesNotHang) {
const size_t prefetch_count = 2;
const size_t batch_size = 5;
// this will make the preloaders to wait till the `get_batch()` calls.
const size_t cache_size = 10;
DummyChunkDataReader data_reader;
samplers::SequentialSampler sampler(0);
datasets::SharedBatchDataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>
dataset = datasets::make_shared_dataset<datasets::ChunkDataset<
DummyChunkDataReader,
samplers::SequentialSampler,
samplers::SequentialSampler>>(
data_reader,
sampler,
sampler,
datasets::ChunkDatasetOptions(
prefetch_count, batch_size, cache_size));
samplers::SequentialSampler& chunk_sampler = dataset->chunk_sampler();
auto data_loader = torch::data::make_data_loader(
dataset.map(transforms::BatchLambda<DummyChunkDataReader::BatchType, DummyChunkDataReader::DataType>(
[](DummyChunkDataReader::BatchType batch) {
return std::accumulate(batch.begin(), batch.end(), 0);
})),
DataLoaderOptions(batch_size).workers(0));
// simply creates the iterator but no iteration. chunk preloaders are waiting
// to fill the batch buffer but it is not draining. Still we need to exit
// cleanly.
auto iterator = data_loader->begin();
}