pytorch/torch/distributed/optim/functional_adam.py
oliver 3d358a7678 Adds a maximize flag to Adam (#68164)
Summary:
Solves the next most important use case in https://github.com/pytorch/pytorch/issues/68052.

I have kept the style as close to that in SGD as seemed reasonable, given the slight differences in their internal implementations.

All feedback welcome!

cc pietern mrshenli pritamdamania87 zhaojuanmao satgera rohan-varma gqchen aazzolini osalpekar jiayisuse SciPioneer H-Huang

Pull Request resolved: https://github.com/pytorch/pytorch/pull/68164

Reviewed By: VitalyFedyunin

Differential Revision: D32994129

Pulled By: albanD

fbshipit-source-id: 65c57c3f3dbbd3e3e5338d51def54482503e8850
2021-12-13 05:53:53 -08:00

168 lines
6.6 KiB
Python

from typing import List, Dict, Optional, Tuple
import torch
import torch.optim._functional as F
from torch import Tensor
# Define a TorchScript compatible Functional Adam Optimizer
# where we use these optimizer in a functional way.
# Instead of using the `param.grad` when updating parameters,
# we explicitly allow the distributed optimizer pass gradients to
# the `step` function. In this way, we could separate the gradients
# and parameters and allow multithreaded trainer to update the
# parameters without data traces on accumulating to the same .grad.
# NOTE: This should be only used by distributed optimizer internals
# and not meant to expose to the user.
@torch.jit.script
class _FunctionalAdam(object):
def __init__(
self,
params: List[Tensor],
lr: float = 1e-3,
betas: Tuple[float, float] = (0.9, 0.999),
eps: float = 1e-8,
weight_decay: float = 0.0,
amsgrad: bool = False,
maximize: bool = False,
_allow_empty_param_list: bool = False,
):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
if not 0.0 <= weight_decay:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
self.defaults = {
"lr": lr,
"eps": eps,
"beta1": betas[0],
"beta2": betas[1],
"weight_decay": weight_decay,
}
self.amsgrad = amsgrad
self.maximize = maximize
self.state = torch.jit.annotate(Dict[torch.Tensor, Dict[str, torch.Tensor]], {})
if len(params) == 0 and not _allow_empty_param_list:
raise ValueError("optimizer got an empty parameter list")
# NOTE: we only have one param_group and don't allow user to add additional
# param group as it's not a common use case.
self.param_group = {"params": params}
def step_param(self, param: Tensor, grad: Optional[Tensor]):
"""
Similar to step, but operates on a single parameter and optionally a
gradient tensor.
"""
params = [param]
params_with_grad = []
grads = []
exp_avgs = []
exp_avg_sqs = []
max_exp_avg_sqs = []
state_steps: List[int] = []
if grad is not None:
params_with_grad.append(param)
grads.append(grad)
if param not in self.state:
self.state[param] = {}
state = self.state[param]
state['step'] = torch.tensor(0.0)
state['exp_avg'] = torch.zeros_like(param, memory_format=torch.preserve_format)
state['exp_avg_sq'] = torch.zeros_like(param, memory_format=torch.preserve_format)
if self.amsgrad:
state['max_exp_avg_sq'] = torch.zeros_like(param, memory_format=torch.preserve_format)
state = self.state[param]
exp_avgs.append(state['exp_avg'])
exp_avg_sqs.append(state['exp_avg_sq'])
if self.amsgrad:
max_exp_avg_sqs.append(state['max_exp_avg_sq'])
# update the steps for each param group update
state['step'] += 1
# record the step after step update
state_steps.append(state['step'].item())
with torch.no_grad():
F.adam(params_with_grad,
grads,
exp_avgs,
exp_avg_sqs,
max_exp_avg_sqs,
state_steps,
amsgrad=self.amsgrad,
maximize=self.maximize,
beta1=self.defaults['beta1'],
beta2=self.defaults['beta2'],
lr=self.defaults['lr'],
weight_decay=self.defaults['weight_decay'],
eps=self.defaults['eps'])
def step(self, gradients: List[Optional[Tensor]]):
params = self.param_group['params']
params_with_grad = []
grads = []
exp_avgs = []
exp_avg_sqs = []
max_exp_avg_sqs = []
state_steps: List[int] = []
if len(params) != len(gradients):
raise ValueError(
"the gradients passed in does not equal to the size of the parameters!"
+ f"Params length: {len(params)}. "
+ f"Gradients length: {len(gradients)}"
)
for param, gradient in zip(self.param_group['params'], gradients):
if gradient is not None:
params_with_grad.append(param)
grads.append(gradient)
# Lazy state initialization
if param not in self.state:
self.state[param] = {}
state = self.state[param]
state['step'] = torch.tensor(0.0)
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(param, memory_format=torch.preserve_format)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(param, memory_format=torch.preserve_format)
if self.amsgrad:
# Maintains max of all exp. moving avg. of sq. grad. values
state['max_exp_avg_sq'] = torch.zeros_like(param, memory_format=torch.preserve_format)
state = self.state[param]
exp_avgs.append(state['exp_avg'])
exp_avg_sqs.append(state['exp_avg_sq'])
if self.amsgrad:
max_exp_avg_sqs.append(state['max_exp_avg_sq'])
# update the steps for each param group update
state['step'] += 1
# record the step after step update
state_steps.append(state['step'].item())
with torch.no_grad():
F.adam(params_with_grad,
grads,
exp_avgs,
exp_avg_sqs,
max_exp_avg_sqs,
state_steps,
amsgrad=self.amsgrad,
maximize=self.maximize,
beta1=self.defaults['beta1'],
beta2=self.defaults['beta2'],
lr=self.defaults['lr'],
weight_decay=self.defaults['weight_decay'],
eps=self.defaults['eps'])