pytorch/caffe2/python/layers_test.py
Kevin Wilfong 3ca7c0ffdb Add get_accessed_features function to ModelLayer class (#23036)
Summary:
We need a way to figure get a complete list fo features that are used in training a model.  One way to do this is to make it possible to get the list of features used in each Model Layer.  Then once the model is complete we can go through the layers and aggregate the features.

I've introduced a function to expose that information here, get_accessed_features, and implemented it in the FeatureSparseToDense layer to start with.

I've tried to include the minimum amount of information to make this useful, while making it easy to integrate into the variety of model layers.  This is, for example, why AccessedFeatures does not contain feature_names which is not always present in a model layer.  I debated whether or not to include feature_type, but I think that's useful enough, and easy enough to figure out in a model layer, that it's worth including.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23036

Test Plan:
Added a unit test to verify the behavior of get_accessed_features in FeatureSparseToDense.

aml_dper2-fblearner-flow-integration-tests failed due to a known issue D16355865
aml_dper3-fblearner-flow-integration-tests failed due to a known issue T47197113

I verified no tests in the integration tests failed to issues other than those known ones.

DPER2 canaries: https://fburl.com/fblearner/1217voga

Reviewed By: volkhin

Differential Revision: D16365380

Pulled By: kevinwilfong

fbshipit-source-id: 2dbb4d832628180336533f29f7d917cbad171950
2019-07-22 15:04:28 -07:00

2212 lines
80 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import hypothesis.strategies as st
import numpy as np
import numpy.testing as npt
import unittest
from hypothesis import given
import caffe2.python.hypothesis_test_util as hu
from caffe2.python import (
layer_model_instantiator,
core,
schema,
workspace,
)
from caffe2.python.layers.layers import (
AccessedFeatures,
get_key,
IdList,
InstantiationContext,
is_request_only_scalar,
set_request_only,
)
from caffe2.python.layers.tags import Tags
from caffe2.python.layer_test_util import (
LayersTestCase,
OpSpec,
)
import logging
logger = logging.getLogger(__name__)
class TestLayers(LayersTestCase):
def testAddLoss(self):
input_record_LR = self.new_record(
schema.Struct(
('label', schema.Scalar((np.float64, (1, )))),
('logit', schema.Scalar((np.float32, (2, )))),
('weight', schema.Scalar((np.float64, (1, ))))
)
)
loss_LR = self.model.BatchLRLoss(input_record_LR)
self.model.add_loss(loss_LR)
assert 'unnamed' in self.model.loss
self.assertEqual(
schema.Scalar((np.float32, tuple())), self.model.loss.unnamed
)
self.assertEqual(loss_LR, self.model.loss.unnamed)
self.model.add_loss(loss_LR, 'addLoss')
assert 'addLoss' in self.model.loss
self.assertEqual(
schema.Scalar((np.float32, tuple())), self.model.loss.addLoss
)
self.assertEqual(loss_LR, self.model.loss.addLoss)
self.model.add_loss(
schema.Scalar(
dtype=np.float32, blob=core.BlobReference('loss_blob_1')
), 'addLoss'
)
assert 'addLoss_auto_0' in self.model.loss
self.assertEqual(
schema.Scalar((np.float32, tuple())), self.model.loss.addLoss_auto_0
)
assert core.BlobReference('loss_blob_1') in self.model.loss.field_blobs()
self.model.add_loss(
schema.Struct(
(
'structName', schema.Scalar(
dtype=np.float32,
blob=core.BlobReference('loss_blob_2')
)
)
), 'addLoss'
)
assert 'addLoss_auto_1' in self.model.loss
self.assertEqual(
schema.Struct(('structName', schema.Scalar((np.float32, tuple())))),
self.model.loss.addLoss_auto_1
)
assert core.BlobReference('loss_blob_2') in self.model.loss.field_blobs()
loss_in_tuple_0 = schema.Scalar(
dtype=np.float32, blob=core.BlobReference('loss_blob_in_tuple_0')
)
loss_in_tuple_1 = schema.Scalar(
dtype=np.float32, blob=core.BlobReference('loss_blob_in_tuple_1')
)
loss_tuple = schema.NamedTuple(
'loss_in_tuple', * [loss_in_tuple_0, loss_in_tuple_1]
)
self.model.add_loss(loss_tuple, 'addLoss')
assert 'addLoss_auto_2' in self.model.loss
self.assertEqual(
schema.Struct(
('loss_in_tuple_0', schema.Scalar((np.float32, tuple()))),
('loss_in_tuple_1', schema.Scalar((np.float32, tuple())))
), self.model.loss.addLoss_auto_2
)
assert core.BlobReference('loss_blob_in_tuple_0')\
in self.model.loss.field_blobs()
assert core.BlobReference('loss_blob_in_tuple_1')\
in self.model.loss.field_blobs()
def testFilterMetricSchema(self):
self.model.add_metric_field("a:b", schema.Scalar())
self.model.add_metric_field("a:c", schema.Scalar())
self.model.add_metric_field("d", schema.Scalar())
self.assertEqual(
self.model.metrics_schema,
schema.Struct(
("a", schema.Struct(
("b", schema.Scalar()),
("c", schema.Scalar()),
)),
("d", schema.Scalar()),
))
self.model.filter_metrics_schema({"a:b", "d"})
self.assertEqual(
self.model.metrics_schema,
schema.Struct(
("a", schema.Struct(
("b", schema.Scalar()),
)),
("d", schema.Scalar()),
))
def testAddOutputSchema(self):
# add the first field
self.model.add_output_schema('struct', schema.Struct())
expected_output_schema = schema.Struct(('struct', schema.Struct()))
self.assertEqual(
self.model.output_schema,
expected_output_schema,
)
# add the second field
self.model.add_output_schema('scalar', schema.Scalar(np.float64))
expected_output_schema = schema.Struct(
('struct', schema.Struct()),
('scalar', schema.Scalar(np.float64)),
)
self.assertEqual(
self.model.output_schema,
expected_output_schema,
)
# overwrite a field should raise
with self.assertRaises(AssertionError):
self.model.add_output_schema('scalar', schema.Struct())
def _test_net(self, net, ops_list):
"""
Helper function to assert the net contains some set of operations and
then to run the net.
Inputs:
net -- the network to test and run
ops_list -- the list of operation specifications to check for
in the net
"""
ops_output = self.assertNetContainOps(net, ops_list)
workspace.RunNetOnce(net)
return ops_output
def testFCWithoutBias(self):
output_dims = 2
fc_without_bias = self.model.FCWithoutBias(
self.model.input_feature_schema.float_features, output_dims)
self.model.output_schema = fc_without_bias
self.assertEqual(
schema.Scalar((np.float32, (output_dims, ))),
fc_without_bias
)
train_init_net, train_net = self.get_training_nets()
init_ops = self.assertNetContainOps(
train_init_net,
[
OpSpec("UniformFill", None, None),
]
)
mat_mul_spec = OpSpec(
"MatMul",
[
self.model.input_feature_schema.float_features(),
init_ops[0].output[0],
],
fc_without_bias.field_blobs()
)
self.assertNetContainOps(train_net, [mat_mul_spec])
predict_net = self.get_predict_net()
self.assertNetContainOps(predict_net, [mat_mul_spec])
def testFCwithAxis2(self):
input_dim = 10
output_dim = 30
max_length = 20
input_record = self.new_record(
schema.Struct(
('history_sequence', schema.Scalar((np.float32, (max_length,
input_dim)))),
)
)
fc_out = self.model.FC(
input_record.history_sequence, output_dim,
axis=2)
self.model.output_schema = fc_out
self.assertEqual(
schema.Scalar((np.float32, (max_length, output_dim))),
fc_out
)
train_init_net, train_net = self.get_training_nets()
def testSparseLookupSumPoolingWithEviction(self):
# Create test embedding table of 1 row
record = schema.NewRecord(self.model.net, schema.Struct(
('sparse', schema.Struct(
('sparse_feature_0', schema.ListWithEvicted(
schema.Scalar(np.int64,
metadata=schema.Metadata(categorical_limit=1)),)),)),
))
embedding_dim = 8
lengths_blob = record.sparse.sparse_feature_0.lengths.get()
values_blob = record.sparse.sparse_feature_0.items.get()
evicted_values_blob = record.sparse.sparse_feature_0._evicted_values.get()
lengths = np.array([1]).astype(np.int32)
values = np.array([0]).astype(np.int64)
# Need to reset row 0
evicted_values = np.array([0]).astype(np.int64)
workspace.FeedBlob(lengths_blob, lengths)
workspace.FeedBlob(values_blob, values)
workspace.FeedBlob(evicted_values_blob, evicted_values)
embedding_after_pooling = self.model.SparseLookup(
record.sparse.sparse_feature_0, [embedding_dim], 'Sum', weight_init=("ConstantFill", {"value": 1.0}))
self.model.output_schema = schema.Struct()
self.assertEqual(
schema.Scalar((np.float32, (embedding_dim, ))),
embedding_after_pooling
)
train_init_net, train_net = self.get_training_nets()
workspace.RunNetOnce(train_init_net)
embedding_after_init = workspace.FetchBlob("sparse_lookup/w")
# Change row 0's value before reset
new_values = np.array([[2, 2, 2, 2, 2, 2, 2, 2]]).astype(np.float32)
workspace.FeedBlob("sparse_lookup/w", new_values)
workspace.RunNetOnce(train_net.Proto())
embedding_after_training = workspace.FetchBlob("sparse_lookup/w")
# Verify row 0's value does not change after reset
self.assertEquals(embedding_after_training.all(), embedding_after_init.all())
def testSparseLookupSumPooling(self):
record = schema.NewRecord(self.model.net, schema.Struct(
('sparse', schema.Struct(
('sparse_feature_0', schema.List(
schema.Scalar(np.int64,
metadata=schema.Metadata(categorical_limit=1000)))),
)),
))
embedding_dim = 64
embedding_after_pooling = self.model.SparseLookup(
record.sparse.sparse_feature_0, [embedding_dim], 'Sum')
self.model.output_schema = schema.Struct()
self.assertEqual(
schema.Scalar((np.float32, (embedding_dim, ))),
embedding_after_pooling
)
train_init_net, train_net = self.get_training_nets()
init_ops = self.assertNetContainOps(
train_init_net,
[
OpSpec("UniformFill", None, None),
OpSpec("ConstantFill", None, None),
]
)
sparse_lookup_op_spec = OpSpec(
'SparseLengthsSum',
[
init_ops[0].output[0],
record.sparse.sparse_feature_0.items(),
record.sparse.sparse_feature_0.lengths(),
],
[embedding_after_pooling()]
)
self.assertNetContainOps(train_net, [sparse_lookup_op_spec])
predict_net = self.get_predict_net()
self.assertNetContainOps(predict_net, [sparse_lookup_op_spec])
@given(
use_hashing=st.booleans(),
modulo=st.integers(min_value=100, max_value=200),
use_divide_mod=st.booleans(),
divisor=st.integers(min_value=10, max_value=20),
)
def testSparseFeatureHashIdList(self, use_hashing, modulo, use_divide_mod, divisor):
record = schema.NewRecord(
self.model.net,
schema.List(schema.Scalar(
np.int64,
metadata=schema.Metadata(categorical_limit=60000)
))
)
use_divide_mod = use_divide_mod if use_hashing is False else False
output_schema = self.model.SparseFeatureHash(
record,
modulo=modulo,
use_hashing=use_hashing,
use_divide_mod=use_divide_mod,
divisor=divisor,
)
self.model.output_schema = output_schema
self.assertEqual(len(self.model.layers), 1)
self.assertEqual(output_schema._items.metadata.categorical_limit,
modulo)
train_init_net, train_net = self.get_training_nets()
if use_divide_mod:
self.assertEqual(len(train_net.Proto().op), 3)
else:
self.assertEqual(len(train_net.Proto().op), 2)
@given(
use_hashing=st.booleans(),
modulo=st.integers(min_value=100, max_value=200),
)
def testSparseFeatureHashIdScoreList(self, use_hashing, modulo):
record = schema.NewRecord(self.model.net,
schema.Map(schema.Scalar(np.int64,
metadata=schema.Metadata(
categorical_limit=60000)),
np.float32))
output_schema = self.model.SparseFeatureHash(
record,
modulo=modulo,
use_hashing=use_hashing)
self.model.output_schema = output_schema
self.assertEqual(len(self.model.layers), 1)
self.assertEqual(output_schema._items.keys.metadata.categorical_limit,
modulo)
train_init_net, train_net = self.get_training_nets()
def testSparseLookupIncorrectPositionWeightedOnIdList(self):
'''
Currently the implementation of SparseLookup assumed input is id_score_list
when use PositionWeighted.
'''
record = schema.NewRecord(self.model.net, schema.Struct(
('sparse', schema.Struct(
('sparse_feature_0', schema.List(
schema.Scalar(np.int64,
metadata=schema.Metadata(categorical_limit=1000)))),
)),
))
embedding_dim = 64
with self.assertRaises(AssertionError):
self.model.SparseLookup(
record.sparse.sparse_feature_0, [embedding_dim], 'PositionWeighted')
def testSparseLookupPositionWeightedOnIdList(self):
record = schema.NewRecord(self.model.net, schema.Struct(
('sparse', schema.Struct(
('sparse_feature_0', schema.List(
schema.Scalar(np.int64,
metadata=schema.Metadata(categorical_limit=1000)))),
)),
))
# convert id_list to id_score_list with PositionWeighted layer
sparse_segment = record.sparse.sparse_feature_0
pos_w_layer = self.model.PositionWeighted(sparse_segment)
sparse_segment = schema.Map(
keys=get_key(sparse_segment),
values=pos_w_layer.position_weights,
lengths_blob=sparse_segment.lengths
)
embedding_dim = 64
embedding_after_pooling = self.model.SparseLookup(
sparse_segment, [embedding_dim], 'PositionWeighted')
self.model.output_schema = schema.Struct()
self.assertEqual(
schema.Scalar((np.float32, (embedding_dim, ))),
embedding_after_pooling
)
train_init_net, train_net = self.get_training_nets()
self.assertNetContainOps(
train_init_net,
[
OpSpec("ConstantFill", None, None), # position_weights/pos_w
OpSpec("UniformFill", None, None),
OpSpec("ConstantFill", None, None),
]
)
self.assertNetContainOps(train_net, [
OpSpec("LengthsRangeFill", None, None),
OpSpec("Gather", None, None),
OpSpec("SparseLengthsWeightedSum", None, None),
])
predict_net = self.get_predict_net()
self.assertNetContainOps(predict_net, [
OpSpec("LengthsRangeFill", None, None),
OpSpec("Gather", None, None),
OpSpec("SparseLengthsWeightedSum", None, None),
])
def testSparseLookupPositionWeightedOnIdScoreList(self):
record = schema.NewRecord(self.model.net, schema.Struct(
('sparse', schema.Struct(
('id_score_list_0', schema.Map(
schema.Scalar(
np.int64,
metadata=schema.Metadata(
categorical_limit=1000
),
),
np.float32
)),
)),
))
embedding_dim = 64
embedding_after_pooling = self.model.SparseLookup(
record.sparse.id_score_list_0, [embedding_dim], 'PositionWeighted')
self.model.output_schema = schema.Struct()
self.assertEqual(
schema.Scalar((np.float32, (embedding_dim, ))),
embedding_after_pooling
)
train_init_net, train_net = self.get_training_nets()
init_ops = self.assertNetContainOps(
train_init_net,
[
OpSpec("UniformFill", None, None),
OpSpec("ConstantFill", None, None),
]
)
sparse_lookup_op_spec = OpSpec(
'SparseLengthsWeightedSum',
[
init_ops[0].output[0],
record.sparse.id_score_list_0.values(),
record.sparse.id_score_list_0.keys(),
record.sparse.id_score_list_0.lengths(),
],
[embedding_after_pooling()]
)
self.assertNetContainOps(train_net, [sparse_lookup_op_spec])
predict_net = self.get_predict_net()
self.assertNetContainOps(predict_net, [sparse_lookup_op_spec])
def testSparseLookupIncorrectRecencyWeightedOnIdList(self):
'''
Currently the implementation of SparseLookup assumed input is id_score_list
when use RecencyWeighted.
'''
record = schema.NewRecord(self.model.net, schema.Struct(
('sparse', schema.Struct(
('sparse_feature_0', schema.List(
schema.Scalar(np.int64,
metadata=schema.Metadata(categorical_limit=1000)))),
)),
))
embedding_dim = 64
with self.assertRaises(AssertionError):
self.model.SparseLookup(
record.sparse.sparse_feature_0, [embedding_dim], 'RecencyWeighted')
def testSparseLookupRecencyWeightedOnIdScoreList(self):
record = schema.NewRecord(self.model.net, schema.Struct(
('sparse', schema.Struct(
('id_score_list_0', schema.Map(
schema.Scalar(
np.int64,
metadata=schema.Metadata(
categorical_limit=1000
),
),
np.float32
)),
)),
))
embedding_dim = 64
embedding_after_pooling = self.model.SparseLookup(
record.sparse.id_score_list_0, [embedding_dim], 'RecencyWeighted')
self.model.output_schema = schema.Struct()
self.assertEqual(
schema.Scalar((np.float32, (embedding_dim, ))),
embedding_after_pooling
)
train_init_net, train_net = self.get_training_nets()
init_ops = self.assertNetContainOps(
train_init_net,
[
OpSpec("UniformFill", None, None),
OpSpec("ConstantFill", None, None),
]
)
sparse_lookup_op_spec = OpSpec(
'SparseLengthsWeightedSum',
[
init_ops[0].output[0],
record.sparse.id_score_list_0.values(),
record.sparse.id_score_list_0.keys(),
record.sparse.id_score_list_0.lengths(),
],
[embedding_after_pooling()]
)
self.assertNetContainOps(train_net, [sparse_lookup_op_spec])
predict_net = self.get_predict_net()
self.assertNetContainOps(predict_net, [sparse_lookup_op_spec])
def testPairwiseSimilarityWithAllEmbeddings(self):
embedding_dim = 64
N = 5
record = schema.NewRecord(self.model.net, schema.Struct(
('all_embeddings', schema.Scalar(
((np.float32, (N, embedding_dim)))
)),
))
current = self.model.PairwiseSimilarity(
record, N * N)
self.assertEqual(
schema.Scalar((np.float32, (N * N, ))),
current
)
train_init_net, train_net = self.get_training_nets()
self.assertNetContainOps(train_init_net, [])
self.assertNetContainOps(train_net, [
OpSpec("BatchMatMul", None, None),
OpSpec("Flatten", None, None),
])
def testPairwiseSimilarityWithXandYEmbeddings(self):
embedding_dim = 64
record = schema.NewRecord(self.model.net, schema.Struct(
('x_embeddings', schema.Scalar(
((np.float32, (5, embedding_dim)))
)),
('y_embeddings', schema.Scalar(
((np.float32, (6, embedding_dim)))
)),
))
current = self.model.PairwiseSimilarity(
record, 5 * 6)
self.assertEqual(
schema.Scalar((np.float32, (5 * 6, ))),
current
)
train_init_net, train_net = self.get_training_nets()
self.assertNetContainOps(train_init_net, [])
self.assertNetContainOps(train_net, [
OpSpec("BatchMatMul", None, None),
OpSpec("Flatten", None, None),
])
def testPairwiseSimilarityWithXandYEmbeddingsAndGather(self):
embedding_dim = 64
output_idx = [1, 3, 5]
output_idx_blob = self.model.add_global_constant(
str(self.model.net.NextScopedBlob('pairwise_dot_product_gather')),
output_idx,
dtype=np.int32,
)
indices_to_gather = schema.Scalar(
(np.int32, len(output_idx)),
output_idx_blob,
)
record = schema.NewRecord(self.model.net, schema.Struct(
('x_embeddings', schema.Scalar(
((np.float32, (5, embedding_dim)))
)),
('y_embeddings', schema.Scalar(
((np.float32, (6, embedding_dim)))
)),
('indices_to_gather', indices_to_gather),
))
current = self.model.PairwiseSimilarity(
record, len(output_idx))
# This assert is not necessary,
# output size is passed into PairwiseSimilarity
self.assertEqual(
schema.Scalar((np.float32, (len(output_idx), ))),
current
)
train_init_net, train_net = self.get_training_nets()
self.assertNetContainOps(train_init_net, [])
self.assertNetContainOps(train_net, [
OpSpec("BatchMatMul", None, None),
OpSpec("Flatten", None, None),
OpSpec("BatchGather", None, None),
])
def testPairwiseSimilarityIncorrectInput(self):
embedding_dim = 64
record = schema.NewRecord(self.model.net, schema.Struct(
('x_embeddings', schema.Scalar(
((np.float32, (5, embedding_dim)))
)),
))
with self.assertRaises(AssertionError):
self.model.PairwiseSimilarity(
record, 25)
record = schema.NewRecord(self.model.net, schema.Struct(
('all_embeddings', schema.List(np.float32))
))
with self.assertRaises(AssertionError):
self.model.PairwiseSimilarity(
record, 25)
def testConcat(self):
embedding_dim = 64
input_record = self.new_record(schema.Struct(
('input1', schema.Scalar((np.float32, (embedding_dim, )))),
('input2', schema.Scalar((np.float32, (embedding_dim, )))),
('input3', schema.Scalar((np.float32, (embedding_dim, )))),
))
output = self.model.Concat(input_record)
self.assertEqual(
schema.Scalar((np.float32, ((len(input_record.fields) * embedding_dim, )))),
output
)
# Note that in Concat layer we assume first dimension is batch.
# so input is B * embedding_dim
# add_axis=1 make it B * 1 * embedding_dim
# concat on axis=1 make it B * N * embedding_dim
output = self.model.Concat(input_record, axis=1, add_axis=1)
self.assertEqual(
schema.Scalar((np.float32, ((len(input_record.fields), embedding_dim)))),
output
)
def testSamplingTrain(self):
output_dims = 1000
indices = self.new_record(schema.Scalar((np.int32, (10,))))
sampling_prob = self.new_record(schema.Scalar((np.float32, (10, ))))
sampled_fc = self.model.SamplingTrain(
schema.Struct(
('input', self.model.input_feature_schema.float_features),
('indices', indices),
('sampling_prob', sampling_prob),
),
"FC",
output_dims,
)
self.model.output_schema = sampled_fc
# Check that we don't add prediction layer into the model
self.assertEqual(1, len(self.model.layers))
self.assertEqual(
schema.Scalar((np.float32, (output_dims, ))),
sampled_fc
)
train_init_net, train_net = self.get_training_nets()
init_ops = self.assertNetContainOps(
train_init_net,
[
OpSpec("UniformFill", None, None),
OpSpec("UniformFill", None, None),
]
)
sampled_fc_layer = self.model.layers[0]
gather_w_spec = OpSpec(
"Gather",
[
init_ops[0].output[0],
indices(),
],
[
sampled_fc_layer._prediction_layer.train_param_blobs[0]
]
)
gather_b_spec = OpSpec(
"Gather",
[
init_ops[1].output[0],
indices(),
],
[
sampled_fc_layer._prediction_layer.train_param_blobs[1]
]
)
train_fc_spec = OpSpec(
"FC",
[
self.model.input_feature_schema.float_features(),
] + sampled_fc_layer._prediction_layer.train_param_blobs,
sampled_fc.field_blobs()
)
log_spec = OpSpec("Log", [sampling_prob()], [None])
sub_spec = OpSpec(
"Sub",
[sampled_fc.field_blobs()[0], None],
sampled_fc.field_blobs()
)
train_ops = self.assertNetContainOps(
train_net,
[gather_w_spec, gather_b_spec, train_fc_spec, log_spec, sub_spec])
self.assertEqual(train_ops[3].output[0], train_ops[4].input[1])
predict_net = self.get_predict_net()
self.assertNetContainOps(
predict_net,
[
OpSpec(
"FC",
[
self.model.input_feature_schema.float_features(),
init_ops[0].output[0],
init_ops[1].output[0],
],
sampled_fc.field_blobs()
)
]
)
def testBatchLRLoss(self):
input_record = self.new_record(schema.Struct(
('label', schema.Scalar((np.float64, (1,)))),
('logit', schema.Scalar((np.float32, (2,)))),
('weight', schema.Scalar((np.float64, (1,))))
))
loss = self.model.BatchLRLoss(input_record)
self.assertEqual(schema.Scalar((np.float32, tuple())), loss)
def testBatchLRLossWithUncertainty(self):
input_record = self.new_record(schema.Struct(
('label', schema.Scalar((np.float64, (1,)))),
('logit', schema.Scalar((np.float32, (2,)))),
('weight', schema.Scalar((np.float64, (1,)))),
('log_variance', schema.Scalar((np.float64, (1,)))),
))
loss = self.model.BatchLRLoss(input_record)
self.assertEqual(schema.Scalar((np.float32, tuple())), loss)
def testMarginRankLoss(self):
input_record = self.new_record(schema.Struct(
('pos_prediction', schema.Scalar((np.float32, (1,)))),
('neg_prediction', schema.List(np.float32)),
))
pos_items = np.array([0.1, 0.2, 0.3], dtype=np.float32)
neg_lengths = np.array([1, 2, 3], dtype=np.int32)
neg_items = np.array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6], dtype=np.float32)
schema.FeedRecord(
input_record,
[pos_items, neg_lengths, neg_items]
)
loss = self.model.MarginRankLoss(input_record)
self.run_train_net_forward_only()
self.assertEqual(schema.Scalar((np.float32, tuple())), loss)
def testBatchMSELoss(self):
input_record = self.new_record(schema.Struct(
('label', schema.Scalar((np.float64, (1,)))),
('prediction', schema.Scalar((np.float32, (2,)))),
))
loss = self.model.BatchMSELoss(input_record)
self.assertEqual(schema.Scalar((np.float32, tuple())), loss)
def testBatchHuberLoss(self):
input_record = self.new_record(schema.Struct(
('label', schema.Scalar((np.float32, (1,)))),
('prediction', schema.Scalar((np.float32, (2,)))),
))
loss = self.model.BatchHuberLoss(input_record)
self.assertEqual(schema.Scalar((np.float32, tuple())), loss)
def testBatchSigmoidCrossEntropyLoss(self):
input_record = self.new_record(schema.Struct(
('label', schema.Scalar((np.float32, (32,)))),
('prediction', schema.Scalar((np.float32, (32,))))
))
loss = self.model.BatchSigmoidCrossEntropyLoss(input_record)
self.assertEqual(schema.Scalar((np.float32, tuple())), loss)
def testBatchSoftmaxLoss(self):
input_record = self.new_record(schema.Struct(
('label', schema.Scalar((np.float32, tuple()))),
('prediction', schema.Scalar((np.float32, (32,))))
))
loss = self.model.BatchSoftmaxLoss(input_record)
self.assertEqual(schema.Struct(
('softmax', schema.Scalar((np.float32, (32,)))),
('loss', schema.Scalar(np.float32)),
), loss)
def testBatchSoftmaxLossWeight(self):
input_record = self.new_record(schema.Struct(
('label', schema.Scalar((np.float32, tuple()))),
('prediction', schema.Scalar((np.float32, (32,)))),
('weight', schema.Scalar((np.float64, (1,))))
))
loss = self.model.BatchSoftmaxLoss(input_record)
self.assertEqual(schema.Struct(
('softmax', schema.Scalar((np.float32, (32,)))),
('loss', schema.Scalar(np.float32)),
), loss)
@given(
X=hu.arrays(dims=[2, 5]),
)
def testBatchNormalization(self, X):
input_record = self.new_record(schema.Scalar((np.float32, (5,))))
schema.FeedRecord(input_record, [X])
bn_output = self.model.BatchNormalization(input_record)
self.assertEqual(schema.Scalar((np.float32, (5,))), bn_output)
self.model.output_schema = schema.Struct()
train_init_net, train_net = self.get_training_nets()
init_ops = self.assertNetContainOps(
train_init_net,
[
OpSpec("ConstantFill", None, None),
OpSpec("ConstantFill", None, None),
OpSpec("ConstantFill", None, None),
OpSpec("ConstantFill", None, None),
]
)
input_blob = input_record.field_blobs()[0]
output_blob = bn_output.field_blobs()[0]
expand_dims_spec = OpSpec(
"ExpandDims",
[input_blob],
None,
)
train_bn_spec = OpSpec(
"SpatialBN",
[None, init_ops[0].output[0], init_ops[1].output[0],
init_ops[2].output[0], init_ops[3].output[0]],
[output_blob, init_ops[2].output[0], init_ops[3].output[0], None, None],
{'is_test': 0, 'order': 'NCHW', 'momentum': 0.9},
)
test_bn_spec = OpSpec(
"SpatialBN",
[None, init_ops[0].output[0], init_ops[1].output[0],
init_ops[2].output[0], init_ops[3].output[0]],
[output_blob],
{'is_test': 1, 'order': 'NCHW', 'momentum': 0.9},
)
squeeze_spec = OpSpec(
"Squeeze",
[output_blob],
[output_blob],
)
self.assertNetContainOps(
train_net,
[expand_dims_spec, train_bn_spec, squeeze_spec]
)
eval_net = self.get_eval_net()
self.assertNetContainOps(
eval_net,
[expand_dims_spec, test_bn_spec, squeeze_spec]
)
predict_net = self.get_predict_net()
self.assertNetContainOps(
predict_net,
[expand_dims_spec, test_bn_spec, squeeze_spec]
)
workspace.RunNetOnce(train_init_net)
workspace.RunNetOnce(train_net)
schema.FeedRecord(input_record, [X])
workspace.RunNetOnce(eval_net)
schema.FeedRecord(input_record, [X])
workspace.RunNetOnce(predict_net)
@given(
X=hu.arrays(dims=[2, 5, 6]),
use_layer_norm_op=st.booleans(),
)
def testLayerNormalization(self, X, use_layer_norm_op):
expect = (5, 6,)
if not use_layer_norm_op:
X = X.reshape(10, 6)
expect = (6,)
input_record = self.new_record(schema.Scalar((np.float32, expect)))
schema.FeedRecord(input_record, [X])
ln_output = self.model.LayerNormalization(
input_record, use_layer_norm_op=use_layer_norm_op
)
self.assertEqual(schema.Scalar((np.float32, expect)), ln_output)
self.model.output_schema = schema.Struct()
train_init_net, train_net = self.get_training_nets(add_constants=True)
workspace.RunNetOnce(train_init_net)
workspace.RunNetOnce(train_net)
@given(
X=hu.arrays(dims=[5, 2]),
num_to_collect=st.integers(min_value=1, max_value=10),
)
def testLastNWindowCollector(self, X, num_to_collect):
input_record = self.new_record(schema.Scalar(np.float32))
schema.FeedRecord(input_record, [X])
last_n = self.model.LastNWindowCollector(input_record, num_to_collect)
self.run_train_net_forward_only()
output_record = schema.FetchRecord(last_n.last_n)
start = max(0, 5 - num_to_collect)
npt.assert_array_equal(X[start:], output_record())
num_visited = schema.FetchRecord(last_n.num_visited)
npt.assert_array_equal([5], num_visited())
@given(
X=hu.arrays(dims=[5, 2]),
num_to_collect=st.integers(min_value=3, max_value=3),
)
def testReservoirSamplingWithID(self, X, num_to_collect):
ID = np.array([1, 2, 3, 1, 2], dtype=np.int64)
input_record = self.new_record(
schema.Struct(
('record', schema.Struct(
('dense', schema.Scalar()),
)),
('object_id', schema.Scalar(np.int64)),
)
)
schema.FeedRecord(input_record, [X, ID])
packed_record = self.model.PackRecords(
input_record.record, 1, fields=input_record.record.field_names())
reservoir_input = schema.Struct(
('data', packed_record),
('object_id', input_record.object_id),
)
reservoir = self.model.ReservoirSampling(
reservoir_input, num_to_collect)
self.model.output_schema = schema.Struct()
train_init_net, train_net = \
layer_model_instantiator.generate_training_nets_forward_only(
self.model)
workspace.RunNetOnce(train_init_net)
workspace.CreateNet(train_net)
workspace.RunNet(train_net.Proto().name, num_iter=2)
num_visited = schema.FetchRecord(reservoir.num_visited)
npt.assert_array_equal([3], num_visited())
for param in self.model.params:
serialized = workspace.SerializeBlob(str(param))
workspace.DeserializeBlob(str(param), serialized)
ID = np.array([3, 5, 3, 3, 5], dtype=np.int64)
schema.FeedRecord(input_record.object_id, [ID])
workspace.RunNet(train_net.Proto().name, num_iter=2)
num_visited = schema.FetchRecord(reservoir.num_visited)
npt.assert_array_equal([2], num_visited())
def testUniformSampling(self):
input_record = self.new_record(schema.Scalar(np.int32))
input_array = np.array([3, 10, 11, 15, 20, 99], dtype=np.int32)
schema.FeedRecord(input_record, [input_array])
num_samples = 20
num_elements = 100
uniform_sampling_output = self.model.UniformSampling(
input_record, num_samples, num_elements)
self.model.loss = uniform_sampling_output
self.run_train_net()
samples = workspace.FetchBlob(uniform_sampling_output.samples())
sampling_prob = workspace.FetchBlob(
uniform_sampling_output.sampling_prob())
self.assertEqual(num_samples, len(samples))
np.testing.assert_array_equal(input_array, samples[:len(input_array)])
np.testing.assert_almost_equal(
np.array([float(num_samples) / num_elements] * num_samples,
dtype=np.float32),
sampling_prob
)
def testUniformSamplingWithIncorrectSampleSize(self):
input_record = self.new_record(schema.Scalar(np.int32))
num_samples = 200
num_elements = 100
with self.assertRaises(AssertionError):
self.model.UniformSampling(input_record, num_samples, num_elements)
def testGatherRecord(self):
indices = np.array([1, 3, 4], dtype=np.int32)
dense = np.array(list(range(20)), dtype=np.float32).reshape(10, 2)
lengths = np.array(list(range(10)), dtype=np.int32)
items = np.array(list(range(lengths.sum())), dtype=np.int64)
items_lengths = np.array(list(range(lengths.sum())), dtype=np.int32)
items_items = np.array(list(range(items_lengths.sum())), dtype=np.int64)
record = self.new_record(schema.Struct(
('dense', schema.Scalar(np.float32)),
('sparse', schema.Struct(
('list', schema.List(np.int64)),
('list_of_list', schema.List(schema.List(np.int64))),
)),
('empty_struct', schema.Struct())
))
indices_record = self.new_record(schema.Scalar(np.int32))
input_record = schema.Struct(
('indices', indices_record),
('record', record),
)
schema.FeedRecord(
input_record,
[indices, dense, lengths, items, lengths, items_lengths,
items_items])
gathered_record = self.model.GatherRecord(input_record)
self.assertTrue(schema.equal_schemas(gathered_record, record))
self.run_train_net_forward_only()
gathered_dense = workspace.FetchBlob(gathered_record.dense())
np.testing.assert_array_equal(
np.concatenate([dense[i:i + 1] for i in indices]), gathered_dense)
gathered_lengths = workspace.FetchBlob(
gathered_record.sparse.list.lengths())
np.testing.assert_array_equal(
np.concatenate([lengths[i:i + 1] for i in indices]),
gathered_lengths)
gathered_items = workspace.FetchBlob(
gathered_record.sparse.list.items())
offsets = lengths.cumsum() - lengths
np.testing.assert_array_equal(
np.concatenate([
items[offsets[i]: offsets[i] + lengths[i]]
for i in indices
]), gathered_items)
gathered_items_lengths = workspace.FetchBlob(
gathered_record.sparse.list_of_list.items.lengths())
np.testing.assert_array_equal(
np.concatenate([
items_lengths[offsets[i]: offsets[i] + lengths[i]]
for i in indices
]),
gathered_items_lengths
)
nested_offsets = []
nested_lengths = []
nested_offset = 0
j = 0
for l in lengths:
nested_offsets.append(nested_offset)
nested_length = 0
for _i in range(l):
nested_offset += items_lengths[j]
nested_length += items_lengths[j]
j += 1
nested_lengths.append(nested_length)
gathered_items_items = workspace.FetchBlob(
gathered_record.sparse.list_of_list.items.items())
np.testing.assert_array_equal(
np.concatenate([
items_items[nested_offsets[i]:
nested_offsets[i] + nested_lengths[i]]
for i in indices
]),
gathered_items_items
)
def testMapToRange(self):
input_record = self.new_record(schema.Scalar(np.int32))
indices_blob = self.model.MapToRange(input_record,
max_index=100).indices
self.model.output_schema = schema.Struct()
train_init_net, train_net = self.get_training_nets()
schema.FeedRecord(
input_record,
[np.array([10, 3, 20, 99, 15, 11, 3, 11], dtype=np.int32)]
)
workspace.RunNetOnce(train_init_net)
workspace.RunNetOnce(train_net)
indices = workspace.FetchBlob(indices_blob())
np.testing.assert_array_equal(
np.array([1, 2, 3, 4, 5, 6, 2, 6], dtype=np.int32),
indices
)
schema.FeedRecord(
input_record,
[np.array([10, 3, 23, 35, 60, 15, 10, 15], dtype=np.int32)]
)
workspace.RunNetOnce(train_net)
indices = workspace.FetchBlob(indices_blob())
np.testing.assert_array_equal(
np.array([1, 2, 7, 8, 9, 5, 1, 5], dtype=np.int32),
indices
)
eval_net = self.get_eval_net()
schema.FeedRecord(
input_record,
[np.array([10, 3, 23, 35, 60, 15, 200], dtype=np.int32)]
)
workspace.RunNetOnce(eval_net)
indices = workspace.FetchBlob(indices_blob())
np.testing.assert_array_equal(
np.array([1, 2, 7, 8, 9, 5, 0], dtype=np.int32),
indices
)
schema.FeedRecord(
input_record,
[np.array([10, 3, 23, 15, 101, 115], dtype=np.int32)]
)
workspace.RunNetOnce(eval_net)
indices = workspace.FetchBlob(indices_blob())
np.testing.assert_array_equal(
np.array([1, 2, 7, 5, 0, 0], dtype=np.int32),
indices
)
predict_net = self.get_predict_net()
schema.FeedRecord(
input_record,
[np.array([3, 3, 20, 23, 151, 35, 60, 15, 200], dtype=np.int32)]
)
workspace.RunNetOnce(predict_net)
indices = workspace.FetchBlob(indices_blob())
np.testing.assert_array_equal(
np.array([2, 2, 3, 7, 0, 8, 9, 5, 0], dtype=np.int32),
indices
)
def testSelectRecordByContext(self):
float_features = self.model.input_feature_schema.float_features
float_array = np.array([1.0, 2.0], dtype=np.float32)
schema.FeedRecord(float_features, [float_array])
with Tags(Tags.EXCLUDE_FROM_PREDICTION):
log_float_features = self.model.Log(float_features, 1)
joined = self.model.SelectRecordByContext(
schema.Struct(
(InstantiationContext.PREDICTION, float_features),
(InstantiationContext.TRAINING, log_float_features),
# TODO: TRAIN_ONLY layers are also generated in eval
(InstantiationContext.EVAL, log_float_features),
)
)
# model.output_schema has to a struct
self.model.output_schema = schema.Struct((
'joined', joined
))
predict_net = layer_model_instantiator.generate_predict_net(self.model)
workspace.RunNetOnce(predict_net)
predict_output = schema.FetchRecord(predict_net.output_record())
npt.assert_array_equal(float_array,
predict_output['joined']())
eval_net = layer_model_instantiator.generate_eval_net(self.model)
workspace.RunNetOnce(eval_net)
eval_output = schema.FetchRecord(eval_net.output_record())
npt.assert_array_equal(np.log(float_array),
eval_output['joined']())
_, train_net = (
layer_model_instantiator.generate_training_nets_forward_only(
self.model
)
)
workspace.RunNetOnce(train_net)
train_output = schema.FetchRecord(train_net.output_record())
npt.assert_array_equal(np.log(float_array),
train_output['joined']())
def testFunctionalLayer(self):
def normalize(net, in_record, out_record):
mean = net.ReduceFrontMean(in_record(), 1)
net.Sub(
[in_record(), mean],
out_record(),
broadcast=1)
normalized = self.model.Functional(
self.model.input_feature_schema.float_features, 1,
normalize, name="normalizer")
# Attach metadata to one of the outputs and use it in FC
normalized.set_type((np.float32, 32))
self.model.output_schema = self.model.FC(normalized, 2)
predict_net = layer_model_instantiator.generate_predict_net(
self.model)
ops = predict_net.Proto().op
assert len(ops) == 3
assert ops[0].type == "ReduceFrontMean"
assert ops[1].type == "Sub"
assert ops[2].type == "FC"
assert len(ops[0].input) == 1
assert ops[0].input[0] ==\
self.model.input_feature_schema.float_features()
assert len(ops[1].output) == 1
assert ops[1].output[0] in ops[2].input
def testFunctionalLayerHelper(self):
mean = self.model.ReduceFrontMean(
self.model.input_feature_schema.float_features, 1)
normalized = self.model.Sub(
schema.Tuple(
self.model.input_feature_schema.float_features, mean),
1, broadcast=1)
# Attach metadata to one of the outputs and use it in FC
normalized.set_type((np.float32, (32,)))
self.model.output_schema = self.model.FC(normalized, 2)
predict_net = layer_model_instantiator.generate_predict_net(
self.model)
ops = predict_net.Proto().op
assert len(ops) == 3
assert ops[0].type == "ReduceFrontMean"
assert ops[1].type == "Sub"
assert ops[2].type == "FC"
assert len(ops[0].input) == 1
assert ops[0].input[0] ==\
self.model.input_feature_schema.float_features()
assert len(ops[1].output) == 1
assert ops[1].output[0] in ops[2].input
def testFunctionalLayerHelperAutoInference(self):
softsign = self.model.Softsign(
schema.Tuple(self.model.input_feature_schema.float_features),
1)
assert softsign.field_type().base == np.float32
assert softsign.field_type().shape == (32,)
self.model.output_schema = self.model.FC(softsign, 2)
predict_net = layer_model_instantiator.generate_predict_net(
self.model)
ops = predict_net.Proto().op
assert len(ops) == 2
assert ops[0].type == "Softsign"
assert ops[1].type == "FC"
assert len(ops[0].input) == 1
assert ops[0].input[0] ==\
self.model.input_feature_schema.float_features()
assert len(ops[0].output) == 1
assert ops[0].output[0] in ops[1].input
def testHalfToFloatTypeInference(self):
input = self.new_record(schema.Scalar((np.float32, (32,))))
output = self.model.FloatToHalf(input, 1)
assert output.field_type().base == np.float16
assert output.field_type().shape == (32, )
output = self.model.HalfToFloat(output, 1)
assert output.field_type().base == np.float32
assert output.field_type().shape == (32, )
def testFunctionalLayerHelperAutoInferenceScalar(self):
loss = self.model.AveragedLoss(self.model.input_feature_schema, 1)
self.assertEqual(1, len(loss.field_types()))
self.assertEqual(np.float32, loss.field_types()[0].base)
self.assertEqual(tuple(), loss.field_types()[0].shape)
def testFunctionalLayerInputCoercion(self):
one = self.model.global_constants['ONE']
two = self.model.Add([one, one], 1)
self.model.loss = two
self.run_train_net()
data = workspace.FetchBlob(two.field_blobs()[0])
np.testing.assert_array_equal([2.0], data)
def testFunctionalLayerWithOutputNames(self):
k = 3
topk = self.model.TopK(
self.model.input_feature_schema,
output_names_or_num=['values', 'indices'],
k=k,
)
self.assertEqual(2, len(topk.field_types()))
self.assertEqual(np.float32, topk.field_types()[0].base)
self.assertEqual((k,), topk.field_types()[0].shape)
self.assertEqual(np.int32, topk.field_types()[1].base)
self.assertEqual((k,), topk.field_types()[1].shape)
self.assertEqual(['TopK/values', 'TopK/indices'], topk.field_blobs())
def testFunctionalLayerSameOperatorOutputNames(self):
Con1 = self.model.ConstantFill([], 1, value=1)
Con2 = self.model.ConstantFill([], 1, value=2)
self.assertNotEqual(str(Con1), str(Con2))
def testFunctionalLayerWithOutputDtypes(self):
loss = self.model.AveragedLoss(
self.model.input_feature_schema,
1,
output_dtypes=(np.float32, (1,)),
)
self.assertEqual(1, len(loss.field_types()))
self.assertEqual(np.float32, loss.field_types()[0].base)
self.assertEqual((1,), loss.field_types()[0].shape)
def testPropagateRequestOnly(self):
# test case when output is request only
input_record = self.new_record(schema.Struct(
('input1', schema.Scalar((np.float32, (32, )))),
('input2', schema.Scalar((np.float32, (64, )))),
('input3', schema.Scalar((np.float32, (16, )))),
))
set_request_only(input_record)
concat_output = self.model.Concat(input_record)
self.assertEqual(is_request_only_scalar(concat_output), True)
# test case when output is not request only
input_record2 = self.new_record(schema.Struct(
('input4', schema.Scalar((np.float32, (100, ))))
)) + input_record
concat_output2 = self.model.Concat(input_record2)
self.assertEqual(is_request_only_scalar(concat_output2), False)
def testSetRequestOnly(self):
input_record = schema.Scalar(np.int64)
schema.attach_metadata_to_scalars(
input_record,
schema.Metadata(
categorical_limit=100000000,
expected_value=99,
feature_specs=schema.FeatureSpec(
feature_ids=[1, 100, 1001]
)
)
)
set_request_only(input_record)
self.assertEqual(input_record.metadata.categorical_limit, 100000000)
self.assertEqual(input_record.metadata.expected_value, 99)
self.assertEqual(
input_record.metadata.feature_specs.feature_ids,
[1, 100, 1001]
)
@given(
X=hu.arrays(dims=[5, 5]), # Shape of X is irrelevant
dropout_for_eval=st.booleans(),
)
def testDropout(self, X, dropout_for_eval):
input_record = self.new_record(schema.Scalar((np.float32, (1,))))
schema.FeedRecord(input_record, [X])
d_output = self.model.Dropout(
input_record,
dropout_for_eval=dropout_for_eval
)
self.assertEqual(schema.Scalar((np.float32, (1,))), d_output)
self.model.output_schema = schema.Struct()
train_init_net, train_net = self.get_training_nets()
input_blob = input_record.field_blobs()[0]
output_blob = d_output.field_blobs()[0]
with_d_spec = OpSpec(
"Dropout",
[input_blob],
[output_blob, None],
{'is_test': 0, 'ratio': 0.5}
)
without_d_spec = OpSpec(
"Dropout",
[input_blob],
[output_blob, None],
{'is_test': 1, 'ratio': 0.5}
)
self.assertNetContainOps(
train_net,
[with_d_spec]
)
eval_net = self.get_eval_net()
predict_net = self.get_predict_net()
if dropout_for_eval:
self.assertNetContainOps(
eval_net,
[with_d_spec]
)
self.assertNetContainOps(
predict_net,
[with_d_spec]
)
else:
self.assertNetContainOps(
eval_net,
[without_d_spec]
)
self.assertNetContainOps(
predict_net,
[without_d_spec]
)
workspace.RunNetOnce(train_init_net)
workspace.RunNetOnce(train_net)
schema.FeedRecord(input_record, [X])
workspace.RunNetOnce(eval_net)
schema.FeedRecord(input_record, [X])
workspace.RunNetOnce(predict_net)
@given(
num_inputs=st.integers(1, 3),
batch_size=st.integers(5, 10)
)
def testMergeIdListsLayer(self, num_inputs, batch_size):
inputs = []
for _ in range(num_inputs):
lengths = np.random.randint(5, size=batch_size).astype(np.int32)
size = lengths.sum()
values = np.random.randint(1, 10, size=size).astype(np.int64)
inputs.append(lengths)
inputs.append(values)
input_schema = schema.Tuple(
*[schema.List(
schema.Scalar(dtype=np.int64, metadata=schema.Metadata(
categorical_limit=20
))) for _ in range(num_inputs)]
)
input_record = schema.NewRecord(self.model.net, input_schema)
schema.FeedRecord(input_record, inputs)
output_schema = self.model.MergeIdLists(input_record)
assert schema.equal_schemas(
output_schema, IdList,
check_field_names=False)
@given(
batch_size=st.integers(min_value=2, max_value=10),
input_dims=st.integers(min_value=5, max_value=10),
output_dims=st.integers(min_value=5, max_value=10),
bandwidth=st.floats(min_value=0.1, max_value=5),
)
def testRandomFourierFeatures(self, batch_size, input_dims, output_dims, bandwidth):
def _rff_hypothesis_test(rff_output, X, W, b, scale):
"""
Runs hypothesis test for Semi Random Features layer.
Inputs:
rff_output -- output of net after running random fourier features layer
X -- input data
W -- weight parameter from train_init_net
b -- bias parameter from train_init_net
scale -- value by which to scale the output vector
"""
output = workspace.FetchBlob(rff_output)
output_ref = scale * np.cos(np.dot(X, np.transpose(W)) + b)
npt.assert_allclose(output, output_ref, rtol=1e-3, atol=1e-3)
X = np.random.random((batch_size, input_dims)).astype(np.float32)
scale = np.sqrt(2.0 / output_dims)
input_record = self.new_record(schema.Scalar((np.float32, (input_dims,))))
schema.FeedRecord(input_record, [X])
input_blob = input_record.field_blobs()[0]
rff_output = self.model.RandomFourierFeatures(input_record,
output_dims,
bandwidth)
self.model.output_schema = schema.Struct()
self.assertEqual(
schema.Scalar((np.float32, (output_dims, ))),
rff_output
)
train_init_net, train_net = self.get_training_nets()
# Init net assertions
init_ops_list = [
OpSpec("GaussianFill", None, None),
OpSpec("UniformFill", None, None),
]
init_ops = self._test_net(train_init_net, init_ops_list)
W = workspace.FetchBlob(self.model.layers[0].w)
b = workspace.FetchBlob(self.model.layers[0].b)
# Operation specifications
fc_spec = OpSpec("FC", [input_blob, init_ops[0].output[0],
init_ops[1].output[0]], None)
cosine_spec = OpSpec("Cos", None, None)
scale_spec = OpSpec("Scale", None, rff_output.field_blobs(),
{'scale': scale})
ops_list = [
fc_spec,
cosine_spec,
scale_spec
]
# Train net assertions
self._test_net(train_net, ops_list)
_rff_hypothesis_test(rff_output(), X, W, b, scale)
# Eval net assertions
eval_net = self.get_eval_net()
self._test_net(eval_net, ops_list)
_rff_hypothesis_test(rff_output(), X, W, b, scale)
# Predict net assertions
predict_net = self.get_predict_net()
self._test_net(predict_net, ops_list)
_rff_hypothesis_test(rff_output(), X, W, b, scale)
@given(
batch_size=st.integers(min_value=2, max_value=10),
input_dims=st.integers(min_value=5, max_value=10),
output_dims=st.integers(min_value=5, max_value=10),
s=st.integers(min_value=0, max_value=3),
scale=st.floats(min_value=0.1, max_value=5),
set_weight_as_global_constant=st.booleans()
)
def testArcCosineFeatureMap(self, batch_size, input_dims, output_dims, s, scale,
set_weight_as_global_constant):
def _arc_cosine_hypothesis_test(ac_output, X, W, b, s):
"""
Runs hypothesis test for Arc Cosine layer.
Inputs:
ac_output -- output of net after running arc cosine layer
X -- input data
W -- weight parameter from train_init_net
b -- bias parameter from train_init_net
s -- degree parameter
"""
# Get output from net
net_output = workspace.FetchBlob(ac_output)
# Computing output directly
x_rand = np.matmul(X, np.transpose(W)) + b
x_pow = np.power(x_rand, s)
if s > 0:
h_rand_features = np.piecewise(x_rand,
[x_rand <= 0, x_rand > 0],
[0, 1])
else:
h_rand_features = np.piecewise(x_rand,
[x_rand <= 0, x_rand > 0],
[0, lambda x: x / (1 + x)])
output_ref = np.multiply(x_pow, h_rand_features)
# Comparing net output and computed output
npt.assert_allclose(net_output, output_ref, rtol=1e-3, atol=1e-3)
X = np.random.normal(size=(batch_size, input_dims)).astype(np.float32)
input_record = self.new_record(schema.Scalar((np.float32, (input_dims,))))
schema.FeedRecord(input_record, [X])
input_blob = input_record.field_blobs()[0]
ac_output = self.model.ArcCosineFeatureMap(
input_record,
output_dims,
s=s,
scale=scale,
set_weight_as_global_constant=set_weight_as_global_constant
)
self.model.output_schema = schema.Struct()
self.assertEqual(
schema.Scalar((np.float32, (output_dims, ))),
ac_output
)
train_init_net, train_net = self.get_training_nets()
# Run create_init_net to initialize the global constants, and W and b
workspace.RunNetOnce(train_init_net)
workspace.RunNetOnce(self.model.create_init_net(name='init_net'))
if set_weight_as_global_constant:
W = workspace.FetchBlob(
self.model.global_constants['arc_cosine_feature_map_fixed_rand_W']
)
b = workspace.FetchBlob(
self.model.global_constants['arc_cosine_feature_map_fixed_rand_b']
)
else:
W = workspace.FetchBlob(self.model.layers[0].random_w)
b = workspace.FetchBlob(self.model.layers[0].random_b)
# Operation specifications
fc_spec = OpSpec("FC", [input_blob, None, None], None)
softsign_spec = OpSpec("Softsign", None, None)
relu_spec = OpSpec("Relu", None, None)
relu_spec_output = OpSpec("Relu", None, ac_output.field_blobs())
pow_spec = OpSpec("Pow", None, None, {'exponent': float(s - 1)})
mul_spec = OpSpec("Mul", None, ac_output.field_blobs())
if s == 0:
ops_list = [
fc_spec,
softsign_spec,
relu_spec_output,
]
elif s == 1:
ops_list = [
fc_spec,
relu_spec_output,
]
else:
ops_list = [
fc_spec,
relu_spec,
pow_spec,
mul_spec,
]
# Train net assertions
self._test_net(train_net, ops_list)
_arc_cosine_hypothesis_test(ac_output(), X, W, b, s)
# Eval net assertions
eval_net = self.get_eval_net()
self._test_net(eval_net, ops_list)
_arc_cosine_hypothesis_test(ac_output(), X, W, b, s)
# Predict net assertions
predict_net = self.get_predict_net()
self._test_net(predict_net, ops_list)
_arc_cosine_hypothesis_test(ac_output(), X, W, b, s)
@given(
batch_size=st.integers(min_value=2, max_value=10),
input_dims=st.integers(min_value=5, max_value=10),
output_dims=st.integers(min_value=5, max_value=10),
s=st.integers(min_value=0, max_value=3),
scale=st.floats(min_value=0.1, max_value=5),
set_weight_as_global_constant=st.booleans(),
use_struct_input=st.booleans(),
)
def testSemiRandomFeatures(self, batch_size, input_dims, output_dims, s, scale,
set_weight_as_global_constant, use_struct_input):
def _semi_random_hypothesis_test(srf_output, X_full, X_random, rand_w,
rand_b, s):
"""
Runs hypothesis test for Semi Random Features layer.
Inputs:
srf_output -- output of net after running semi random features layer
X_full -- full input data
X_random -- random-output input data
rand_w -- random-initialized weight parameter from train_init_net
rand_b -- random-initialized bias parameter from train_init_net
s -- degree parameter
"""
# Get output from net
net_output = workspace.FetchBlob(srf_output)
# Fetch learned parameter blobs
learned_w = workspace.FetchBlob(self.model.layers[0].learned_w)
learned_b = workspace.FetchBlob(self.model.layers[0].learned_b)
# Computing output directly
x_rand = np.matmul(X_random, np.transpose(rand_w)) + rand_b
x_learn = np.matmul(X_full, np.transpose(learned_w)) + learned_b
x_pow = np.power(x_rand, s)
if s > 0:
h_rand_features = np.piecewise(x_rand,
[x_rand <= 0, x_rand > 0],
[0, 1])
else:
h_rand_features = np.piecewise(x_rand,
[x_rand <= 0, x_rand > 0],
[0, lambda x: x / (1 + x)])
output_ref = np.multiply(np.multiply(x_pow, h_rand_features), x_learn)
# Comparing net output and computed output
npt.assert_allclose(net_output, output_ref, rtol=1e-3, atol=1e-3)
X_full = np.random.normal(size=(batch_size, input_dims)).astype(np.float32)
if use_struct_input:
X_random = np.random.normal(size=(batch_size, input_dims)).\
astype(np.float32)
input_data = [X_full, X_random]
input_record = self.new_record(schema.Struct(
('full', schema.Scalar(
(np.float32, (input_dims,))
)),
('random', schema.Scalar(
(np.float32, (input_dims,))
))
))
else:
X_random = X_full
input_data = [X_full]
input_record = self.new_record(schema.Scalar(
(np.float32, (input_dims,))
))
schema.FeedRecord(input_record, input_data)
srf_output = self.model.SemiRandomFeatures(
input_record,
output_dims,
s=s,
scale_random=scale,
scale_learned=scale,
set_weight_as_global_constant=set_weight_as_global_constant
)
self.model.output_schema = schema.Struct()
self.assertEqual(
schema.Struct(
('full', schema.Scalar(
(np.float32, (output_dims,))
)),
('random', schema.Scalar(
(np.float32, (output_dims,))
))
),
srf_output
)
init_ops_list = [
OpSpec("GaussianFill", None, None),
OpSpec("UniformFill", None, None),
OpSpec("GaussianFill", None, None),
OpSpec("UniformFill", None, None),
]
train_init_net, train_net = self.get_training_nets()
# Need to run to initialize the global constants for layer
workspace.RunNetOnce(self.model.create_init_net(name='init_net'))
if set_weight_as_global_constant:
# If weight params are global constants, they won't be in train_init_net
init_ops = self._test_net(train_init_net, init_ops_list[:2])
rand_w = workspace.FetchBlob(
self.model.global_constants['semi_random_features_fixed_rand_W']
)
rand_b = workspace.FetchBlob(
self.model.global_constants['semi_random_features_fixed_rand_b']
)
# Operation specifications
fc_random_spec = OpSpec("FC", [None, None, None], None)
fc_learned_spec = OpSpec("FC", [None, init_ops[0].output[0],
init_ops[1].output[0]], None)
else:
init_ops = self._test_net(train_init_net, init_ops_list)
rand_w = workspace.FetchBlob(self.model.layers[0].random_w)
rand_b = workspace.FetchBlob(self.model.layers[0].random_b)
# Operation specifications
fc_random_spec = OpSpec("FC", [None, init_ops[0].output[0],
init_ops[1].output[0]], None)
fc_learned_spec = OpSpec("FC", [None, init_ops[2].output[0],
init_ops[3].output[0]], None)
softsign_spec = OpSpec("Softsign", None, None)
relu_spec = OpSpec("Relu", None, None)
relu_output_spec = OpSpec("Relu", None, srf_output.random.field_blobs())
pow_spec = OpSpec("Pow", None, None, {'exponent': float(s - 1)})
mul_interim_spec = OpSpec("Mul", None, srf_output.random.field_blobs())
mul_spec = OpSpec("Mul", None, srf_output.full.field_blobs())
if s == 0:
ops_list = [
fc_learned_spec,
fc_random_spec,
softsign_spec,
relu_output_spec,
mul_spec,
]
elif s == 1:
ops_list = [
fc_learned_spec,
fc_random_spec,
relu_output_spec,
mul_spec,
]
else:
ops_list = [
fc_learned_spec,
fc_random_spec,
relu_spec,
pow_spec,
mul_interim_spec,
mul_spec,
]
# Train net assertions
self._test_net(train_net, ops_list)
_semi_random_hypothesis_test(srf_output.full(), X_full, X_random,
rand_w, rand_b, s)
# Eval net assertions
eval_net = self.get_eval_net()
self._test_net(eval_net, ops_list)
_semi_random_hypothesis_test(srf_output.full(), X_full, X_random,
rand_w, rand_b, s)
# Predict net assertions
predict_net = self.get_predict_net()
self._test_net(predict_net, ops_list)
_semi_random_hypothesis_test(srf_output.full(), X_full, X_random,
rand_w, rand_b, s)
def testConv(self):
batch_size = 50
H = 1
W = 10
C = 50
output_dims = 32
kernel_h = 1
kernel_w = 3
stride_h = 1
stride_w = 1
pad_t = 0
pad_b = 0
pad_r = None
pad_l = None
input_record = self.new_record(schema.Scalar((np.float32, (H, W, C))))
X = np.random.random((batch_size, H, W, C)).astype(np.float32)
schema.FeedRecord(input_record, [X])
conv = self.model.Conv(
input_record,
output_dims,
kernel_h=kernel_h,
kernel_w=kernel_w,
stride_h=stride_h,
stride_w=stride_w,
pad_t=pad_t,
pad_b=pad_b,
pad_r=pad_r,
pad_l=pad_l,
order='NHWC'
)
self.assertEqual(
schema.Scalar((np.float32, (output_dims,))),
conv
)
self.run_train_net_forward_only()
output_record = schema.FetchRecord(conv)
# check the number of output channels is the same as input in this example
assert output_record.field_types()[0].shape == (H, W, output_dims)
assert output_record().shape == (batch_size, H, W, output_dims)
train_init_net, train_net = self.get_training_nets()
# Init net assertions
init_ops = self.assertNetContainOps(
train_init_net,
[
OpSpec("XavierFill", None, None),
OpSpec("ConstantFill", None, None),
]
)
conv_spec = OpSpec(
"Conv",
[
input_record.field_blobs()[0],
init_ops[0].output[0],
init_ops[1].output[0],
],
conv.field_blobs()
)
# Train net assertions
self.assertNetContainOps(train_net, [conv_spec])
# Predict net assertions
predict_net = self.get_predict_net()
self.assertNetContainOps(predict_net, [conv_spec])
# Eval net assertions
eval_net = self.get_eval_net()
self.assertNetContainOps(eval_net, [conv_spec])
@given(
num=st.integers(min_value=10, max_value=100),
feed_weight=st.booleans(),
use_inv_var_parameterization=st.booleans(),
use_log_barrier=st.booleans(),
enable_diagnose=st.booleans(),
**hu.gcs
)
def testAdaptiveWeight(
self, num, feed_weight, use_inv_var_parameterization, use_log_barrier,
enable_diagnose, gc, dc
):
input_record = self.new_record(schema.RawTuple(num))
data = np.random.random(num)
schema.FeedRecord(
input_record, [np.array(x).astype(np.float32) for x in data]
)
weights = np.random.random(num) if feed_weight else None
result = self.model.AdaptiveWeight(
input_record,
weights=weights,
estimation_method=(
'inv_var' if use_inv_var_parameterization else 'log_std'
),
pos_optim_method=(
'log_barrier' if use_log_barrier else 'pos_grad_proj'
),
enable_diagnose=enable_diagnose
)
train_init_net, train_net = self.get_training_nets(True)
workspace.RunNetOnce(train_init_net)
workspace.RunNetOnce(train_net)
result = workspace.FetchBlob(result())
if not feed_weight:
weights = np.array([1. / num for _ in range(num)])
expected = np.sum(weights * data + 0.5 * np.log(1. / 2. / weights))
npt.assert_allclose(expected, result, atol=1e-4, rtol=1e-4)
if enable_diagnose:
assert len(self.model.ad_hoc_plot_blobs) == num
reconst_weights_from_ad_hoc = np.array(
[workspace.FetchBlob(b) for b in self.model.ad_hoc_plot_blobs]
).flatten()
npt.assert_allclose(
reconst_weights_from_ad_hoc, weights, atol=1e-4, rtol=1e-4
)
else:
assert len(self.model.ad_hoc_plot_blobs) == 0
@given(num=st.integers(min_value=10, max_value=100), **hu.gcs)
def testConstantWeight(self, num, gc, dc):
input_record = self.new_record(schema.RawTuple(num))
data = np.random.random(num)
schema.FeedRecord(
input_record, [np.array(x).astype(np.float32) for x in data]
)
weights = np.random.random(num)
result = self.model.ConstantWeight(input_record, weights=weights)
train_init_net, train_net = self.get_training_nets(True)
workspace.RunNetOnce(train_init_net)
workspace.RunNetOnce(train_net)
result = workspace.FetchBlob(result())
expected = np.sum(weights * data)
npt.assert_allclose(expected, result, atol=1e-4, rtol=1e-4)
@given(**hu.gcs)
def testHomotopyWeight(self, gc, dc):
input_record = self.new_record(schema.RawTuple(2))
data = np.random.random(2)
schema.FeedRecord(
input_record, [np.array(x).astype(np.float32) for x in data]
)
# ensure: quad_life > 2 * half_life
half_life = int(np.random.random() * 1e2 + 1)
quad_life = int(np.random.random() * 1e3 + 2 * half_life + 1)
min_weight = np.random.random()
max_weight = np.random.random() + min_weight + 1e-5
result = self.model.HomotopyWeight(
input_record,
min_weight=min_weight,
max_weight=max_weight,
half_life=half_life,
quad_life=quad_life,
)
train_init_net, train_net = self.get_training_nets(True)
workspace.RunNetOnce(train_init_net)
workspace.CreateNet(train_net)
workspace.RunNet(train_net.Name(), num_iter=half_life)
half_life_result = workspace.FetchBlob(result())
workspace.RunNet(train_net.Name(), num_iter=quad_life - half_life)
quad_life_result = workspace.FetchBlob(result())
alpha = (min_weight + max_weight) / 2.
beta = (min_weight + max_weight) / 2.
expected_half_life_result = alpha * data[0] + beta * data[1]
alpha = (3 * min_weight + max_weight) / 4.
beta = (min_weight + 3 * max_weight) / 4.
expected_quad_life_result = alpha * data[0] + beta * data[1]
npt.assert_allclose(
expected_half_life_result, half_life_result, atol=1e-2, rtol=1e-2
)
npt.assert_allclose(
expected_quad_life_result, quad_life_result, atol=1e-2, rtol=1e-2
)
def _testLabelSmooth(self, categories, binary_prob_label, bsz):
label = self.new_record(schema.Scalar((np.float32, (1, ))))
label_np = np.random.randint(categories, size=bsz).astype(np.float32)
schema.FeedRecord(label, [label_np])
smooth_matrix_shape = (
2 if binary_prob_label else (categories, categories)
)
smooth_matrix = np.random.random(smooth_matrix_shape)
smoothed_label = self.model.LabelSmooth(label, smooth_matrix)
train_init_net, train_net = self.get_training_nets(True)
workspace.RunNetOnce(train_init_net)
workspace.RunNetOnce(train_net)
smoothed_label_np = workspace.FetchBlob(smoothed_label())
if binary_prob_label:
expected = np.array(
[
smooth_matrix[0] if x == 0.0 else smooth_matrix[1]
for x in label_np
]
)
else:
expected = np.array([smooth_matrix[int(x)] for x in label_np])
npt.assert_allclose(expected, smoothed_label_np, atol=1e-4, rtol=1e-4)
@given(
categories=st.integers(min_value=2, max_value=10),
bsz=st.integers(min_value=10, max_value=100),
**hu.gcs
)
def testLabelSmoothForCategoricalLabel(self, categories, bsz, gc, dc):
self._testLabelSmooth(categories, False, bsz)
@given(
bsz=st.integers(min_value=10, max_value=100),
**hu.gcs
)
def testLabelSmoothForBinaryProbLabel(self, bsz, gc, dc):
self._testLabelSmooth(2, True, bsz)
@given(
num_inputs=st.integers(min_value=2, max_value=10),
batch_size=st.integers(min_value=2, max_value=10),
input_dim=st.integers(min_value=5, max_value=10),
seed=st.integers(1, 10),
)
def testBlobWeightedSum(self, num_inputs, batch_size, input_dim, seed):
def get_blob_weighted_sum():
weights = []
for i in range(num_inputs):
w_blob_name = 'blob_weighted_sum/w_{0}'.format(i)
assert workspace.HasBlob(w_blob_name), (
"cannot fine blob {}".format(w_blob_name)
)
w = workspace.FetchBlob(w_blob_name)
weights.append(w)
result = np.sum([
input_data[idx] * weights[idx] for idx in range(num_inputs)
], axis=0)
return result
np.random.seed(seed)
expected_output_schema = schema.Scalar((np.float32, (input_dim,)))
input_schema = schema.Tuple(
*[expected_output_schema for _ in range(num_inputs)]
)
input_data = [
np.random.random((batch_size, input_dim)).astype(np.float32)
for _ in range(num_inputs)
]
input_record = self.new_record(input_schema)
schema.FeedRecord(input_record, input_data)
# test output schema
ws_output = self.model.BlobWeightedSum(input_record)
self.assertEqual(len(self.model.layers), 1)
assert schema.equal_schemas(ws_output, expected_output_schema)
# test train net
train_init_net, train_net = self.get_training_nets()
workspace.RunNetOnce(train_init_net)
workspace.RunNetOnce(train_net)
output = workspace.FetchBlob(ws_output())
npt.assert_almost_equal(get_blob_weighted_sum(), output, decimal=5)
self.run_train_net_forward_only()
output = workspace.FetchBlob(ws_output())
npt.assert_almost_equal(get_blob_weighted_sum(), output, decimal=5)
# test eval net
eval_net = self.get_eval_net()
workspace.RunNetOnce(eval_net)
output = workspace.FetchBlob(ws_output())
npt.assert_almost_equal(get_blob_weighted_sum(), output, decimal=5)
# test pred net
pred_net = self.get_predict_net()
workspace.RunNetOnce(pred_net)
output = workspace.FetchBlob(ws_output())
npt.assert_almost_equal(get_blob_weighted_sum(), output, decimal=5)
def testFeatureSparseToDenseGetAccessedFeatures(self):
float_features_column = "float_features"
float_features_type = "FLOAT"
float_features_ids = [1, 2, 3]
id_list_features_column = "id_list_features"
id_list_features_type = "ID_LIST"
id_list_features_ids = [4, 5, 6]
id_score_list_features_column = "id_score_list_features"
id_score_list_features_type = "ID_SCORE_LIST"
id_score_list_features_ids = [7, 8 , 9]
feature_names = ["a", "b", "c"]
input_record = self.new_record(schema.Struct(
(float_features_column, schema.Map(np.int32, np.float32)),
(id_list_features_column,
schema.Map(np.int32, schema.List(np.int64))),
(id_score_list_features_column,
schema.Map(np.int32, schema.Map(np.int64, np.float32))),
))
input_specs = [
(
float_features_column,
schema.FeatureSpec(
feature_type=float_features_type,
feature_ids=float_features_ids,
feature_names=feature_names,
),
),
(
id_list_features_column,
schema.FeatureSpec(
feature_type=id_list_features_type,
feature_ids=id_list_features_ids,
feature_names=feature_names,
),
),
(
id_score_list_features_column,
schema.FeatureSpec(
feature_type=id_score_list_features_type,
feature_ids=id_score_list_features_ids,
feature_names=feature_names,
),
),
]
self.model.FeatureSparseToDense(input_record, input_specs)
expected_accessed_features = {
float_features_column: AccessedFeatures(
float_features_type, set(float_features_ids)),
id_list_features_column: AccessedFeatures(
id_list_features_type, set(id_list_features_ids)),
id_score_list_features_column: AccessedFeatures(
id_score_list_features_type, set(id_score_list_features_ids)),
}
self.assertEqual(len(self.model.layers), 1)
self.assertEqual(
self.model.layers[0].get_accessed_features(),
expected_accessed_features
)