mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/62488 Instead of attaching weight observer/fake_quant to the float linear and conv, we can compute the quantization parameters and attach that as a dictionary to these modules so that we can reduce the model size and make the reference module clearer TODO: the numerics for linear and conv in reference quantized model is still not correct since we did not quantize weight, we may explore things like parameterization to implement this support Test Plan: python test/test_quantization.py TestQuantizeFx python test/test_quantization.py TestQuantizeFxOps Imported from OSS Reviewed By: vkuzo Differential Revision: D30053979 fbshipit-source-id: b5f8497cf6cf65eec924df2d8fb10a9e154b8cab
165 lines
5.9 KiB
Python
165 lines
5.9 KiB
Python
"""
|
|
Utils shared by different modes of quantization (eager/graph)
|
|
"""
|
|
import warnings
|
|
|
|
import torch
|
|
from .quant_type import QuantType, quant_type_to_str
|
|
|
|
def get_combined_dict(default_dict, additional_dict):
|
|
d = default_dict.copy()
|
|
d.update(additional_dict)
|
|
return d
|
|
|
|
def is_per_tensor(qscheme):
|
|
return qscheme == torch.per_tensor_affine or \
|
|
qscheme == torch.per_tensor_symmetric
|
|
|
|
def is_per_channel(qscheme):
|
|
return qscheme in [torch.per_channel_affine,
|
|
torch.per_channel_affine_float_qparams,
|
|
torch.per_channel_symmetric]
|
|
|
|
def get_qparam_dict(observer_or_fake_quant):
|
|
qscheme = observer_or_fake_quant.qscheme if hasattr(observer_or_fake_quant, "qscheme") else None
|
|
dtype = observer_or_fake_quant.dtype
|
|
qparams = {"qscheme": qscheme, "dtype": dtype}
|
|
|
|
if not qscheme:
|
|
return qparams
|
|
|
|
if is_per_tensor(qscheme):
|
|
qscheme = torch.per_tensor_affine
|
|
elif is_per_channel(qscheme):
|
|
# change symmetric to affine since we do not have symmetric
|
|
# quantized Tensor
|
|
if qscheme == torch.per_channel_symmetric:
|
|
qscheme = torch.per_channel_affine
|
|
qparams["axis"] = observer_or_fake_quant.ch_axis
|
|
else:
|
|
raise RuntimeError(f"Unrecognized qscheme: {qscheme}")
|
|
# update qscheme, since we don't have symmetric quant qscheme
|
|
# in quantized Tensor
|
|
qparams["qscheme"] = qscheme
|
|
|
|
scale, zero_point = observer_or_fake_quant.calculate_qparams()
|
|
qparams["scale"] = scale
|
|
qparams["zero_point"] = zero_point
|
|
|
|
return qparams
|
|
|
|
|
|
def get_swapped_custom_module_class(custom_module, custom_module_class_mapping, qconfig):
|
|
""" Get the observed/quantized custom module class that we need
|
|
to swap `custom_module` to
|
|
Input:
|
|
custom_module: input, can be an instance of either a float or observed custom module
|
|
custom_module_class_mapping: the float to observed or observed to quantized custom module class mapping
|
|
qconfig: qconfig configured for the custom module
|
|
|
|
Output:
|
|
corresponding observed/quantized custom module class for input custom module instance
|
|
"""
|
|
quant_type = get_quant_type(qconfig)
|
|
quant_type_str = quant_type_to_str(quant_type)
|
|
class_mapping = custom_module_class_mapping.get(quant_type_str, {})
|
|
assert type(custom_module) in class_mapping, "did not find corresponding observed " \
|
|
"module class for {} in mapping: {}".format(type(custom_module), class_mapping)
|
|
return class_mapping[type(custom_module)]
|
|
|
|
def activation_dtype(qconfig):
|
|
assert qconfig is not None
|
|
activation = qconfig.activation()
|
|
return activation.dtype
|
|
|
|
def weight_dtype(qconfig):
|
|
assert qconfig is not None
|
|
weight = qconfig.weight()
|
|
return weight.dtype
|
|
|
|
def activation_is_statically_quantized(qconfig):
|
|
""" Given a qconfig, decide if the activation needs to be
|
|
quantized or not, this includes quantizing to quint8, qint8 and float16
|
|
"""
|
|
return activation_dtype(qconfig) in [torch.quint8, torch.qint8, torch.float16]
|
|
|
|
def activation_is_int8_quantized(qconfig):
|
|
""" Given a qconfig, decide if the activation needs to be
|
|
quantized to int8 or not, this includes quantizing to quint8, qint8
|
|
"""
|
|
return activation_dtype(qconfig) in [torch.quint8, torch.qint8]
|
|
|
|
def weight_is_quantized(qconfig):
|
|
""" Given a qconfig, decide if the weight needs to be
|
|
quantized or not
|
|
"""
|
|
return weight_dtype(qconfig) in [torch.quint8, torch.qint8, torch.float16]
|
|
|
|
def weight_is_statically_quantized(qconfig):
|
|
""" Given a qconfig, decide if the weight needs to be statically
|
|
quantized or not
|
|
"""
|
|
return weight_dtype(qconfig) in [torch.quint8, torch.qint8]
|
|
|
|
def get_qconfig_dtypes(qconfig):
|
|
r""" returns the qconfig tuple for qconfig:
|
|
(activation_dtype, weight_dtype, activation_compute_dtype)
|
|
"""
|
|
assert qconfig is not None
|
|
activation = qconfig.activation()
|
|
weight = qconfig.weight()
|
|
compute_dtype = activation.compute_dtype if hasattr(activation, 'compute_dtype') else None
|
|
return (activation.dtype, weight.dtype, compute_dtype)
|
|
|
|
def get_quant_type(qconfig):
|
|
assert qconfig is not None
|
|
activation = qconfig.activation()
|
|
weight = qconfig.weight()
|
|
static_dtypes = [torch.quint8, torch.qint8]
|
|
if weight.dtype in static_dtypes:
|
|
if activation.dtype in static_dtypes:
|
|
return QuantType.STATIC
|
|
elif hasattr(activation, 'compute_dtype') and activation.compute_dtype in static_dtypes:
|
|
return QuantType.DYNAMIC
|
|
else:
|
|
return QuantType.WEIGHT_ONLY
|
|
|
|
if weight.dtype == torch.float16:
|
|
if activation.dtype == torch.float:
|
|
return QuantType.DYNAMIC
|
|
elif activation.dtype == torch.float16:
|
|
return QuantType.STATIC
|
|
|
|
raise Exception("Unrecognized dtype combination in get_quant_type: activation({}),"
|
|
"weight({})".format(activation.dtype, weight.dtype))
|
|
|
|
def check_min_max_valid(min_val: torch.Tensor, max_val: torch.Tensor) -> bool:
|
|
""" Checks if the given minimum and maximum values are valid, meaning that
|
|
they exist and the min value is less than the max value.
|
|
"""
|
|
if min_val.numel() == 0 or max_val.numel() == 0:
|
|
warnings.warn(
|
|
"must run observer before calling calculate_qparams. " +
|
|
"Returning default values."
|
|
)
|
|
return False
|
|
|
|
if min_val.dim() == 0 or max_val.dim() == 0:
|
|
if min_val == float("inf") and max_val == float("-inf"):
|
|
warnings.warn(
|
|
"must run observer before calling calculate_qparams. " +
|
|
"Returning default values."
|
|
)
|
|
|
|
return False
|
|
|
|
assert min_val <= max_val, "min {} should be less than max {}".format(
|
|
min_val, max_val
|
|
)
|
|
else:
|
|
assert torch.all(
|
|
min_val <= max_val
|
|
), "min {} should be less than max {}".format(min_val, max_val)
|
|
|
|
return True
|