pytorch/torch/quantization/utils.py
Jerry Zhang 3c1d1170a4 [quant][graphmode][fx] Attach a weight qparam dict to linear and conv in reference quantized model (#62488)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62488

Instead of attaching weight observer/fake_quant to the float linear and conv, we can
compute the quantization parameters and attach that as a dictionary to these modules so
that we can reduce the model size and make the reference module clearer

TODO: the numerics for linear and conv in reference quantized model is still not correct since
we did not quantize weight, we may explore things like parameterization to implement this support

Test Plan:
python test/test_quantization.py TestQuantizeFx
python test/test_quantization.py TestQuantizeFxOps

Imported from OSS

Reviewed By: vkuzo

Differential Revision: D30053979

fbshipit-source-id: b5f8497cf6cf65eec924df2d8fb10a9e154b8cab
2021-08-09 16:55:14 -07:00

165 lines
5.9 KiB
Python

"""
Utils shared by different modes of quantization (eager/graph)
"""
import warnings
import torch
from .quant_type import QuantType, quant_type_to_str
def get_combined_dict(default_dict, additional_dict):
d = default_dict.copy()
d.update(additional_dict)
return d
def is_per_tensor(qscheme):
return qscheme == torch.per_tensor_affine or \
qscheme == torch.per_tensor_symmetric
def is_per_channel(qscheme):
return qscheme in [torch.per_channel_affine,
torch.per_channel_affine_float_qparams,
torch.per_channel_symmetric]
def get_qparam_dict(observer_or_fake_quant):
qscheme = observer_or_fake_quant.qscheme if hasattr(observer_or_fake_quant, "qscheme") else None
dtype = observer_or_fake_quant.dtype
qparams = {"qscheme": qscheme, "dtype": dtype}
if not qscheme:
return qparams
if is_per_tensor(qscheme):
qscheme = torch.per_tensor_affine
elif is_per_channel(qscheme):
# change symmetric to affine since we do not have symmetric
# quantized Tensor
if qscheme == torch.per_channel_symmetric:
qscheme = torch.per_channel_affine
qparams["axis"] = observer_or_fake_quant.ch_axis
else:
raise RuntimeError(f"Unrecognized qscheme: {qscheme}")
# update qscheme, since we don't have symmetric quant qscheme
# in quantized Tensor
qparams["qscheme"] = qscheme
scale, zero_point = observer_or_fake_quant.calculate_qparams()
qparams["scale"] = scale
qparams["zero_point"] = zero_point
return qparams
def get_swapped_custom_module_class(custom_module, custom_module_class_mapping, qconfig):
""" Get the observed/quantized custom module class that we need
to swap `custom_module` to
Input:
custom_module: input, can be an instance of either a float or observed custom module
custom_module_class_mapping: the float to observed or observed to quantized custom module class mapping
qconfig: qconfig configured for the custom module
Output:
corresponding observed/quantized custom module class for input custom module instance
"""
quant_type = get_quant_type(qconfig)
quant_type_str = quant_type_to_str(quant_type)
class_mapping = custom_module_class_mapping.get(quant_type_str, {})
assert type(custom_module) in class_mapping, "did not find corresponding observed " \
"module class for {} in mapping: {}".format(type(custom_module), class_mapping)
return class_mapping[type(custom_module)]
def activation_dtype(qconfig):
assert qconfig is not None
activation = qconfig.activation()
return activation.dtype
def weight_dtype(qconfig):
assert qconfig is not None
weight = qconfig.weight()
return weight.dtype
def activation_is_statically_quantized(qconfig):
""" Given a qconfig, decide if the activation needs to be
quantized or not, this includes quantizing to quint8, qint8 and float16
"""
return activation_dtype(qconfig) in [torch.quint8, torch.qint8, torch.float16]
def activation_is_int8_quantized(qconfig):
""" Given a qconfig, decide if the activation needs to be
quantized to int8 or not, this includes quantizing to quint8, qint8
"""
return activation_dtype(qconfig) in [torch.quint8, torch.qint8]
def weight_is_quantized(qconfig):
""" Given a qconfig, decide if the weight needs to be
quantized or not
"""
return weight_dtype(qconfig) in [torch.quint8, torch.qint8, torch.float16]
def weight_is_statically_quantized(qconfig):
""" Given a qconfig, decide if the weight needs to be statically
quantized or not
"""
return weight_dtype(qconfig) in [torch.quint8, torch.qint8]
def get_qconfig_dtypes(qconfig):
r""" returns the qconfig tuple for qconfig:
(activation_dtype, weight_dtype, activation_compute_dtype)
"""
assert qconfig is not None
activation = qconfig.activation()
weight = qconfig.weight()
compute_dtype = activation.compute_dtype if hasattr(activation, 'compute_dtype') else None
return (activation.dtype, weight.dtype, compute_dtype)
def get_quant_type(qconfig):
assert qconfig is not None
activation = qconfig.activation()
weight = qconfig.weight()
static_dtypes = [torch.quint8, torch.qint8]
if weight.dtype in static_dtypes:
if activation.dtype in static_dtypes:
return QuantType.STATIC
elif hasattr(activation, 'compute_dtype') and activation.compute_dtype in static_dtypes:
return QuantType.DYNAMIC
else:
return QuantType.WEIGHT_ONLY
if weight.dtype == torch.float16:
if activation.dtype == torch.float:
return QuantType.DYNAMIC
elif activation.dtype == torch.float16:
return QuantType.STATIC
raise Exception("Unrecognized dtype combination in get_quant_type: activation({}),"
"weight({})".format(activation.dtype, weight.dtype))
def check_min_max_valid(min_val: torch.Tensor, max_val: torch.Tensor) -> bool:
""" Checks if the given minimum and maximum values are valid, meaning that
they exist and the min value is less than the max value.
"""
if min_val.numel() == 0 or max_val.numel() == 0:
warnings.warn(
"must run observer before calling calculate_qparams. " +
"Returning default values."
)
return False
if min_val.dim() == 0 or max_val.dim() == 0:
if min_val == float("inf") and max_val == float("-inf"):
warnings.warn(
"must run observer before calling calculate_qparams. " +
"Returning default values."
)
return False
assert min_val <= max_val, "min {} should be less than max {}".format(
min_val, max_val
)
else:
assert torch.all(
min_val <= max_val
), "min {} should be less than max {}".format(min_val, max_val)
return True