mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
The old code didn't actually fakeify traceable tensor subclasses at the time they are added as a GraphArg to the module; now we do, by ignoring the subclass during fakeification and relying on Dynamo to simulate the subclass on top. See comments for more details. BTW, this codepath is super broken, see filed issues linked on the inside. Signed-off-by: Edward Z. Yang <ezyang@fb.com> Pull Request resolved: https://github.com/pytorch/pytorch/pull/90009 Approved by: https://github.com/wconstab, https://github.com/voznesenskym
896 lines
34 KiB
Python
896 lines
34 KiB
Python
import collections
|
|
import dataclasses
|
|
import enum
|
|
import functools
|
|
import inspect
|
|
import math
|
|
import numbers
|
|
import operator
|
|
import re
|
|
import types
|
|
from abc import ABCMeta
|
|
from typing import Any, Optional, Union
|
|
|
|
import numpy as np
|
|
from functorch.experimental.ops import PyOperator
|
|
|
|
import torch
|
|
from torch.fx.immutable_collections import immutable_list
|
|
|
|
from .. import config, mutation_guard, replay_record, skipfiles
|
|
from ..allowed_functions import is_allowed, is_builtin_callable, is_numpy
|
|
from ..exc import unimplemented
|
|
from ..guards import GuardBuilder, GuardSource
|
|
from ..side_effects import SideEffects
|
|
from ..source import (
|
|
AttrSource,
|
|
ConstantSource,
|
|
GetItemSource,
|
|
GlobalSource,
|
|
GlobalWeakRefSource,
|
|
is_constant_source,
|
|
LocalSource,
|
|
RandomValueSource,
|
|
Source,
|
|
TupleIteratorGetItemSource,
|
|
)
|
|
from ..utils import (
|
|
clone_input,
|
|
get_fake_value,
|
|
getfile,
|
|
global_key_name,
|
|
is_namedtuple,
|
|
is_numpy_int_type,
|
|
is_typing,
|
|
istensor,
|
|
istype,
|
|
odict_values,
|
|
preserve_rng_state,
|
|
tuple_iterator,
|
|
tuple_iterator_getitem,
|
|
tuple_iterator_len,
|
|
wrap_to_fake_tensor_and_record,
|
|
)
|
|
|
|
from .base import MutableLocal, typestr
|
|
from .builtin import BuiltinVariable
|
|
from .constant import ConstantVariable, EnumVariable
|
|
from .dicts import (
|
|
ConstDictVariable,
|
|
DataClassVariable,
|
|
DefaultDictVariable,
|
|
HFPretrainedConfigVariable,
|
|
)
|
|
from .functions import UserFunctionVariable
|
|
from .lists import (
|
|
ListIteratorVariable,
|
|
ListVariable,
|
|
NamedTupleVariable,
|
|
RangeVariable,
|
|
SizeVariable,
|
|
SliceVariable,
|
|
TupleVariable,
|
|
)
|
|
from .misc import (
|
|
AutogradFunctionVariable,
|
|
GetAttrVariable,
|
|
InspectSignatureVariable,
|
|
LambdaVariable,
|
|
NumpyVariable,
|
|
PythonModuleVariable,
|
|
SkipFilesVariable,
|
|
TypingVariable,
|
|
)
|
|
from .nn_module import UnspecializedNNModuleVariable
|
|
from .tensor import (
|
|
DynamicShapeVariable,
|
|
FakeItemVariable,
|
|
TensorVariable,
|
|
TensorWithTFOverrideVariable,
|
|
UnspecializedNumpyVariable,
|
|
UnspecializedPythonVariable,
|
|
)
|
|
from .torch import (
|
|
tensor_dunder_fns,
|
|
torch_special_class_types,
|
|
TorchPyOperator,
|
|
TorchVariable,
|
|
)
|
|
from .user_defined import UserDefinedClassVariable, UserDefinedObjectVariable
|
|
|
|
|
|
class _missing:
|
|
pass
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class GraphArg:
|
|
source: Source
|
|
example: Any
|
|
is_unspecialized: bool
|
|
fake_tensor: Optional[torch._subclasses.fake_tensor.FakeTensor]
|
|
|
|
def __post_init__(self):
|
|
if isinstance(self.example, torch.Tensor):
|
|
assert isinstance(
|
|
self.fake_tensor, torch._subclasses.fake_tensor.FakeTensor
|
|
)
|
|
if isinstance(self.example, torch._subclasses.fake_tensor.FakeTensor):
|
|
raise AssertionError("Fake Tensor observed in TorchDynamo Fx graph inputs")
|
|
|
|
def load(self, tx):
|
|
return self.source.reconstruct(tx)
|
|
|
|
def get_examples(self):
|
|
return [self.example]
|
|
|
|
def get_fake_examples(self):
|
|
if self.fake_tensor is not None:
|
|
assert isinstance(
|
|
self.fake_tensor, torch._subclasses.fake_tensor.FakeTensor
|
|
)
|
|
return [self.fake_tensor]
|
|
|
|
def __len__(self):
|
|
return 1
|
|
|
|
def erase(self):
|
|
self.example = None
|
|
|
|
|
|
class VariableBuilder:
|
|
"""Wrap a python value in a VariableTracker() instance"""
|
|
|
|
def __init__(
|
|
self,
|
|
tx,
|
|
source: Source,
|
|
):
|
|
super(VariableBuilder, self).__init__()
|
|
self.tx = tx
|
|
self.source = source
|
|
self.name = source.name()
|
|
|
|
def __call__(self, value):
|
|
if value in self.tx.output.side_effects:
|
|
# TODO(jansel): add guard for alias relationship
|
|
return self.tx.output.side_effects[value]
|
|
return self._wrap(value).clone(**self.options())
|
|
|
|
@staticmethod
|
|
@functools.lru_cache(None)
|
|
def _common_constants():
|
|
return set(range(17)).union(
|
|
{
|
|
20,
|
|
30,
|
|
40,
|
|
32,
|
|
64,
|
|
96,
|
|
128,
|
|
144,
|
|
240,
|
|
256,
|
|
672,
|
|
1024,
|
|
2048,
|
|
4096,
|
|
0.1,
|
|
0.01,
|
|
0.001,
|
|
0.5,
|
|
0.05,
|
|
800,
|
|
1.873536229133606,
|
|
4.135166556742356, # Work around for vision_maskrcnn where torch.clamp can't be on different devices
|
|
}
|
|
)
|
|
|
|
@staticmethod
|
|
def list_type(value):
|
|
if is_namedtuple(value):
|
|
return functools.partial(NamedTupleVariable, tuple_cls=type(value))
|
|
return {
|
|
tuple: TupleVariable,
|
|
list: ListVariable,
|
|
odict_values: ListVariable,
|
|
torch.nn.ParameterList: ListVariable,
|
|
torch.nn.ModuleList: ListVariable,
|
|
}[type(value)]
|
|
|
|
def get_source(self):
|
|
return self.source
|
|
|
|
def options(self):
|
|
return {"source": self.get_source()}
|
|
|
|
def make_guards(self, *guards):
|
|
source = self.get_source()
|
|
if (
|
|
isinstance(source, ConstantSource)
|
|
or source.guard_source() == GuardSource.CONSTANT
|
|
):
|
|
return None
|
|
return {source.make_guard(guard) for guard in guards}
|
|
|
|
def _wrap(self, value):
|
|
make_guards = self.make_guards
|
|
if istype(value, (torch.SymInt, torch.SymFloat)):
|
|
return self.wrap_sym(value)
|
|
if istensor(value):
|
|
return self.wrap_tensor(value)
|
|
elif istype(value, (tuple, list, odict_values)) or is_namedtuple(value):
|
|
# One can index a tensor with a list/tuple. Therefore, we need to
|
|
# have a stricter match.
|
|
if istype(value, (tuple, list)) and all(
|
|
[isinstance(x, int) or is_numpy_int_type(x) or x is None for x in value]
|
|
):
|
|
guards = self.make_guards(GuardBuilder.EQUALS_MATCH)
|
|
else:
|
|
guards = self.make_guards(GuardBuilder.LIST_LENGTH)
|
|
output = [
|
|
VariableBuilder(self.tx, GetItemSource(self.get_source(), i))(
|
|
item
|
|
).add_guards(guards)
|
|
for i, item in enumerate(value)
|
|
]
|
|
result = self.list_type(value)(output, guards=guards)
|
|
if istype(value, list):
|
|
return self.tx.output.side_effects.track_list(
|
|
self.source, value, result
|
|
)
|
|
return result
|
|
elif istype(value, tuple_iterator):
|
|
guards = self.make_guards(GuardBuilder.TUPLE_ITERATOR_LEN)
|
|
output = [
|
|
VariableBuilder(
|
|
self.tx, TupleIteratorGetItemSource(self.get_source(), i)
|
|
)(tuple_iterator_getitem(value, i)).add_guards(guards)
|
|
for i in range(tuple_iterator_len(value))
|
|
]
|
|
return ListIteratorVariable(
|
|
output, mutable_local=MutableLocal(), guards=guards
|
|
)
|
|
elif istype(value, (slice, range)):
|
|
items = [
|
|
VariableBuilder(self.tx, AttrSource(self.get_source(), k))(
|
|
getattr(value, k)
|
|
)
|
|
for k in ("start", "stop", "step")
|
|
]
|
|
if isinstance(value, slice):
|
|
return SliceVariable(items, guards=make_guards(GuardBuilder.TYPE_MATCH))
|
|
else:
|
|
return RangeVariable(
|
|
items, guards=make_guards(GuardBuilder.EQUALS_MATCH)
|
|
)
|
|
elif istype(
|
|
value, (dict, collections.defaultdict, collections.OrderedDict)
|
|
) and all(
|
|
map(
|
|
lambda k: ConstantVariable.is_literal(k)
|
|
or self.tensor_can_be_dict_key(k),
|
|
value.keys(),
|
|
)
|
|
):
|
|
guards = self.make_guards(GuardBuilder.DICT_KEYS)
|
|
|
|
# store key variables in global location for reconstruction
|
|
for key in value.keys():
|
|
if self.tensor_can_be_dict_key(key):
|
|
self.tx.store_dict_key(global_key_name(key), key)
|
|
|
|
def index_source(key):
|
|
if self.tensor_can_be_dict_key(key):
|
|
return GlobalWeakRefSource(global_key_name(key))
|
|
else:
|
|
return key
|
|
|
|
result = dict(
|
|
[
|
|
(
|
|
k,
|
|
VariableBuilder(
|
|
self.tx, GetItemSource(self.get_source(), index_source(k))
|
|
)(value[k]).add_guards(guards),
|
|
)
|
|
for k in value.keys()
|
|
]
|
|
)
|
|
|
|
if istype(value, collections.defaultdict):
|
|
result = DefaultDictVariable(
|
|
result, type(value), value.default_factory, guards=guards
|
|
)
|
|
else:
|
|
result = ConstDictVariable(result, type(value), guards=guards)
|
|
|
|
return self.tx.output.side_effects.track_dict(self.source, value, result)
|
|
elif isinstance(value, torch.nn.Module):
|
|
if mutation_guard.is_dynamic_nn_module(value):
|
|
# created dynamically, don't specialize on it
|
|
result = UnspecializedNNModuleVariable(
|
|
value, guards=make_guards(GuardBuilder.TYPE_MATCH)
|
|
)
|
|
if not SideEffects.cls_supports_mutation_side_effects(type(value)):
|
|
# don't allow STORE_ATTR mutation with custom __setattr__
|
|
return result
|
|
return self.tx.output.side_effects.track_object_existing(
|
|
self.source, value, result
|
|
)
|
|
elif getattr(value, "_is_fsdp_managed_module", False) or issubclass(
|
|
value.__class__, torch.nn.parallel.distributed.DistributedDataParallel
|
|
):
|
|
if getattr(value, "_is_fsdp_managed_module", False):
|
|
# Note: we can't do this assert inside FSDP constructor,
|
|
# since we don't know yet whether dynamo will be used
|
|
assert getattr(
|
|
value, "_fsdp_use_orig_params", False
|
|
), "Dynamo only supports FSDP with use_orig_params=True"
|
|
|
|
# See note [Dynamo treats FSDP wrapped modules as UnspecializedNNModule]
|
|
# in fully_sharded_data_parallel.py for more information
|
|
return UnspecializedNNModuleVariable(
|
|
value, guards=make_guards(GuardBuilder.TYPE_MATCH)
|
|
)
|
|
else:
|
|
return self.tx.output.register_attr_or_module(
|
|
value,
|
|
self.name,
|
|
source=self.get_source(),
|
|
# Guards are added inside register_attr_or_module
|
|
)
|
|
elif ConstantVariable.is_literal(value) or istype(
|
|
value, (torch.Size, torch.device, torch.dtype)
|
|
):
|
|
if type(value) in (int, float) and not config.specialize_int_float:
|
|
# unspecializing int/float by default, but still
|
|
# specialize for the following conditions
|
|
if (
|
|
value in self._common_constants()
|
|
or isinstance(self.source, GlobalSource)
|
|
or isinstance(self.source, GetItemSource)
|
|
or (
|
|
isinstance(self.source, AttrSource)
|
|
and isinstance(self.source.base, GlobalSource)
|
|
)
|
|
):
|
|
return ConstantVariable(
|
|
value=value,
|
|
guards=make_guards(GuardBuilder.CONSTANT_MATCH),
|
|
)
|
|
else:
|
|
return self.wrap_unspecialized_primitive(value)
|
|
else:
|
|
return ConstantVariable(
|
|
value=value,
|
|
guards=make_guards(GuardBuilder.CONSTANT_MATCH),
|
|
)
|
|
elif isinstance(value, frozenset) and (
|
|
all(is_allowed(x) or ConstantVariable.is_literal(x) for x in value)
|
|
):
|
|
# For frozenset, we can guard by object ID instead of value
|
|
# equality, this allows us to handle non-literal values
|
|
return ConstantVariable(
|
|
value=value,
|
|
guards=make_guards(GuardBuilder.ID_MATCH),
|
|
)
|
|
elif isinstance(value, enum.Enum):
|
|
return EnumVariable(
|
|
value=value,
|
|
guards=make_guards(GuardBuilder.ID_MATCH),
|
|
)
|
|
elif is_builtin_callable(value):
|
|
return BuiltinVariable(
|
|
value,
|
|
guards=make_guards(GuardBuilder.BUILTIN_MATCH),
|
|
)
|
|
elif is_allowed(value):
|
|
return TorchVariable(
|
|
value,
|
|
guards=make_guards(GuardBuilder.FUNCTION_MATCH),
|
|
)
|
|
elif is_typing(value):
|
|
# typing.List, typing.Mapping, etc.
|
|
return TypingVariable(
|
|
value,
|
|
guards=make_guards(GuardBuilder.ID_MATCH),
|
|
)
|
|
elif value is inspect.signature:
|
|
return LambdaVariable(
|
|
InspectSignatureVariable.create,
|
|
guards=make_guards(GuardBuilder.FUNCTION_MATCH),
|
|
)
|
|
elif value is dataclasses.fields:
|
|
return LambdaVariable(
|
|
_dataclasses_fields_lambda,
|
|
guards=make_guards(GuardBuilder.FUNCTION_MATCH),
|
|
)
|
|
elif is_numpy(value):
|
|
return NumpyVariable(
|
|
value,
|
|
guards=make_guards(
|
|
GuardBuilder.FUNCTION_MATCH
|
|
if callable(value)
|
|
else GuardBuilder.TYPE_MATCH
|
|
),
|
|
)
|
|
elif value in tensor_dunder_fns:
|
|
return TorchVariable(
|
|
value,
|
|
guards=make_guards(GuardBuilder.FUNCTION_MATCH),
|
|
)
|
|
elif (
|
|
istype(value, (type, types.FunctionType))
|
|
and skipfiles.check(getfile(value), allow_torch=True)
|
|
and not inspect.getattr_static(value, "_torchdynamo_inline", False)
|
|
):
|
|
return SkipFilesVariable(
|
|
value, guards=make_guards(GuardBuilder.FUNCTION_MATCH)
|
|
)
|
|
elif istype(value, (type, ABCMeta)):
|
|
# TODO(whc) the following seems preferable but breaks some tests, debug
|
|
# elif inspect.isclass(value):
|
|
return UserDefinedClassVariable(
|
|
value, guards=make_guards(GuardBuilder.FUNCTION_MATCH)
|
|
)
|
|
elif value in tensor_dunder_fns:
|
|
return TorchVariable(
|
|
value,
|
|
guards=make_guards(GuardBuilder.FUNCTION_MATCH),
|
|
)
|
|
elif istype(value, types.FunctionType):
|
|
return UserFunctionVariable(
|
|
value,
|
|
guards=make_guards(GuardBuilder.FUNCTION_MATCH),
|
|
)
|
|
elif istype(value, (types.ModuleType, replay_record.DummyModule)):
|
|
return PythonModuleVariable(
|
|
value,
|
|
guards=make_guards(GuardBuilder.PYMODULE_MATCH),
|
|
)
|
|
elif type(value) is torch.autograd.function.FunctionMeta:
|
|
return AutogradFunctionVariable(
|
|
value, guards=make_guards(GuardBuilder.FUNCTION_MATCH)
|
|
)
|
|
elif (
|
|
isinstance(value, types.BuiltinFunctionType)
|
|
and type(getattr(value, "__self__", None))
|
|
is torch.autograd.function.FunctionMeta
|
|
and getattr(value, "__name__", "") == "apply"
|
|
and value == getattr(value.__self__, "apply", None)
|
|
):
|
|
# handle aliased autograd function `apply` calls
|
|
return GetAttrVariable(
|
|
AutogradFunctionVariable(
|
|
value.__self__, guards=make_guards(GuardBuilder.FUNCTION_MATCH)
|
|
),
|
|
"apply",
|
|
)
|
|
elif isinstance(value, (int, float, np.number)):
|
|
return self.wrap_unspecialized_primitive(value)
|
|
elif DataClassVariable.is_matching_object(value):
|
|
return DataClassVariable.wrap(self, value).add_guards(
|
|
make_guards(GuardBuilder.TYPE_MATCH)
|
|
)
|
|
elif HFPretrainedConfigVariable.is_matching_object(value):
|
|
return HFPretrainedConfigVariable(
|
|
value, guards=make_guards(GuardBuilder.TYPE_MATCH)
|
|
)
|
|
elif isinstance(value, PyOperator):
|
|
return TorchPyOperator(
|
|
value,
|
|
guards=self.make_guards(
|
|
GuardBuilder.TYPE_MATCH, GuardBuilder.NAME_MATCH
|
|
),
|
|
)
|
|
elif type(value).__name__ == "builtin_function_or_method" and isinstance(
|
|
value.__self__, torch_special_class_types
|
|
):
|
|
return TorchVariable(
|
|
value,
|
|
guards=make_guards(GuardBuilder.FUNCTION_MATCH),
|
|
)
|
|
else:
|
|
result = UserDefinedObjectVariable(
|
|
value,
|
|
guards=self.make_guards(GuardBuilder.TYPE_MATCH),
|
|
)
|
|
if not SideEffects.cls_supports_mutation_side_effects(type(value)):
|
|
# don't allow STORE_ATTR mutation with custom __setattr__
|
|
return result
|
|
return self.tx.output.side_effects.track_object_existing(
|
|
self.source, value, result
|
|
)
|
|
|
|
def tensor_can_be_dict_key(self, value):
|
|
# only allow Parameter and another specific Tensor can be used as dict key
|
|
return (
|
|
isinstance(value, torch.nn.Parameter)
|
|
or isinstance(self.source, AttrSource)
|
|
and self.source.member == "state"
|
|
and isinstance(self.source.base, LocalSource)
|
|
)
|
|
|
|
def tensor_should_specialize(self):
|
|
return (
|
|
self.source
|
|
and isinstance(self.source, GetItemSource)
|
|
and isinstance(self.source.base, GetItemSource)
|
|
and self.source.base.index == "params"
|
|
and isinstance(self.source.base.base, GetItemSource)
|
|
and isinstance(self.source.base.base.base, AttrSource)
|
|
and self.source.base.base.base.member == "param_groups"
|
|
and isinstance(self.source.base.base.base.base, LocalSource)
|
|
and (
|
|
isinstance(
|
|
self.tx.f_locals[self.source.base.base.base.base.local_name],
|
|
torch.optim.Optimizer,
|
|
)
|
|
if self.source.base.base.base.base.local_name in self.tx.f_locals.keys()
|
|
else True
|
|
)
|
|
)
|
|
|
|
def wrap_sym(self, value: Union[torch.SymInt, torch.SymFloat]):
|
|
if not is_constant_source(self.get_source()):
|
|
self.tx.output.graphargs.append(
|
|
GraphArg(self.get_source(), value, False, None)
|
|
)
|
|
elif is_constant_source(self.get_source()):
|
|
return self.tx.output.register_attr_or_module(
|
|
value,
|
|
re.sub(r"[^a-zA-Z0-9]+", "_", self.name),
|
|
source=None,
|
|
dyn_shape=value
|
|
# shape Guards live their own rich life via shape_env
|
|
)
|
|
return DynamicShapeVariable.create(
|
|
tx=self.tx,
|
|
proxy=self.tx.output.create_graph_input(
|
|
re.sub(r"[^a-zA-Z0-9]+", "_", self.name), type(value)
|
|
),
|
|
dyn_shape=value
|
|
# shape Guards live their own rich life via shape_env
|
|
)
|
|
|
|
def wrap_tensor(self, value: torch.Tensor):
|
|
if self.get_source().guard_source().is_nn_module():
|
|
return self.tx.output.register_attr_or_module(
|
|
value,
|
|
self.name,
|
|
source=self.get_source(),
|
|
# Guards are done inside register_attr_or_module
|
|
# guards=self.make_guards(GuardBuilder.TENSOR_MATCH),
|
|
)
|
|
|
|
if is_constant_source(self.get_source()):
|
|
return self.tx.output.register_attr_or_module(
|
|
value,
|
|
re.sub(r"[^a-zA-Z0-9]+", "_", self.name),
|
|
source=None,
|
|
# Guards are added inside register_attr_or_module
|
|
)
|
|
|
|
if type(value) in config.traceable_tensor_subclasses:
|
|
# Ordinarily, we would fakeify a tensor so that it can get dynamic
|
|
# shapes and be computed on without triggering actual operations.
|
|
# However, how can we fakeify a tensor subclass? Ordinary
|
|
# inheritance (nor multiple inheritance) won't work work.
|
|
#
|
|
# Instead, our plan is to *manually simulate* the tensor subclass
|
|
# inheriting from a fake tensor with dynamo. This means our
|
|
# data representation for a tensor subclass will be a fake tensor
|
|
# + tensor subclass type + any extra data the subclass may have
|
|
# been storing on the tensor. Because all Python accesses are
|
|
# mediated through TensorWithTFOverrideVariable, we can ensure
|
|
# that we dispatch differently, e.g., according to
|
|
# __torch_function__
|
|
#
|
|
# To simplify things for now, the __dict__ tracking bits haven't
|
|
# been implemented yet, but they can be added into this design at
|
|
# a later point in time.
|
|
ignore_subclass = True
|
|
else:
|
|
assert type(value) in (torch.Tensor, torch.nn.Parameter)
|
|
ignore_subclass = False
|
|
|
|
tensor_variable = wrap_fx_proxy(
|
|
tx=self.tx,
|
|
proxy=self.tx.output.create_graph_input(
|
|
re.sub(r"[^a-zA-Z0-9]+", "_", self.name), type(value)
|
|
),
|
|
example_value=value,
|
|
guards=self.make_guards(GuardBuilder.TENSOR_MATCH),
|
|
should_specialize=self.tensor_should_specialize(),
|
|
ignore_subclass=ignore_subclass,
|
|
)
|
|
|
|
# TODO: I think the result is guaranteed to be fake with
|
|
# ignore_subclass changes
|
|
fake_tensor_value = None
|
|
example_value = tensor_variable.proxy.node.meta["example_value"]
|
|
if isinstance(example_value, torch._subclasses.fake_tensor.FakeTensor):
|
|
fake_tensor_value = example_value
|
|
|
|
self.tx.output.graphargs.append(
|
|
GraphArg(self.get_source(), value, False, fake_tensor_value)
|
|
)
|
|
|
|
if type(value) in config.traceable_tensor_subclasses:
|
|
subclass_torch_function__func = value.__torch_function__.__func__
|
|
subclass_type = type(value)
|
|
# NB: This is slightly misnamed, a tensor subclass might not have
|
|
# any explicit __torch_function__ implementation and is relying
|
|
# on the default inherited from torch.Tensor
|
|
return TensorWithTFOverrideVariable(
|
|
tensor_variable,
|
|
self.get_source(),
|
|
subclass_torch_function__func,
|
|
subclass_type,
|
|
)
|
|
|
|
return tensor_variable
|
|
|
|
def wrap_unspecialized_primitive(self, value):
|
|
if self.name in self.tx.output.unspec_variable_map:
|
|
return self.tx.output.unspec_variable_map[self.name]
|
|
else:
|
|
if config.dynamic_shapes and isinstance(value, int):
|
|
shape_env = self.tx.output.shape_env
|
|
wrapped_value = shape_env.create_symintnode(
|
|
shape_env.create_symbol(value)
|
|
)
|
|
# TODO: Do float
|
|
else:
|
|
# TODO: Eliminate this case entirely
|
|
wrapped_value = torch.tensor(value)
|
|
if not isinstance(self.get_source(), RandomValueSource):
|
|
guards = {self.get_source().make_guard(GuardBuilder.TYPE_MATCH, True)}
|
|
options = {"guards": guards}
|
|
else:
|
|
options = {}
|
|
options.update({"source": self.get_source()})
|
|
if isinstance(wrapped_value, torch.Tensor):
|
|
options.update({"raw_value": value})
|
|
|
|
proxy = self.tx.output.create_graph_input(
|
|
re.sub(r"[^a-zA-Z0-9]+", "_", self.name), type(wrapped_value)
|
|
)
|
|
|
|
if isinstance(value, np.number):
|
|
unspec_var = wrap_fx_proxy_cls(
|
|
UnspecializedNumpyVariable,
|
|
tx=self.tx,
|
|
proxy=proxy,
|
|
example_value=wrapped_value,
|
|
**options,
|
|
)
|
|
else:
|
|
unspec_var = wrap_fx_proxy_cls(
|
|
UnspecializedPythonVariable,
|
|
tx=self.tx,
|
|
proxy=proxy,
|
|
example_value=wrapped_value,
|
|
**options,
|
|
)
|
|
self.tx.output.unspec_variable_map[self.name] = unspec_var
|
|
if not is_constant_source(self.get_source()):
|
|
fake_tensor_value = None
|
|
example_value = unspec_var.proxy.node.meta["example_value"]
|
|
if isinstance(example_value, torch._subclasses.fake_tensor.FakeTensor):
|
|
fake_tensor_value = example_value
|
|
self.tx.output.graphargs.append(
|
|
GraphArg(self.get_source(), wrapped_value, True, fake_tensor_value)
|
|
)
|
|
return unspec_var
|
|
|
|
|
|
def _dataclasses_fields_lambda(obj):
|
|
if isinstance(obj, UserDefinedObjectVariable):
|
|
value = obj.value
|
|
elif isinstance(obj, DataClassVariable):
|
|
value = obj.user_cls
|
|
else:
|
|
unimplemented(f"Dataclass fields handling fails for type {obj}")
|
|
items = []
|
|
for field in dataclasses.fields(value):
|
|
source = None
|
|
if obj.source:
|
|
source = GetItemSource(
|
|
AttrSource(obj.source, "__dataclass_fields__"), field.name
|
|
)
|
|
items.append(UserDefinedObjectVariable(field, source=source).add_options(obj))
|
|
return TupleVariable(items).add_options(obj)
|
|
|
|
|
|
def wrap_fx_proxy(tx, proxy, example_value=None, **options):
|
|
return wrap_fx_proxy_cls(
|
|
target_cls=TensorVariable,
|
|
tx=tx,
|
|
proxy=proxy,
|
|
example_value=example_value,
|
|
**options,
|
|
)
|
|
|
|
|
|
# Note: Unfortunate split due to some gross classes existing that subclass TensorVariable
|
|
# Should be compositional instead
|
|
def wrap_fx_proxy_cls(
|
|
target_cls, tx, proxy, example_value=None, ignore_subclass=False, **options
|
|
):
|
|
if "guards" in options and options["guards"] is not None:
|
|
tx.output.guards.update(options["guards"])
|
|
|
|
assert "example_value" not in proxy.node.meta
|
|
if not config.dynamic_propagation:
|
|
# TODO: This probably doesn't handle subclass correctly
|
|
if isinstance(example_value, torch.Tensor):
|
|
options.update(target_cls.specialize(example_value))
|
|
return target_cls(proxy, **options)
|
|
|
|
initial_example_value = example_value
|
|
|
|
def _clone_input(value):
|
|
if isinstance(value, torch.Tensor):
|
|
# tensor subclasses will not be converted to FakeTensors and need to be cloned
|
|
if not isinstance(value, torch._subclasses.fake_tensor.FakeTensor):
|
|
# NB: ensure strides are preserved
|
|
value = clone_input(value)
|
|
|
|
return value
|
|
|
|
with preserve_rng_state():
|
|
if example_value is None:
|
|
example_value = get_fake_value(proxy.node, tx)
|
|
else:
|
|
# Note: Unfortunately, this can happen during tracing, and is valid enough for now to allow.
|
|
# TODO(voz): Find all the callsites and burn this down.
|
|
# Flipping it to an assert fails dozens of tests.
|
|
# TODO(ezyang): should attempt this burndown again
|
|
if not isinstance(example_value, torch._subclasses.FakeTensor):
|
|
# We shouldn't be doing this at all, see
|
|
# https://github.com/pytorch/torchdynamo/issues/1950
|
|
# But assuming we're doing it, the legacy behavior for
|
|
# subclasses was to perform a clone WITHOUT preserving
|
|
# the subclass. It's not clear to me that's what you actually
|
|
# want, but whatever, I wouldn't have this cache at all.
|
|
with torch._C.DisableTorchFunction():
|
|
proxy.tracer.real_value_cache[proxy.node] = _clone_input(
|
|
example_value
|
|
)
|
|
# NB: If we're ignoring subclass, then the expectation is you will
|
|
# take the returned TensorVariable and wrap it into a more
|
|
# accurate TensorVariable that is able to track subclass-ness;
|
|
# otherwise this is wrong!
|
|
example_value = wrap_to_fake_tensor_and_record(
|
|
example_value, tx=tx, ignore_subclass=ignore_subclass
|
|
)
|
|
|
|
if isinstance(example_value, torch.Tensor):
|
|
is_parameter = isinstance(example_value, torch.nn.Parameter)
|
|
should_specialize = options.pop("should_specialize", False)
|
|
if is_parameter or should_specialize:
|
|
specialized_value = initial_example_value
|
|
else:
|
|
specialized_value = None
|
|
|
|
# NB: In most (all?) cases, this does not actually do a clone.
|
|
# (WARNING: this means that if we mutate metadata on the fake
|
|
# tensor, the stored example value will update too!)
|
|
example_value = _clone_input(example_value)
|
|
proxy.node.meta["example_value"] = example_value
|
|
specialized_props = target_cls.specialize(example_value)
|
|
if isinstance(example_value, torch._subclasses.fake_tensor.FakeTensor):
|
|
# NB: This will be wrong for ignore_subclass; fix it up later!
|
|
specialized_props["class_type"] = (
|
|
torch.nn.Parameter if is_parameter else torch.Tensor
|
|
)
|
|
|
|
specialized_props["specialized_value"] = specialized_value
|
|
|
|
options.update(specialized_props)
|
|
return target_cls(proxy, **options)
|
|
elif (
|
|
hasattr(proxy.node.target, "__name__")
|
|
and proxy.node.target.__name__ == "set_state"
|
|
and isinstance(proxy.node.target.__self__, torch._C.Generator)
|
|
or proxy.node.target == torch.random.set_rng_state
|
|
):
|
|
from . import TorchVariable
|
|
|
|
return TorchVariable(proxy.node.target)
|
|
elif (
|
|
proxy.node.target == torch._C._DisableFuncTorch
|
|
or proxy.node.target == torch.cuda._is_in_bad_fork
|
|
):
|
|
from . import UserDefinedObjectVariable
|
|
|
|
return UserDefinedObjectVariable(example_value)
|
|
elif istype(example_value, (int, bool, float)) and config.dynamic_shapes:
|
|
proxy.node.meta["example_value"] = example_value
|
|
return DynamicShapeVariable.create(tx, proxy, example_value, **options)
|
|
elif istype(example_value, torch.Size) and config.dynamic_shapes:
|
|
proxy.node.meta["example_value"] = example_value
|
|
sizes = []
|
|
for i, v in enumerate(example_value):
|
|
proxy_i = proxy[i]
|
|
sizes.append(DynamicShapeVariable.create(tx, proxy_i, v, **options))
|
|
return SizeVariable(sizes, proxy, **options)
|
|
elif istype(example_value, int) and proxy.node.target in (
|
|
torch.seed,
|
|
operator.mod,
|
|
# some mac builds are missing torch.distributed.get_rank()
|
|
getattr(torch.distributed, "get_rank", _missing),
|
|
getattr(torch.distributed, "get_world_size", _missing),
|
|
):
|
|
if config.dynamic_shapes:
|
|
proxy.node.meta["example_value"] = example_value
|
|
return DynamicShapeVariable.create(tx, proxy, example_value, **options)
|
|
else:
|
|
return ConstantVariable(example_value, **options)
|
|
elif istype(example_value, torch.Size) and all(
|
|
[isinstance(x, int) for x in example_value]
|
|
):
|
|
sizes = [ConstantVariable(x) for x in example_value]
|
|
return SizeVariable(sizes, **options)
|
|
elif isinstance(example_value, (tuple, list)):
|
|
unpacked = []
|
|
for i, val in enumerate(example_value):
|
|
if val is None:
|
|
# nn.MultiheadAttention() can return None, see issue #175
|
|
unpacked.append(
|
|
ConstantVariable(None, **options),
|
|
)
|
|
else:
|
|
unpacked.append(
|
|
wrap_fx_proxy(
|
|
tx,
|
|
proxy.tracer.create_proxy(
|
|
"call_function", operator.getitem, (proxy, i), {}
|
|
),
|
|
example_value=val,
|
|
**options,
|
|
)
|
|
)
|
|
if istype(example_value, tuple):
|
|
return TupleVariable(unpacked, **options)
|
|
elif istype(example_value, (list, immutable_list)):
|
|
return ListVariable(unpacked, mutable_local=MutableLocal(), **options)
|
|
else:
|
|
assert (
|
|
example_value.__class__.__module__ == "torch.return_types"
|
|
or hasattr(example_value, "_fields")
|
|
), ("namedtuple?")
|
|
return NamedTupleVariable(unpacked, example_value.__class__, **options)
|
|
elif example_value is None or proxy.node.target is torch.manual_seed:
|
|
return ConstantVariable(None, **options)
|
|
elif (
|
|
isinstance(example_value, int)
|
|
and proxy.node.target is torch._utils._element_size
|
|
):
|
|
proxy.node.meta["example_value"] = example_value
|
|
return ConstantVariable(example_value, **options)
|
|
elif (
|
|
isinstance(example_value, numbers.Number)
|
|
and (proxy.node.target == "item" or proxy.node.target in {math.sqrt, math.pow})
|
|
and config.capture_scalar_outputs
|
|
):
|
|
# item raw value should not be accessed
|
|
return wrap_fx_proxy_cls(
|
|
FakeItemVariable,
|
|
tx=tx,
|
|
proxy=proxy,
|
|
example_value=torch.tensor(example_value),
|
|
**options,
|
|
)
|
|
elif isinstance(example_value, (torch.SymInt, torch.SymFloat)):
|
|
proxy.node.meta["example_value"] = example_value
|
|
return DynamicShapeVariable(proxy, example_value, **options)
|
|
else:
|
|
raise AssertionError(
|
|
"torch.* op returned non-Tensor "
|
|
+ f"{typestr(example_value)} {proxy.node.op} {proxy.node.target}"
|
|
)
|