pytorch/torch/csrc/profiler/python/init.cpp
Seonglyong Gong 3cfc61b846 [Profiler][trivial] Optimizer states (part 4 of Record Optimizer) (#85840)
Summary: - add states into OptInfo and update unit testcase

Test Plan: buck run mode/opt //caffe2/test:profiler

Reviewed By: chaekit

Differential Revision: D39406540

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85840
Approved by: https://github.com/robieta
2022-09-29 07:28:33 +00:00

246 lines
9.8 KiB
C++

#include <torch/csrc/profiler/python/init.h>
#include <ATen/record_function.h>
#include <torch/csrc/autograd/utils/wrap_outputs.h>
#include <torch/csrc/jit/python/pybind_utils.h>
#include <torch/csrc/profiler/collection.h>
#include <torch/csrc/utils/pybind.h>
namespace torch {
namespace profiler {
void initPythonBindings(PyObject* module) {
auto rootModule = py::handle(module).cast<py::module>();
auto m = rootModule.def_submodule("_profiler");
using namespace torch::profiler::impl;
py::enum_<at::RecordScope>(m, "RecordScope")
.value("FUNCTION", at::RecordScope::FUNCTION)
.value("BACKWARD_FUNCTION", at::RecordScope::BACKWARD_FUNCTION)
.value("TORCHSCRIPT_FUNCTION", at::RecordScope::TORCHSCRIPT_FUNCTION)
.value("KERNEL_FUNCTION_DTYPE", at::RecordScope::KERNEL_FUNCTION_DTYPE)
.value("CUSTOM_CLASS", at::RecordScope::CUSTOM_CLASS)
.value("BUILD_FEATURE", at::RecordScope::BUILD_FEATURE)
.value("LITE_INTERPRETER", at::RecordScope::LITE_INTERPRETER)
.value("USER_SCOPE", at::RecordScope::USER_SCOPE)
.value("STATIC_RUNTIME_OP", at::RecordScope::STATIC_RUNTIME_OP)
.value("STATIC_RUNTIME_MODEL", at::RecordScope::STATIC_RUNTIME_MODEL);
py::enum_<ProfilerState>(m, "ProfilerState")
.value("Disabled", ProfilerState::Disabled)
.value("CPU", ProfilerState::CPU)
.value("CUDA", ProfilerState::CUDA)
.value("NVTX", ProfilerState::NVTX)
.value("ITT", ProfilerState::ITT)
.value("KINETO", ProfilerState::KINETO)
.value("KINETO_GPU_FALLBACK", ProfilerState::KINETO_GPU_FALLBACK);
py::enum_<ActiveProfilerType>(m, "ActiveProfilerType")
.value("NONE", ActiveProfilerType::NONE)
.value("LEGACY", ActiveProfilerType::LEGACY)
.value("KINETO", ActiveProfilerType::KINETO)
.value("NVTX", ActiveProfilerType::NVTX);
py::enum_<ActivityType>(m, "ProfilerActivity")
.value("CPU", ActivityType::CPU)
.value("CUDA", ActivityType::CUDA);
py::class_<ExperimentalConfig>(m, "_ExperimentalConfig")
.def(
py::init<
std::vector<std::string> /* profiler_metrics */,
bool /* profiler_measure_per_kernel */,
bool /* verbose */
>(),
"An experimental config for Kineto features. Please note that"
"backward compatibility is not guaranteed.\n"
" profiler_metrics : a list of CUPTI profiler metrics used\n"
" to measure GPU performance events.\n"
" If this list contains values Kineto runs in CUPTI profiler mode\n"
" profiler_measure_per_kernel (bool) : whether to profile metrics per kernel\n"
" or for the entire measurement duration.\n"
" verbose (bool) : whether the trace file has `Call stack` field or not.",
py::arg("profiler_metrics") = std::vector<std::string>(),
py::arg("profiler_measure_per_kernel") = false,
py::arg("verbose") = true)
.def(py::pickle(
[](const ExperimentalConfig& p) { // __getstate__
py::list py_metrics;
for (const auto& metric : p.profiler_metrics) {
py::bytes mbytes(metric);
py_metrics.append(mbytes);
}
/* Return a tuple that fully encodes the state of the config */
return py::make_tuple(
py_metrics, p.profiler_measure_per_kernel, p.verbose);
},
[](py::tuple t) { // __setstate__
if (t.size() != 3) {
throw std::runtime_error("Expected 3 values in state");
}
py::list py_metrics = t[0].cast<py::list>();
std::vector<std::string> metrics{py_metrics.size()};
for (const auto& py_metric : py_metrics) {
metrics.push_back(py::str(py_metric));
}
return ExperimentalConfig(
std::move(metrics), t[1].cast<bool>(), t[2].cast<bool>());
}));
py::class_<ProfilerConfig>(m, "ProfilerConfig")
.def(py::init<
ProfilerState,
bool, /* record_input_shapes */
bool, /* profile_memory */
bool, /* with_stack */
bool, /* with_flops */
bool, /* with_modules */
ExperimentalConfig /* experimental_config */
>());
py::enum_<EventType>(m, "_EventType")
.value("TorchOp", EventType::TorchOp)
.value("Backend", EventType::Backend)
.value("Allocation", EventType::Allocation)
.value("PyCall", EventType::PyCall)
.value("PyCCall", EventType::PyCCall)
.value("Kineto", EventType::Kineto);
py::class_<Inputs>(m, "_Inputs")
.def_readonly("shapes", &Inputs::shapes_)
.def_readonly("dtypes", &Inputs::dtypes_)
.def_readonly("strides", &Inputs::strides_)
.def_property_readonly(
"ivalues",
[](const Inputs& inputs) {
py::list list;
for (auto& v : inputs.ivalues_) {
list.append(torch::jit::toPyObject(v));
}
return list;
})
.def_readonly("tensor_metadata", &Inputs::tensor_metadata_);
py::class_<TensorMetadata>(m, "_TensorMetadata")
.def_readonly("impl_ptr", &TensorMetadata::impl_)
.def_readonly("storage_data_ptr", &TensorMetadata::data_)
.def_readonly("id", &TensorMetadata::id_)
.def_property_readonly(
"layout",
[](const TensorMetadata& metadata) {
PyObject* layout_obj =
torch::autograd::utils::wrap(metadata.layout_);
return py::reinterpret_borrow<py::object>(layout_obj);
})
.def_property_readonly("device", &TensorMetadata::device);
using torch_op_t = ExtraFields<EventType::TorchOp>;
py::class_<torch_op_t>(m, "_ExtraFields_TorchOp")
.def_readonly("inputs", &torch_op_t::inputs_)
.def_readonly("scope", &torch_op_t::scope_)
.def_readonly("sequence_number", &torch_op_t::sequence_number_)
.def_readonly("allow_tf32_cublas", &torch_op_t::allow_tf32_cublas_);
py::class_<ExtraFields<EventType::Backend>>(m, "_ExtraFields_Backend");
using allocation_t = ExtraFields<EventType::Allocation>;
py::class_<allocation_t>(m, "_ExtraFields_Allocation")
.def_property_readonly(
"ptr",
[](const allocation_t& a) {
return reinterpret_cast<intptr_t>(a.ptr_);
})
.def_readonly("alloc_size", &allocation_t::alloc_size_)
.def_readonly("device_type", &allocation_t::device_type_)
.def_readonly("device_index", &allocation_t::device_index_)
.def_readonly("total_allocated", &allocation_t::total_allocated_)
.def_readonly("total_reserved", &allocation_t::total_reserved_);
py::class_<NNModuleInfo>(m, "_NNModuleInfo")
.def_property_readonly(
"params",
[](const NNModuleInfo& s) {
py::list list;
for (auto& p : s.params_) {
list.append(std::make_pair(
p.first, reinterpret_cast<intptr_t>(p.second)));
}
return list;
})
.def_property_readonly(
"cls_name", [](const NNModuleInfo& s) { return s.cls_name_.str(); });
py::class_<OptimizerInfo>(m, "_OptInfo")
.def_property_readonly(
"self",
[](const OptimizerInfo& a) {
return reinterpret_cast<intptr_t>(a.self_.value_of());
})
.def_property_readonly(
"param_addrs",
[](const OptimizerInfo& s) {
py::list params_addrs;
for (auto& addr : s.params_addr_) {
params_addrs.append(reinterpret_cast<intptr_t>(addr));
}
return params_addrs;
})
.def_property_readonly("opt_state", [](const OptimizerInfo& s) {
py::list states;
for (auto& a : s.opt_state_) {
states.append(
std::make_pair(a.first, reinterpret_cast<intptr_t>(a.second)));
}
return states;
});
py::class_<ExtraFields<EventType::PyCall>>(m, "_ExtraFields_PyCall")
.def_readonly("opt", &ExtraFields<EventType::PyCall>::opt_)
.def_readonly("callsite", &ExtraFields<EventType::PyCall>::callsite_)
.def_readonly("caller", &ExtraFields<EventType::PyCall>::caller_)
.def_readonly("module", &ExtraFields<EventType::PyCall>::module_);
py::class_<ExtraFields<EventType::PyCCall>>(m, "_ExtraFields_PyCCall")
.def_readonly("caller", &ExtraFields<EventType::PyCall>::caller_);
py::class_<PyFrameState>(m, "_PyFrameState")
.def_readonly("line_number", &PyFrameState::line_no_)
.def_property_readonly(
"file_name", [](const PyFrameState& s) { return s.filename_.str(); })
.def_property_readonly("function_name", [](const PyFrameState& s) {
return s.funcname_.str();
});
py::class_<ExtraFields<EventType::OutOfMemory>>(
m, "_ExtraFields_OutOfMemory");
py::class_<ExtraFields<EventType::Kineto>>(m, "_ExtraFields_Kineto");
py::class_<Result, std::shared_ptr<Result>>(m, "_ProfilerEvent")
.def("name", &Result::name)
.def_property_readonly("tag", &Result::tag)
.def_readonly("extra_fields", &Result::extra_fields_)
.def_property_readonly(
"id",
[](const Result& r) {
return reinterpret_cast<intptr_t>(r.shared_from_this().get());
})
.def_property_readonly(
"parent", [](const Result& r) { return r.parent_.lock(); })
.def_readonly("children", &Result::children_)
.def_readonly("start_time_ns", &Result::start_time_ns_)
.def_readonly("start_tid", &Result::start_tid_)
.def_property_readonly("correlation_id", &Result::correlationID)
.def_property_readonly("end_time_ns", &Result::endTimeNS)
.def_property_readonly("duration_time_ns", [](const Result& r) {
return r.endTimeNS() - r.start_time_ns_;
});
}
} // namespace profiler
} // namespace torch