mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-08 07:39:33 +01:00
> Ignore FSDP2 forward hook side-effects in AC
Under AC, FSDP2 does not rely on forward hook to all-gather weights to do recomputation, instead it relies on pre-backward hook to do this job:
451eaf0ff2/torch/distributed/_composable/fsdp/_fsdp_state.py (L219-L220)
So when we use `speculate_subgraph` to trace the utils.checkpoint AC region, we don't actually need to worry about FSDP2 forward hook's side effects and can safely ignore it, because we are not and we don't expect to re-run the FSDP2 forward hook during backward recomputation.
----
Test commands:
- `pytest -rA test/distributed/_composable/fsdp/test_fully_shard_compile.py::TestFullyShardCompile::test_nested_fully_shard_backend_inductor`
- `pytest -rA test/distributed/_composable/fsdp/test_fully_shard_compile.py::TestFullyShardCompile::test_transformer_backend_inductor`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134997
Approved by: https://github.com/zou3519
ghstack dependencies: #135727
2201 lines
88 KiB
Python
2201 lines
88 KiB
Python
# mypy: allow-untyped-defs
|
|
import collections
|
|
import contextlib
|
|
import copy
|
|
import dataclasses
|
|
import functools
|
|
import itertools
|
|
import json
|
|
import logging
|
|
import operator
|
|
import re
|
|
import sys
|
|
import traceback
|
|
import weakref
|
|
from dataclasses import dataclass
|
|
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, TYPE_CHECKING, Union
|
|
|
|
import sympy
|
|
|
|
import torch._guards
|
|
import torch._logging
|
|
import torch.distributed as dist
|
|
import torch.nn
|
|
import torch.utils._pytree as pytree
|
|
from torch import fx
|
|
from torch._guards import GlobalContextCheckpointState, Source, TracingContext
|
|
from torch._utils_internal import signpost_event
|
|
from torch.fx._lazy_graph_module import _make_graph_module # type: ignore[attr-defined]
|
|
from torch.fx.experimental._backward_state import BackwardState
|
|
from torch.fx.experimental.symbolic_shapes import free_symbols, is_symbolic, ShapeEnv
|
|
from torch.fx.passes.runtime_assert import insert_deferred_runtime_asserts
|
|
from torch.utils._python_dispatch import is_traceable_wrapper_subclass
|
|
|
|
from . import config, exc, logging as torchdynamo_logging, variables
|
|
from .backends.registry import CompiledFn, CompilerFn
|
|
from .bytecode_transformation import (
|
|
create_call_function,
|
|
create_instruction,
|
|
Instruction,
|
|
unique_id,
|
|
)
|
|
from .code_context import code_context
|
|
from .codegen import PyCodegen
|
|
from .current_scope_id import enter_new_scope
|
|
from .exc import (
|
|
BackendCompilerFailed,
|
|
exceptions_allowed_to_be_fallback,
|
|
SkipFrame,
|
|
unimplemented,
|
|
unimplemented_with_warning,
|
|
)
|
|
from .guards import GuardBuilder, install_guard
|
|
from .mutation_guard import is_dynamic_nn_module
|
|
from .side_effects import AttributeMutationExisting, SideEffects
|
|
from .source import (
|
|
AttrSource,
|
|
BackwardStateSource,
|
|
ConstantSource,
|
|
GetItemSource,
|
|
GlobalStateSource,
|
|
is_constant_source,
|
|
is_from_local_source,
|
|
LocalSource,
|
|
ParamBufferSource,
|
|
ShapeEnvSource,
|
|
SyntheticLocalSource,
|
|
TensorProperty,
|
|
TensorPropertySource,
|
|
)
|
|
from .utils import (
|
|
_extract_tensor_dict,
|
|
checkpoint_params,
|
|
CleanupHook,
|
|
clone_inputs,
|
|
count_calls,
|
|
counters,
|
|
dynamo_timed,
|
|
get_instruction_source_311,
|
|
get_locals_to_steal,
|
|
get_static_address_type,
|
|
graph_break_reasons,
|
|
increment_op_count,
|
|
lazy_format_graph_code,
|
|
LazyString,
|
|
nn_module_proxy,
|
|
same,
|
|
set_example_value,
|
|
)
|
|
from .variables.base import VariableTracker
|
|
from .variables.builder import (
|
|
BackwardStateGraphArg,
|
|
GraphArg,
|
|
TrackedFake,
|
|
VariableBuilder,
|
|
wrap_fx_proxy,
|
|
)
|
|
from .variables.lists import BaseListVariable
|
|
from .variables.misc import NullVariable
|
|
from .variables.nn_module import NNModuleVariable
|
|
from .variables.tensor import (
|
|
NumpyNdarrayVariable,
|
|
SymNodeVariable,
|
|
TensorVariable,
|
|
UnspecializedPythonVariable,
|
|
)
|
|
from .variables.torch_function import TensorWithTFOverrideVariable
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from torch._dynamo.symbolic_convert import InstructionTranslatorBase
|
|
|
|
|
|
log = logging.getLogger(__name__)
|
|
graph_tabular_log = torch._logging.getArtifactLogger(__name__, "graph")
|
|
graph_code_log = torch._logging.getArtifactLogger(__name__, "graph_code")
|
|
graph_sizes_log = torch._logging.getArtifactLogger(__name__, "graph_sizes")
|
|
trace_call_log = torch._logging.getArtifactLogger(__name__, "trace_call")
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
class VariableTrackerCacheKey:
|
|
vt_id: int
|
|
# Two different source can point to the same object. However, Dynamo handles
|
|
# globals and local source differently when it comes to guards and possibly
|
|
# some other parts as well. So, cache also relies on the source.
|
|
source: Source
|
|
|
|
|
|
class VariableTrackerCache:
|
|
def __init__(self):
|
|
self.cache = {}
|
|
|
|
def lookup(self, value, source):
|
|
key = VariableTrackerCacheKey(id(value), source)
|
|
if key not in self.cache:
|
|
return None
|
|
return self.cache[key]
|
|
|
|
def add(self, value, source, vt):
|
|
key = VariableTrackerCacheKey(id(value), source)
|
|
self.cache[key] = vt
|
|
|
|
def clone(self):
|
|
# Needed for copy and restore graph state
|
|
new_cache = VariableTrackerCache()
|
|
new_cache.cache.update(self.cache)
|
|
return new_cache
|
|
|
|
def clear(self):
|
|
self.cache.clear()
|
|
|
|
|
|
@functools.lru_cache(None)
|
|
def _step_logger():
|
|
return torchdynamo_logging.get_step_logger(log)
|
|
|
|
|
|
@dataclass
|
|
class GraphCompileReason:
|
|
"""Stores why a given output graph was compiled; i.e. what caused the graph break."""
|
|
|
|
reason: str
|
|
user_stack: List[traceback.FrameSummary]
|
|
|
|
# Indicates if this was a graph compile reason due to graph break.
|
|
graph_break: bool = True
|
|
|
|
def __post_init__(self):
|
|
if self.graph_break:
|
|
graph_break_reasons.append(self)
|
|
|
|
|
|
def _get_gen_rand_values_fn(random_calls):
|
|
def _gen_rand_values():
|
|
return [fn(*args, **kwargs) for fn, args, kwargs in random_calls]
|
|
|
|
return _gen_rand_values
|
|
|
|
|
|
class FakeRootModule(torch.nn.Module):
|
|
"""Trick the constructor of fx.GraphModule"""
|
|
|
|
def __init__(self, nn_modules: Dict[str, torch.nn.Module]):
|
|
super().__init__()
|
|
for k, v in nn_modules.items():
|
|
setattr(self, k, v)
|
|
|
|
def __repr__(self):
|
|
return "FakeRootModule(...)"
|
|
|
|
|
|
class WrapperBackend:
|
|
def __init__(self, backend: CompilerFn):
|
|
self.backend: CompilerFn = backend
|
|
|
|
def __call__(self, gm: torch.fx.GraphModule, example_inputs: List[torch.Tensor]):
|
|
self.restore = checkpoint_params(gm)
|
|
self.gm = gm
|
|
copy_gm = copy.deepcopy(self.gm)
|
|
self.candidate = self.backend(copy_gm, example_inputs)
|
|
|
|
if self.candidate is None or self.candidate is self.gm.forward:
|
|
return self.gm.forward
|
|
|
|
if not config.verify_correctness:
|
|
return self.candidate
|
|
|
|
# if verify_correctness=True
|
|
try:
|
|
correct = self.gm.forward(*clone_inputs(example_inputs))
|
|
result = self.candidate(*clone_inputs(example_inputs))
|
|
|
|
# TODO: replace `same` function with the one in testing
|
|
if same(correct, result):
|
|
return self.candidate
|
|
|
|
raise RuntimeError(f"incorrect results of backend {self}")
|
|
return self.gm.forward
|
|
|
|
except Exception:
|
|
log.exception("error in verify_correctness")
|
|
raise
|
|
finally:
|
|
self.restore()
|
|
|
|
|
|
Scope = Dict[str, object]
|
|
|
|
|
|
class OutputGraph:
|
|
"""
|
|
Wrapper class to hold outputs of InstructionTranslator. Mainly the
|
|
generated fx.Graph.
|
|
|
|
OutputGraph is 1:1 with a frame being processed. Each frame is associated
|
|
with some root InstructionTranslator. When user code calls a function,
|
|
we construct a InliningInstructionTranslator that continues to write into
|
|
the root InstructionTranslator's OutputGraph.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
code_options: Dict[str, Any],
|
|
compiler_fn: Optional[CompilerFn],
|
|
root_tx,
|
|
export: bool,
|
|
export_constraints,
|
|
frame_state,
|
|
local_scope: Scope,
|
|
global_scope: Scope,
|
|
f_code,
|
|
torch_function_mode_stack,
|
|
):
|
|
super().__init__()
|
|
self.tracers = [SubgraphTracer(self, export_root=export)]
|
|
# Map from graph input's `Source` to its `VariableTracker` to
|
|
# de-duplicate graph inputs by source and reuse the tracker
|
|
self.input_source_to_var: Dict[Source, VariableTracker] = {}
|
|
self.export = export
|
|
self.export_constraints = export_constraints
|
|
self.frame_state = frame_state
|
|
# Map from graph input's `Source` to sizes / strides metadata
|
|
self.input_source_to_sizes_strides: Dict[Source, Dict[str, Any]] = {}
|
|
self.cleanup_hooks: List[Callable[[], Any]] = []
|
|
# compile_id is an id number for the current torch.compile
|
|
self.compile_id: int = next(_compile_id_counter)
|
|
# Set of globals installed via install_global* APIs
|
|
self.installed_globals: Set[str] = set()
|
|
|
|
# TODO: maybe should just pass the entire f_code in here? Not
|
|
# sure...
|
|
self.co_fields = {
|
|
"co_name": f_code.co_name,
|
|
"co_filename": f_code.co_filename,
|
|
"co_firstlineno": f_code.co_firstlineno,
|
|
}
|
|
|
|
# tracked_fakes says where any tensor that was wrapped to fake came
|
|
# from. It is similar to GraphArg, in that all GraphArgs will get
|
|
# will get added to TrackedFakes, but TrackedFakes also contains
|
|
# GraphArgs that got pruned, and things like Tensor attributes which
|
|
# aren't explicit graph inputs. Used by shape guard
|
|
self.tracked_fakes: List[TrackedFake] = []
|
|
|
|
# List of symbols for which we have exact bindings in the arguments
|
|
# already
|
|
self.bound_symbols: Set[sympy.Symbol] = set()
|
|
|
|
shape_env = ShapeEnv(
|
|
# Reference Cycle!
|
|
# Share a reference to the list of TrackedFake.
|
|
#
|
|
# ShapeEnv needs this in order to be able to reproduce the call
|
|
# to produce_guards at an arbitrary time point. That is because
|
|
# TrackedFake instances may have its metadata changed throughout
|
|
# the program execution.
|
|
tracked_fakes=self.tracked_fakes,
|
|
allow_scalar_outputs=config.capture_scalar_outputs,
|
|
allow_dynamic_output_shape_ops=config.capture_dynamic_output_shape_ops,
|
|
prefer_deferred_runtime_asserts_over_guards=config.prefer_deferred_runtime_asserts_over_guards,
|
|
allow_complex_guards_as_runtime_asserts=config.allow_complex_guards_as_runtime_asserts,
|
|
co_fields=self.co_fields,
|
|
)
|
|
|
|
# In export mode, we force the shape_env to strictly disallow any constraining
|
|
# of the user marked dynamic dims
|
|
import torch._functorch.config as _config
|
|
|
|
with _config.patch(fake_tensor_allow_unsafe_data_ptr_access=False):
|
|
fake_mode = torch._subclasses.FakeTensorMode(
|
|
shape_env=shape_env,
|
|
# TODO (tmanlaibaatar) Remove this once we always lift params and buffers
|
|
allow_non_fake_inputs=True if self.export else False,
|
|
export=self.export,
|
|
)
|
|
self.tracing_context: TracingContext = TracingContext(fake_mode)
|
|
self.init_ambient_guards()
|
|
|
|
# Map each tensor id to a list of sources. This is necessary because
|
|
# tensor ids cannot be recovered from tracked fakes (in general).
|
|
# We use this map to interpret (i.e., check for violations of) constraints,
|
|
# specifically equality constraints, which have shared tensor ids in them.
|
|
# This map should also be generally useful, e.g., for (de)serialization.
|
|
self.tracked_fakes_id_to_source: Dict[
|
|
int, List[Source]
|
|
] = collections.defaultdict(list)
|
|
# Stores the full fqn of a param or buffer to the relevant source.
|
|
self.param_name_to_source: Optional[Dict[str, Source]] = {}
|
|
self.side_effects = SideEffects(self)
|
|
# Cached variable trackers. This makes symbolic analysis of LOAD_GLOBAL
|
|
# and LOAD_ATTR for same python objects free.
|
|
self.variable_tracker_cache = VariableTrackerCache()
|
|
self.unique_var_id = itertools.count()
|
|
self.code_options = dict(code_options)
|
|
self.output_instructions: List[Instruction] = []
|
|
# used to track nodes that are added between calls of copy_graphstate
|
|
# and restore_graphstate
|
|
self.timestamp = 0
|
|
|
|
# A list of register_finalizer_fns to apply to the output graph module
|
|
self.register_finalizer_fns: List[Callable[[fx.GraphModule], None]] = []
|
|
|
|
# Not checkpointed
|
|
self.compiler_fn: Optional[CompilerFn] = compiler_fn
|
|
self.global_scope = global_scope
|
|
self.local_scope = local_scope
|
|
self.root_tx = root_tx
|
|
|
|
# Given a source, what are the user stacks of all locations that
|
|
# accessed it?
|
|
#
|
|
# For efficiency, we only populate this:
|
|
# - During export, and
|
|
# - If the source could potentially lead to a spurious export input
|
|
#
|
|
# Feel free to populate this more frequently if other use-cases arise,
|
|
# but be aware that we have to generate full stacks for each
|
|
# recording!
|
|
self.source_to_user_stacks: Dict[Source, List[traceback.StackSummary]] = {}
|
|
|
|
self._current_tx: List[InstructionTranslatorBase] = []
|
|
self.cleanups: List[CleanupHook] = []
|
|
self.should_exit = False
|
|
self.unspec_variable_map: Dict[str, UnspecializedPythonVariable] = {}
|
|
|
|
# Note this returns true iff TF Mode and TF Subclasses are enabled
|
|
self.torch_function_enabled = torch._C._is_torch_function_enabled()
|
|
# This returns false if TF Overall (both mode and subclass) is disabled OR that TF Mode stack is empty
|
|
self.torch_function_mode_enabled = torch._C._is_torch_function_mode_enabled()
|
|
# This records the initial torch function mode stack for guarding
|
|
self.torch_function_mode_stack = torch_function_mode_stack
|
|
|
|
# Tracks if the output graph has a user defined allowed function in the
|
|
# graph. This is used later to determine if we should fallback to eager
|
|
# for certain exceptions. THe idea is that if the user has applied
|
|
# allow_in_graph, they would like to see the error instead of falling
|
|
# back for backend errors.
|
|
self.has_user_defined_allowed_in_graph = False
|
|
|
|
# Tracks a list of called ops that were not tagged with "pt2_compliant_tag".
|
|
# This information is useful for logging.
|
|
self.non_compliant_ops: Set[torch._ops.OpOverload] = set({})
|
|
|
|
# Tracks a list of called custom ops that were tagged with "pt2_compliant_tag".
|
|
# This information is useful for logging.
|
|
self.compliant_custom_ops: Set[torch._ops.OpOverload] = set({})
|
|
|
|
# We save the global torch state here to be restored in case of graph
|
|
# breaks. The relevant issue is seen here
|
|
# https://github.com/pytorch/pytorch/pull/100570#issuecomment-1543427086
|
|
# where inlining of a function changes the global state (because of the
|
|
# presence of torch.no_grad) and there is a graph break.
|
|
self.save_global_state()
|
|
|
|
# Tracks the original FQNs of the constant tensors from the original graph,
|
|
# i.e. buffers and parameters.
|
|
self.dynamo_flat_name_to_original_fqn: Dict[str, str] = {}
|
|
|
|
# All calls to random() are replaced with a single call to __gen_rand_values
|
|
# functions that returns a tuple of random values for each original call.
|
|
# random_calls tracks calls to random() and random_values_var stores the name of
|
|
# the variable that stores __gen_rand_values results.
|
|
self.random_calls: List[
|
|
Tuple[Callable[..., object], Tuple[object, ...], Dict[str, object]]
|
|
] = []
|
|
self.random_values_var = None
|
|
|
|
# Bytecode to insert right before we call the graph
|
|
self.pregraph_bytecode: List[Instruction] = []
|
|
|
|
# Use to pass values to backward hooks when using compiled autograd
|
|
self.backward_state: Dict[str, VariableTracker] = {}
|
|
self.backward_state_proxy: Optional[torch.fx.Proxy] = None
|
|
self.backward_state_var: Optional[str] = None
|
|
|
|
self.name_of_builtins_dict_key_in_fglobals: str = (
|
|
self.install_builtins_dict_in_fglobals()
|
|
)
|
|
|
|
self.guard_on_key_order: Set[str] = set()
|
|
|
|
def install_builtins_dict_in_fglobals(self):
|
|
# f_globals["__builtins__"] can be a dict or a module. This is an
|
|
# implemenation detail -
|
|
# https://docs.python.org/3/library/builtins.html.
|
|
|
|
# This makes guarding on any builtin messy because the guard check_fn
|
|
# has to check if the __builtins__ is a module or dict, and then access
|
|
# by either using getattr or getitem respectively.
|
|
|
|
# To solve this problem, we insert a new entry in f_globals which points
|
|
# to the builtins __dict__ and then we guard any builtin on this dict.
|
|
# To avoid any collision with the pre-existing keys, we use the
|
|
# install_global to give us a unique dict key.
|
|
|
|
f_builtins = self.global_scope["__builtins__"]
|
|
if not isinstance(f_builtins, dict):
|
|
f_builtins = f_builtins.__dict__
|
|
return self.install_global("__builtins_dict__", f_builtins)
|
|
|
|
def add_backward_state_hook(self, hook: VariableTracker, prefix="hook"):
|
|
name = f"{prefix}{len(self.backward_state)}"
|
|
assert name not in self.backward_state
|
|
self.backward_state[name] = hook
|
|
return name, self.get_backward_state_proxy()
|
|
|
|
def get_backward_state_proxy(self):
|
|
if self.backward_state_proxy is None:
|
|
if self.export:
|
|
unimplemented("backward_state does not support export")
|
|
self.backward_state_proxy = self.root_tracer.create_graph_input(
|
|
"dynamo_backward_state", BackwardState, source=BackwardStateSource()
|
|
)
|
|
self.backward_state_proxy.node.meta["grapharg"] = BackwardStateGraphArg()
|
|
set_example_value(self.backward_state_proxy.node, BackwardState())
|
|
self.backward_state_var = self.new_var()
|
|
return self.backward_state_proxy
|
|
|
|
# This gets its own helper function so guards DEBUG logs are more informative
|
|
def init_ambient_guards(self):
|
|
# Register a SHAPE_ENV guard to make sure we setup shape guards
|
|
# that show up in ShapeEnv
|
|
self.guards.add(ShapeEnvSource().make_guard(GuardBuilder.SHAPE_ENV))
|
|
|
|
self.guards.add(
|
|
GlobalStateSource().make_guard(GuardBuilder.DETERMINISTIC_ALGORITHMS)
|
|
)
|
|
|
|
self.guards.add(GlobalStateSource().make_guard(GuardBuilder.GRAD_MODE))
|
|
|
|
self.guards.add(GlobalStateSource().make_guard(GuardBuilder.DEFAULT_DEVICE))
|
|
|
|
self.guards.add(
|
|
GlobalStateSource().make_guard(GuardBuilder.TORCH_FUNCTION_STATE)
|
|
)
|
|
|
|
ci = torch._C._functorch.peek_interpreter_stack()
|
|
if ci is not None:
|
|
self.guards.add(
|
|
GlobalStateSource().make_guard(GuardBuilder.FUNCTORCH_STACK_MATCH)
|
|
)
|
|
|
|
def synthetic_graph_input(self, fn, args):
|
|
"""
|
|
call fn(*args) before the graph runs and turn the result into a fake input.
|
|
"""
|
|
example_value = fn(*args)
|
|
varname = self.new_var()
|
|
cg = PyCodegen(self.root_tx)
|
|
cg.add_push_null(
|
|
lambda: cg.load_import_from(
|
|
fn.__module__,
|
|
fn.__name__,
|
|
)
|
|
)
|
|
cg.foreach(map(variables.ConstantVariable.create, args))
|
|
cg.call_function(len(args), False)
|
|
cg.store(varname)
|
|
self.pregraph_bytecode.extend(cg.get_instructions())
|
|
source = SyntheticLocalSource(varname)
|
|
result = VariableBuilder(self.root_tx, source)(example_value)
|
|
TracingContext.get().guards_context.dynamo_guards.remove_guards_with_source(
|
|
source
|
|
)
|
|
return result
|
|
|
|
def add_cleanup_hook(self, fn: Callable[[], Any]):
|
|
self.cleanup_hooks.append(fn)
|
|
|
|
def call_cleanup_hooks(self):
|
|
for hook in reversed(self.cleanup_hooks):
|
|
hook()
|
|
self.cleanup_hooks.clear()
|
|
|
|
@property
|
|
def root_tracer(self):
|
|
return self.tracers[0]
|
|
|
|
@property
|
|
def current_tracer(self):
|
|
return self.tracers[-1]
|
|
|
|
def is_root_tracer(self):
|
|
# Helper to tell if we are inside the higher order operator tracing.
|
|
return len(self.tracers) == 1
|
|
|
|
@property
|
|
def graph(self):
|
|
return self.current_tracer.graph
|
|
|
|
# TODO(rzou): can delete after we refactor speculate_subgraph to use nested GraphTracer.
|
|
@graph.setter
|
|
def graph(self, value):
|
|
self.current_tracer.graph = value
|
|
|
|
@property
|
|
def input_name_to_proxy(self):
|
|
return self.current_tracer.input_name_to_proxy
|
|
|
|
@property
|
|
def real_value_cache(self):
|
|
return self.current_tracer.real_value_cache
|
|
|
|
# If you are here, and you're looking for create_graph_input,
|
|
# to avoid ambiguity, please call one of the following:
|
|
# - self.current_tracer.create_graph_input
|
|
# - self.root_tracer.create_graph_input
|
|
# See NOTE [HigherOrderOperator tracing design] for more context.
|
|
|
|
def create_proxy(self, *args, **kwargs):
|
|
return self.current_tracer.create_proxy(*args, **kwargs)
|
|
|
|
def create_node(self, *args, **kwargs):
|
|
return self.current_tracer.create_node(*args, **kwargs)
|
|
|
|
def remove_node(self, *args, **kwargs):
|
|
return self.current_tracer.remove_node(*args, **kwargs)
|
|
|
|
@contextlib.contextmanager
|
|
def subtracer(self, source_target, prior_tracer):
|
|
new_scope_ctx = enter_new_scope()
|
|
try:
|
|
if prior_tracer:
|
|
# Lineage MUST stay preserved
|
|
assert prior_tracer.parent is self.current_tracer
|
|
new_scope_ctx.__enter__()
|
|
tracer = (
|
|
prior_tracer
|
|
if prior_tracer
|
|
else SubgraphTracer(
|
|
self, parent=self.current_tracer, source_target=source_target
|
|
)
|
|
)
|
|
self.tracers.append(tracer)
|
|
yield tracer
|
|
finally:
|
|
new_scope_ctx.__exit__(None, None, None)
|
|
self.tracers.pop()
|
|
|
|
@property
|
|
def output(self):
|
|
return self
|
|
|
|
@property
|
|
def fake_mode(self):
|
|
return self.tracing_context.fake_mode
|
|
|
|
@property
|
|
def shape_env(self):
|
|
return self.tracing_context.fake_mode.shape_env
|
|
|
|
@property
|
|
def guards(self) -> torch._guards.GuardsSet:
|
|
return self.tracing_context.guards_context.dynamo_guards
|
|
|
|
@property
|
|
def nn_modules(self) -> Dict[str, Any]:
|
|
return self.tracing_context.module_context.nn_modules
|
|
|
|
def save_global_state(self, out=None):
|
|
"""
|
|
Saves to out if it is provided. Else saves to the tracing context's global_state.
|
|
"""
|
|
global_state = (
|
|
out if out is not None else self.tracing_context.global_context.global_state
|
|
)
|
|
|
|
# TODO - Consider having a torch level API for torch_function_state. As
|
|
# of now, we create a ref cycle by passing the
|
|
# output.set_torch_function_state to
|
|
# output.tracing_context.global_context.global_state. In the interim,
|
|
# the problem can be solved by manually set
|
|
# output.tracing_context.global_context.global_state to None at cleanup.
|
|
global_state["torch_function_enabled"] = (
|
|
self.set_torch_function_state,
|
|
self.torch_function_enabled,
|
|
)
|
|
global_state["grad_enabled"] = (torch.set_grad_enabled, torch.is_grad_enabled())
|
|
|
|
global_state["autocast_enabled"] = (
|
|
functools.partial(torch.set_autocast_enabled, "cuda"),
|
|
torch.is_autocast_enabled("cuda"),
|
|
)
|
|
global_state["autocast_cpu_enabled"] = (
|
|
functools.partial(torch.set_autocast_enabled, "cpu"),
|
|
torch.is_autocast_enabled("cpu"),
|
|
)
|
|
global_state["autocast_gpu_dtype"] = (
|
|
functools.partial(torch.set_autocast_dtype, "cuda"),
|
|
torch.get_autocast_dtype("cuda"),
|
|
)
|
|
global_state["autocast_cpu_dtype"] = (
|
|
functools.partial(torch.set_autocast_dtype, "cpu"),
|
|
torch.get_autocast_dtype("cpu"),
|
|
)
|
|
global_state["autocast_cache_enabled"] = (
|
|
torch.set_autocast_cache_enabled,
|
|
torch.is_autocast_cache_enabled(),
|
|
)
|
|
|
|
def push_tx(self, tx):
|
|
self._current_tx.append(tx)
|
|
|
|
def pop_tx(self):
|
|
return self._current_tx.pop()
|
|
|
|
@property
|
|
def current_tx(self):
|
|
return self.root_tx if not self._current_tx else self._current_tx[-1]
|
|
|
|
def add_symbol_bindings(self, arg: GraphArg):
|
|
# Insert implicit size vars as necessary. With dynamic shapes, we
|
|
# maintain the invariant that every sizevar gets a direct SymInt input
|
|
# into the graph. This means downstream graph transforms can assume
|
|
# every size variable is explicitly bound and accessible, instead of
|
|
# having to pull it out implicitly from tensors.
|
|
|
|
if self.export:
|
|
return
|
|
|
|
assert arg.fake_tensor is not None
|
|
|
|
def bind_symint(s, prop):
|
|
if not (is_symbolic(s) and isinstance(s.node.expr, sympy.Symbol)):
|
|
return
|
|
s0 = s.node.expr
|
|
if s0 in self.bound_symbols:
|
|
return
|
|
self.bound_symbols.add(s0)
|
|
log.debug("bind_symint %s %s", s, prop.name())
|
|
# TODO: don't readd symint if we already have it in graph
|
|
# (this is harmless because we do remove the unused ones later)
|
|
proxy = self.root_tracer.create_graph_input(
|
|
str(s0),
|
|
torch.SymInt,
|
|
before=True,
|
|
source=prop,
|
|
)
|
|
set_example_value(proxy.node, s)
|
|
proxy.node.meta["grapharg"] = GraphArg(
|
|
prop,
|
|
s,
|
|
pass_arg_as_tensor=False,
|
|
fake_tensor=None,
|
|
is_tensor=False,
|
|
)
|
|
|
|
def handle_tensor(t, src):
|
|
for i, s in enumerate(t.size()):
|
|
bind_symint(s, TensorPropertySource(src, TensorProperty.SIZE, i))
|
|
if t.layout is torch.strided:
|
|
for i, s in enumerate(t.stride()):
|
|
bind_symint(s, TensorPropertySource(src, TensorProperty.STRIDE, i))
|
|
bind_symint(
|
|
t.storage_offset(),
|
|
TensorPropertySource(src, TensorProperty.STORAGE_OFFSET),
|
|
)
|
|
elif t.layout is torch.sparse_coo:
|
|
handle_tensor(t._indices(), src)
|
|
handle_tensor(t._values(), src)
|
|
elif t.layout in {torch.sparse_csr, torch.sparse_bsr}:
|
|
handle_tensor(t.crow_indices(), src)
|
|
handle_tensor(t.col_indices(), src)
|
|
elif t.layout in {torch.sparse_csc, torch.sparse_bsc}:
|
|
handle_tensor(t.ccol_indices(), src)
|
|
handle_tensor(t.row_indices(), src)
|
|
if is_traceable_wrapper_subclass(t):
|
|
attrs, ctx = t.__tensor_flatten__()
|
|
for attr in attrs:
|
|
inner_t = getattr(t, attr)
|
|
handle_tensor(inner_t, AttrSource(src, attr))
|
|
|
|
handle_tensor(arg.fake_tensor, arg.source)
|
|
|
|
def count_calls(self):
|
|
return count_calls(self.graph)
|
|
|
|
def is_empty_graph(self):
|
|
return len(list(self.graph.nodes)) == 0
|
|
|
|
def get_submodule(self, keys):
|
|
assert keys
|
|
obj: Union[torch.nn.Module, Dict[str, torch.nn.Module]] = self.nn_modules
|
|
for k in keys.split("."):
|
|
if isinstance(obj, dict):
|
|
obj = obj[k]
|
|
else:
|
|
obj = getattr(obj, k)
|
|
return obj
|
|
|
|
def new_var(self, name="tmp"):
|
|
existing = set(self.code_options["co_varnames"])
|
|
# In common case, this will be O(1)
|
|
while True:
|
|
var = f"{name}_{next(self.unique_var_id)}"
|
|
if var not in existing:
|
|
self.code_options["co_varnames"] += (var,)
|
|
return var
|
|
|
|
def update_co_names(self, name):
|
|
"""Ensure self.code_options.co_names contains name"""
|
|
if name not in self.code_options["co_names"]:
|
|
self.code_options["co_names"] += (name,)
|
|
|
|
@staticmethod
|
|
def module_key_name(*names):
|
|
# create a new unique name
|
|
name = "_".join(map(str, names))
|
|
# Strip the guard lookup L/G access
|
|
name = re.sub(r"^[GL]\['?(.*?)'?\]$", r"\1", name)
|
|
# e.g. replace abc.xyz[123].qkv with abc.xyz_123.qkv
|
|
name = re.sub(r"\[(\d+)\]", r"_\g<1>", name)
|
|
# e.g. replace abc.xyz_123.qkv with abc_xyz_123_qkv
|
|
name = re.sub(r"[^a-zA-Z0-9]", "_", name)
|
|
|
|
if not name or not name[0].isalpha():
|
|
name = "sub" + name
|
|
|
|
return name
|
|
|
|
def register_attr_or_module(
|
|
self,
|
|
target: Union[torch.nn.Module, torch.Tensor, Any],
|
|
*names,
|
|
**options,
|
|
):
|
|
if is_dynamic_nn_module(target, self.root_tx.export):
|
|
# Instead of returning UnspecializedNNModuleVariable, call
|
|
# VariableBuilder so that it is tracked for mutation.
|
|
return VariableBuilder(self.current_tx, **options)(target)
|
|
|
|
options = dict(options)
|
|
assert "source" in options
|
|
source = options["source"]
|
|
assert not isinstance(source, ParamBufferSource)
|
|
|
|
if isinstance(target, torch.Tensor):
|
|
tracer = self.current_tracer
|
|
if not self.is_root_tracer():
|
|
# For higher order ops, we don't want to insert the get_attr in
|
|
# innermost graph. Instead, we want to raise the params/buffers
|
|
# as inputs to the higher-order graph, and register them as
|
|
# get_attrs in the root tracer.
|
|
|
|
# Note that Dynamo will still call lift_tracked_freevar_to_input
|
|
# when these inputs are encountered for the inner graph. The
|
|
# only difference is what happens at the root tracer for
|
|
# nn.Parameters vs free inputs. The free inputs are registered
|
|
# as placeholders in the root graph, whereas the nn.Parameters
|
|
# are registered as get_attr nodes in the root graph.
|
|
tracer = self.root_tracer
|
|
|
|
def wrap_name(module_key):
|
|
assert self.param_name_to_source is not None
|
|
self.param_name_to_source[module_key] = source
|
|
|
|
# Check if the attr has already been registered. This can happen
|
|
# when two different sources point to the same tensor.
|
|
if target in self.root_tx.output.side_effects:
|
|
return self.root_tx.output.side_effects[target]
|
|
|
|
if get_static_address_type(target) == "guarded":
|
|
install_guard(source.make_guard(GuardBuilder.ID_MATCH))
|
|
elif not is_constant_source(source):
|
|
install_guard(source.make_guard(GuardBuilder.TENSOR_MATCH))
|
|
|
|
vt = wrap_fx_proxy(
|
|
self.root_tx,
|
|
tracer.create_proxy("get_attr", module_key, (), {}),
|
|
example_value=target,
|
|
**options,
|
|
)
|
|
|
|
# Track the object so to avoid duplicate registration in case of
|
|
# different sources pointing to the same tensor object.
|
|
vt = self.root_tx.output.side_effects.track_object_existing(target, vt)
|
|
|
|
assert "tensor_dict" not in vt.proxy.node.meta
|
|
vt.proxy.node.meta["tensor_dict"] = _extract_tensor_dict(target)
|
|
|
|
return vt
|
|
|
|
elif isinstance(target, torch.nn.Module):
|
|
assert isinstance(target, torch.nn.Module)
|
|
|
|
if source:
|
|
install_guard(source.make_guard(GuardBuilder.NN_MODULE))
|
|
|
|
def wrap_name(module_key):
|
|
return NNModuleVariable(type(target), module_key, target, **options)
|
|
|
|
else:
|
|
# This is Dynamo created graph module, e.g., graph module coming
|
|
# from higher order ops. NNModuleVariable tracker can't be
|
|
# sourceless, so let's return a unspecializedNNModule variable
|
|
# tracker.
|
|
def wrap_name(module_key):
|
|
return variables.UnspecializedNNModuleVariable(target, **options)
|
|
|
|
elif isinstance(target, (torch.SymInt, torch.SymFloat)):
|
|
# HACKY CODE REGION BEGIN
|
|
# WE ARE PIGGYBACKING ON EXISTING INFRA TO REGISTER ATTRS
|
|
# This ultimately gets written to self.nn_modules, which is unfortunate
|
|
# Attrs that are tenors and symints and such need to be migrated to have their
|
|
# own storage
|
|
# alas, this is like this for now
|
|
|
|
def wrap_name(module_key):
|
|
return SymNodeVariable.create(
|
|
self,
|
|
self.create_proxy("get_attr", module_key, (), {}),
|
|
sym_num=target,
|
|
**options,
|
|
)
|
|
|
|
# HACKY CODE REGION END
|
|
else:
|
|
|
|
def wrap_name(module_key):
|
|
self.output.update_co_names(module_key)
|
|
self.global_scope[module_key] = target
|
|
return VariableBuilder(self, ConstantSource(source_name=module_key))(
|
|
target
|
|
)
|
|
|
|
for k, v in self.nn_modules.items():
|
|
if v is target:
|
|
# it already exists
|
|
return wrap_name(k)
|
|
|
|
name = OutputGraph.module_key_name(*names)
|
|
|
|
base = name
|
|
for i in itertools.count():
|
|
if name not in self.nn_modules:
|
|
self.nn_modules[name] = target
|
|
if isinstance(target, torch.nn.Module):
|
|
|
|
def register_leaf_name(leaf_name):
|
|
assert self.param_name_to_source is not None
|
|
new_source = ParamBufferSource(source, leaf_name)
|
|
new_name = f"{name}.{leaf_name}"
|
|
self.param_name_to_source[new_name] = new_source
|
|
if isinstance(source, LocalSource):
|
|
self.dynamo_flat_name_to_original_fqn[
|
|
OutputGraph.module_key_name(new_source.name())
|
|
] = leaf_name
|
|
|
|
# annoying, but there are cases when we do not have parameters
|
|
# see test_nn_moduledict_contains
|
|
if hasattr(target, "_parameters"):
|
|
for leaf_name, _ in target.named_parameters():
|
|
register_leaf_name(leaf_name)
|
|
if hasattr(target, "_buffers"):
|
|
for leaf_name, _ in target.named_buffers():
|
|
register_leaf_name(leaf_name)
|
|
|
|
return wrap_name(name)
|
|
name = f"{base}_{i}"
|
|
|
|
raise AssertionError("unreachable")
|
|
|
|
def handle_aliases_for_stolen_lists(self, tx):
|
|
# If list inputs are stolen, but still needed after the function call, create aliases to keep them alive
|
|
maybe_gm = self.local_scope.get("self")
|
|
stolen_list_names = get_locals_to_steal(maybe_gm)
|
|
if not stolen_list_names:
|
|
return []
|
|
|
|
alias_insts = []
|
|
needs_alias: Dict[
|
|
str, List[Union[VariableTracker, AttributeMutationExisting]]
|
|
] = {}
|
|
|
|
queue = [
|
|
*tx.stack,
|
|
*tx.symbolic_locals.values(),
|
|
*self.side_effects.store_attr_mutations.keys(),
|
|
]
|
|
|
|
while queue:
|
|
x = queue.pop()
|
|
if isinstance(x, BaseListVariable):
|
|
assert isinstance(x.items, List)
|
|
queue += x.items
|
|
continue
|
|
|
|
if not (
|
|
isinstance(x, (VariableTracker, AttributeMutationExisting))
|
|
and isinstance(x.source, GetItemSource)
|
|
and isinstance(x.source.base, LocalSource)
|
|
and x.source.base.local_name in stolen_list_names
|
|
):
|
|
continue
|
|
|
|
stolen_name = x.source.base.local_name
|
|
if stolen_name not in needs_alias:
|
|
needs_alias[stolen_name] = []
|
|
needs_alias[stolen_name].append(x)
|
|
|
|
visited = {}
|
|
for arg in self.graphargs:
|
|
if not (
|
|
isinstance(arg._example, list)
|
|
and isinstance(arg.source, LocalSource)
|
|
and arg.source.local_name in needs_alias
|
|
):
|
|
continue
|
|
|
|
# arg is a list that will be cleared by the compiled function
|
|
list_name = arg.source.local_name
|
|
assert list_name in self.code_options["co_varnames"]
|
|
for x in needs_alias[list_name]:
|
|
list_idx = x.source.index
|
|
if list_idx not in visited:
|
|
alias_name = self.new_var(
|
|
f"{list_name}_ref"
|
|
) # self.new_var already adds unique id suffix
|
|
|
|
visited[list_idx] = alias_name
|
|
# bytecode of `alias_name = list_name[list_idx]`
|
|
alias_insts.extend(
|
|
[
|
|
create_instruction("LOAD_FAST", argval=list_name),
|
|
create_instruction("LOAD_CONST", argval=list_idx),
|
|
create_instruction("BINARY_SUBSCR"),
|
|
create_instruction("STORE_FAST", argval=alias_name),
|
|
]
|
|
)
|
|
|
|
# operate on alias, handled by suffix codegen
|
|
x.source = LocalSource(visited[list_idx])
|
|
|
|
return alias_insts
|
|
|
|
def compile_subgraph(
|
|
self, tx, partial_convert=False, reason: Optional[GraphCompileReason] = None
|
|
):
|
|
"""
|
|
Generate a subgraph to continue execution on user code.
|
|
Automatically restore live variables.
|
|
"""
|
|
assert reason is not None
|
|
|
|
from .decorators import disable
|
|
|
|
self.partial_convert = partial_convert
|
|
self.compile_subgraph_reason = reason
|
|
self.should_exit = True
|
|
|
|
log.debug("COMPILING GRAPH due to %s", reason)
|
|
|
|
if not all(block.can_restore() for block in tx.block_stack):
|
|
unimplemented("compile_subgraph with block_depth != 0")
|
|
|
|
prefix_insts: List[Instruction] = []
|
|
if sys.version_info >= (3, 11):
|
|
# prefix instructions (Python 3.11+)
|
|
for inst in tx.prefix_insts:
|
|
if inst.opname == "MAKE_CELL":
|
|
prefix_insts.append(
|
|
create_instruction("MAKE_CELL", argval=inst.argval)
|
|
)
|
|
elif inst.opname == "COPY_FREE_VARS":
|
|
prefix_insts.append(
|
|
create_instruction(
|
|
"COPY_FREE_VARS", arg=len(tx.code_options["co_freevars"])
|
|
)
|
|
)
|
|
else:
|
|
prefix_insts.append(copy.copy(inst))
|
|
assert not (
|
|
self.pregraph_bytecode and self.export
|
|
), "export does not support pregraph_bytecode"
|
|
prefix_insts.extend(self.pregraph_bytecode)
|
|
prefix_insts.extend(self.handle_aliases_for_stolen_lists(tx))
|
|
|
|
def append_prefix_insts():
|
|
self.add_output_instructions(prefix_insts)
|
|
prefix_insts.clear()
|
|
|
|
for block in reversed(tx.block_stack):
|
|
block.exit(tx, is_graph_break=reason.graph_break)
|
|
|
|
self.cleanup_graph()
|
|
tx.prune_dead_locals()
|
|
stack_values = list(tx.stack)
|
|
|
|
# realize any unrealized tensor VTs in case they
|
|
# need to be added to self.nn_modules as attributes
|
|
for value in stack_values:
|
|
value.realize()
|
|
|
|
# Use nn.Module "proxies" in the constructed GraphModule so that
|
|
# the resulting GM does not hold additional strong references to the original modules.
|
|
# This prevents a strong ref cycle where Dynamo created code holds on to references
|
|
# to modules that also have Dynamo code cache invalidation checks.
|
|
# When cache invalidation runs, the generated GM will be invalidated, which also deletes
|
|
# the proxies.
|
|
nn_modules_proxies = {
|
|
name: nn_module_proxy(mod) for name, mod in self.nn_modules.items()
|
|
}
|
|
root = FakeRootModule(nn_modules_proxies)
|
|
# Add all the local vars to the "stack" so restore at the end
|
|
restore_vars = []
|
|
val_to_names: Dict[VariableTracker, List[str]] = {}
|
|
if stack_values:
|
|
val_to_names[stack_values[-1]] = []
|
|
# NB: Typically (i.e., for graph compile from RETURN_VALUE),
|
|
# symbolic_locals will be empty at this point, as prune_dead_locals
|
|
# will clear out all of symbolic_locals because RETURN_VALUE is the
|
|
# last instruction and no more locals are used. The fanciness here
|
|
# is only needed for partial graphs.
|
|
for k, v in tx.symbolic_locals.items():
|
|
# Note! this explicitly uses .local_name for matching
|
|
# Failure to do so will cause spurious registrations in val_to_names.
|
|
# This will in turn result in spurious variables showing up in the graph.
|
|
# This was very tricky to debug. For an example, dump the graph at call_user_compiler
|
|
# while running test_subgraphs.py
|
|
if isinstance(v.source, LocalSource) and v.source.local_name == k:
|
|
continue # no need to restore initial state
|
|
# Do not load variable if it is NULL.
|
|
if sys.version_info >= (3, 12):
|
|
# Continuation function will load the NULL for v.
|
|
if type.__instancecheck__(NullVariable, v):
|
|
continue
|
|
else:
|
|
# A variable should never be NULL in < 3.12
|
|
assert not type.__instancecheck__(NullVariable, v)
|
|
if v not in val_to_names:
|
|
val_to_names[v] = []
|
|
val_to_names[v].append(k)
|
|
for v in val_to_names.keys():
|
|
restore_vars.extend(val_to_names[v])
|
|
stack_values.extend([v] * len(val_to_names[v]))
|
|
|
|
# to handle random calls
|
|
if len(self.random_calls) > 0:
|
|
append_prefix_insts()
|
|
random_calls_instructions = []
|
|
self.random_values_var = self.new_var("random_values")
|
|
rand_fn = disable(_get_gen_rand_values_fn(self.random_calls))
|
|
rand_fn_name = self.install_global("__gen_rand_values", rand_fn)
|
|
codegen = PyCodegen(tx, root)
|
|
random_calls_instructions.extend(
|
|
codegen.load_function_name(rand_fn_name, True)
|
|
)
|
|
random_calls_instructions.extend(create_call_function(0, False))
|
|
random_calls_instructions.append(
|
|
codegen.create_store(tx.output.random_values_var),
|
|
)
|
|
self.add_output_instructions(random_calls_instructions)
|
|
|
|
if (
|
|
stack_values
|
|
and all(
|
|
not isinstance(
|
|
v,
|
|
(
|
|
UnspecializedPythonVariable,
|
|
NumpyNdarrayVariable,
|
|
TensorWithTFOverrideVariable,
|
|
),
|
|
)
|
|
and not (isinstance(v, SymNodeVariable) and v.python_type() is float)
|
|
for v in stack_values
|
|
)
|
|
and all(isinstance(x, TensorVariable) for x in stack_values)
|
|
and len(set(stack_values)) == len(stack_values)
|
|
and self.side_effects.is_empty()
|
|
and not len(tx.debug_locals) != 0
|
|
and not self.backward_state
|
|
):
|
|
append_prefix_insts()
|
|
# optimization to generate better code in a common case
|
|
self.add_output_instructions(
|
|
self.compile_and_call_fx_graph(tx, list(reversed(stack_values)), root)
|
|
+ [create_instruction("UNPACK_SEQUENCE", arg=len(stack_values))]
|
|
)
|
|
# restore all the live local vars
|
|
self.add_output_instructions(
|
|
[PyCodegen(tx).create_store(var) for var in reversed(restore_vars)]
|
|
)
|
|
else:
|
|
graph_output_var = self.new_var("graph_out")
|
|
pass1 = PyCodegen(tx, root, graph_output_var)
|
|
self.codegen_suffix(tx, stack_values, pass1)
|
|
|
|
# one more time now that we have established tempvars
|
|
pass2 = PyCodegen(
|
|
tx,
|
|
root,
|
|
graph_output_var,
|
|
tempvars={val: None for val, count in pass1.uses.items() if count > 1},
|
|
)
|
|
self.codegen_suffix(tx, stack_values, pass2)
|
|
|
|
stored_graph_output_var = False
|
|
output = []
|
|
if count_calls(self.graph) != 0 or len(pass2.graph_outputs) != 0:
|
|
output.extend(
|
|
self.compile_and_call_fx_graph(tx, pass2.graph_output_vars(), root)
|
|
)
|
|
|
|
if len(pass2.graph_outputs) != 0:
|
|
output.append(pass2.create_store(graph_output_var))
|
|
stored_graph_output_var = True
|
|
else:
|
|
output.append(create_instruction("POP_TOP"))
|
|
else:
|
|
# NB: Important to run compiler collective even when there is
|
|
# a graph break
|
|
self.run_compiler_collective(tx)
|
|
append_prefix_insts()
|
|
self.add_output_instructions(output + pass2.get_instructions())
|
|
|
|
# restore all the live local vars
|
|
self.add_output_instructions(
|
|
[PyCodegen(tx).create_store(var) for var in reversed(restore_vars)]
|
|
)
|
|
|
|
if stored_graph_output_var:
|
|
self.add_output_instructions(
|
|
[PyCodegen(tx).create_delete(graph_output_var)]
|
|
)
|
|
|
|
def codegen_suffix(self, tx, stack_values, cg):
|
|
if self.backward_state:
|
|
assert not self.export
|
|
for name, val in self.backward_state.items():
|
|
cg(val)
|
|
cg.append_output(cg.create_load(self.backward_state_var))
|
|
cg.store_attr(name)
|
|
self.side_effects.codegen_hooks(cg)
|
|
self.side_effects.codegen_save_tempvars(cg)
|
|
|
|
# Return variables used for logging at the end
|
|
for debug_var, args in tx.debug_locals:
|
|
cg.add_push_null(lambda: cg(debug_var))
|
|
for arg in args:
|
|
cg(arg)
|
|
cg.extend_output(create_call_function(len(args), False))
|
|
cg.extend_output([create_instruction("POP_TOP")])
|
|
|
|
cg.restore_stack(stack_values, value_from_source=not tx.export)
|
|
self.side_effects.codegen_update_mutated(cg)
|
|
|
|
def cleanup_graph(self):
|
|
"""
|
|
Remove "creation_timestamp" from node meta
|
|
|
|
Remove this pattern from the graph:
|
|
torch._C._set_grad_enabled(False)
|
|
torch._C._set_grad_enabled(True)
|
|
"""
|
|
assert self.should_exit
|
|
nodes = list(self.graph.nodes)
|
|
for node in nodes:
|
|
node.meta.pop("creation_timestamp", None)
|
|
|
|
grad_enabled = torch.is_grad_enabled()
|
|
for node1, node2 in zip(nodes, nodes[1:]):
|
|
if (
|
|
node1.target is torch._C._set_grad_enabled
|
|
and tuple(node1.args) == (not grad_enabled,)
|
|
and not node1._erased
|
|
):
|
|
grad_enabled = node1.args[0]
|
|
if (
|
|
node2.target is torch._C._set_grad_enabled
|
|
and tuple(node2.args) == (not grad_enabled,)
|
|
and not node2._erased
|
|
):
|
|
grad_enabled = node2.args[0]
|
|
self.graph.erase_node(node1)
|
|
self.graph.erase_node(node2)
|
|
|
|
def get_graph_sizes_structured(self):
|
|
ret = {}
|
|
for node in self.graph.nodes:
|
|
example_value = node.meta.get("example_value", None)
|
|
if isinstance(example_value, torch._subclasses.FakeTensor):
|
|
size = example_value.size()
|
|
ret[node.name] = [s if isinstance(s, int) else repr(s) for s in size]
|
|
return ret
|
|
|
|
def get_graph_sizes(self, name: str):
|
|
graph_sizes_str = "TRACED GRAPH TENSOR SIZES\n"
|
|
graph_sizes_str += f"===== {name} =====\n"
|
|
for node in self.graph.nodes:
|
|
example_value = node.meta.get("example_value", None)
|
|
if isinstance(example_value, torch._subclasses.FakeTensor):
|
|
size = example_value.size()
|
|
graph_sizes_str += f"{node.name}: {tuple(size)}\n"
|
|
concrete_size = []
|
|
has_symint = False
|
|
for sz in size:
|
|
if isinstance(sz, int):
|
|
concrete_size.append(sz)
|
|
elif isinstance(sz, torch.SymInt):
|
|
has_symint = True
|
|
concrete_size.append(sz.node.hint)
|
|
else:
|
|
break
|
|
else:
|
|
if has_symint:
|
|
graph_sizes_str += (
|
|
f"{node.name} (concrete): {tuple(concrete_size)}\n"
|
|
)
|
|
return graph_sizes_str
|
|
|
|
@contextlib.contextmanager
|
|
def restore_global_state(self):
|
|
"""
|
|
Momentarily restores the global state to what it was prior to tracing the current output
|
|
"""
|
|
prior_global_state = self.tracing_context.global_context.copy_graphstate()
|
|
current_global_state: Dict[str, Tuple[Any, bool]] = {}
|
|
self.save_global_state(out=current_global_state)
|
|
try:
|
|
# Set to state prior to tracing the graph
|
|
self.tracing_context.global_context.restore_graphstate(prior_global_state)
|
|
yield
|
|
finally:
|
|
# Reset to state at the current time (e.g. before calling the user compiler)
|
|
self.tracing_context.global_context.restore_graphstate(
|
|
GlobalContextCheckpointState(current_global_state)
|
|
)
|
|
|
|
def run_compiler_collective(self, tx):
|
|
if (ds := tx.distributed_state) is not None and ds.all_states is None:
|
|
compile_pg = ds.compile_pg
|
|
log.info("compiler_collective %s", ds.local_state)
|
|
torch._logging.trace_structured(
|
|
"artifact",
|
|
metadata_fn=lambda: {
|
|
"name": "compiler_collective",
|
|
"encoding": "json",
|
|
},
|
|
payload_fn=lambda: json.dumps(
|
|
dataclasses.asdict(ds.local_state),
|
|
),
|
|
)
|
|
with torch.cuda.device(compile_pg.rank() % torch.cuda.device_count()):
|
|
all_states = [None] * compile_pg.size()
|
|
dist.all_gather_object(all_states, ds.local_state, group=compile_pg)
|
|
ds.all_states = all_states
|
|
# Clear speculation log, because are tracing may diverge due to
|
|
# this information from the compiler collective
|
|
tx.speculation_log.clear()
|
|
raise exc.CompileCollectiveRestartAnalysis
|
|
|
|
def compile_and_call_fx_graph(self, tx, rv, root):
|
|
"""
|
|
Generate code from self.graph and return the Instruction()s to
|
|
call that generated code.
|
|
"""
|
|
with torch._guards.TracingContext.clear_frame():
|
|
from .decorators import disable
|
|
|
|
assert self.should_exit
|
|
|
|
self.run_compiler_collective(tx)
|
|
|
|
name = unique_id("__compiled_fn")
|
|
|
|
assert isinstance(rv, list)
|
|
assert isinstance(root, FakeRootModule)
|
|
output_node = self.create_node(
|
|
"output",
|
|
"output",
|
|
(self.current_tracer.create_arg(tuple(x.as_proxy() for x in rv)),),
|
|
{},
|
|
)
|
|
tx.output.current_tracer._maybe_preserve_original_meta(tx, output_node)
|
|
if not config.do_not_emit_runtime_asserts:
|
|
insert_deferred_runtime_asserts(
|
|
fx.GraphModule(root, self.graph),
|
|
self.shape_env,
|
|
name,
|
|
)
|
|
# NB: deferred runtime asserts can keep graphargs live, so make sure
|
|
# those are inserted before pruning
|
|
self.remove_unused_graphargs()
|
|
ncalls = count_calls(self.graph)
|
|
counters["stats"]["calls_captured"] += ncalls
|
|
|
|
# free a bit of memory
|
|
self.real_value_cache.clear()
|
|
|
|
gm = _make_graph_module(root, self.graph)
|
|
for register_finalizer in self.register_finalizer_fns:
|
|
register_finalizer(gm)
|
|
|
|
gm.compile_subgraph_reason = self.compile_subgraph_reason
|
|
gm.meta[
|
|
"dynamo_flat_name_to_original_fqn"
|
|
] = self.dynamo_flat_name_to_original_fqn.copy()
|
|
|
|
graph_code_log.debug(
|
|
"%s",
|
|
lazy_format_graph_code(
|
|
name, gm, include_stride=True, include_device=True, colored=True
|
|
),
|
|
)
|
|
torch._logging.trace_structured(
|
|
"dynamo_output_graph",
|
|
lambda: {"sizes": self.get_graph_sizes_structured()},
|
|
payload_fn=lambda: gm.print_readable(
|
|
print_output=False, include_stride=True, include_device=True
|
|
),
|
|
)
|
|
self.call_cleanup_hooks()
|
|
old_fake_mode = self.tracing_context.fake_mode
|
|
if not self.export:
|
|
import torch._functorch.config as _config
|
|
|
|
with _config.patch(fake_tensor_allow_unsafe_data_ptr_access=False):
|
|
# TODO(voz): The way export uses gm, and fake tensors, is not supported with us resetting
|
|
backend_fake_mode = torch._subclasses.FakeTensorMode(
|
|
shape_env=old_fake_mode.shape_env,
|
|
)
|
|
# TODO(voz): Ostensibily, this should be scoped and
|
|
# restore back to old_fake_mode, but doing so currently violates
|
|
# a lot of fake_tensor ownership assumptions and runs afoul of detect_fake_mode
|
|
self.tracing_context.fake_mode = backend_fake_mode
|
|
|
|
with self.restore_global_state():
|
|
compiled_fn = self.call_user_compiler(gm)
|
|
|
|
from torch.fx._lazy_graph_module import _LazyGraphModule
|
|
|
|
if isinstance(compiled_fn, _LazyGraphModule) or (
|
|
isinstance(getattr(compiled_fn, "__self__", None), _LazyGraphModule)
|
|
and compiled_fn.__name__ == "_lazy_forward" # type: ignore[attr-defined]
|
|
):
|
|
# Since dynamo will run the forward method for the GraphModule shortly
|
|
# anyways, it does not hurt to do the real recompilation here if
|
|
# this is a _LazyGraphModule. This makes it easier for dynamo to
|
|
# optimize a _LazyGraphModule.
|
|
|
|
lazy_gm = (
|
|
compiled_fn
|
|
if isinstance(compiled_fn, _LazyGraphModule)
|
|
else compiled_fn.__self__ # type: ignore[attr-defined]
|
|
)
|
|
|
|
_LazyGraphModule.force_recompile(lazy_gm)
|
|
|
|
if not isinstance(compiled_fn, _LazyGraphModule):
|
|
# replace compiled_fn with the real forward method
|
|
compiled_fn = lazy_gm.forward
|
|
|
|
compiled_fn = disable(compiled_fn)
|
|
|
|
counters["stats"]["unique_graphs"] += 1
|
|
# This is safe because we pre-process name to be unique
|
|
self.install_global_unsafe(name, compiled_fn)
|
|
|
|
cg = PyCodegen(tx)
|
|
cg.make_call_generated_code(name)
|
|
return cg.get_instructions()
|
|
|
|
@property
|
|
def placeholders(self) -> List[fx.Node]:
|
|
return self.graph.find_nodes(op="placeholder")
|
|
|
|
@property
|
|
def graphargs(self) -> List[GraphArg]:
|
|
return [node.meta["grapharg"] for node in self.placeholders]
|
|
|
|
def call_user_compiler(self, gm: fx.GraphModule) -> CompiledFn:
|
|
with dynamo_timed(
|
|
"OutputGraph.call_user_compiler", phase_name="backend_compile"
|
|
):
|
|
return self._call_user_compiler(gm)
|
|
|
|
def _call_user_compiler(self, gm: fx.GraphModule) -> CompiledFn:
|
|
assert self.compiler_fn is not None
|
|
tot = 0
|
|
placeholders = []
|
|
for node in gm.graph.nodes:
|
|
if node.op in ("call_function", "call_method", "call_module"):
|
|
tot += 1
|
|
if node.op == "placeholder":
|
|
placeholders.append(node)
|
|
increment_op_count(tot)
|
|
for pl in placeholders:
|
|
arg = pl.meta["grapharg"]
|
|
# TODO: Why isn't this stored in meta :think:
|
|
pl._dynamo_source = arg.source
|
|
|
|
gm._param_name_to_source = self.param_name_to_source # type: ignore[assignment]
|
|
gm._source_to_user_stacks = self.source_to_user_stacks # type: ignore[assignment]
|
|
|
|
try:
|
|
name = (
|
|
self.compiler_fn.__name__
|
|
if hasattr(self.compiler_fn, "__name__")
|
|
else ""
|
|
)
|
|
_step_logger()(logging.INFO, f"calling compiler function {name}")
|
|
compiler_fn = self.compiler_fn
|
|
if config.verify_correctness:
|
|
compiler_fn = WrapperBackend(compiler_fn)
|
|
compiled_fn = compiler_fn(gm, self.example_inputs())
|
|
_step_logger()(logging.INFO, f"done compiler function {name}")
|
|
assert callable(compiled_fn), "compiler_fn did not return callable"
|
|
except exceptions_allowed_to_be_fallback as e:
|
|
if self.has_user_defined_allowed_in_graph:
|
|
raise BackendCompilerFailed(self.compiler_fn, e).with_traceback(
|
|
e.__traceback__
|
|
) from None
|
|
msg = (
|
|
"Backend compiler failed with a fake tensor exception at \n"
|
|
f"{self.root_tx.format_frame_summary()}"
|
|
"Adding a graph break."
|
|
)
|
|
unimplemented_with_warning(e, self.root_tx.f_code, msg)
|
|
except SkipFrame as e:
|
|
# The backend compiler has requested that we skip the frame, instead of
|
|
# aborting execution.
|
|
raise e
|
|
except Exception as e:
|
|
raise BackendCompilerFailed(self.compiler_fn, e).with_traceback(
|
|
e.__traceback__
|
|
) from None
|
|
|
|
signpost_event(
|
|
"dynamo",
|
|
"OutputGraph.call_user_compiler",
|
|
{
|
|
**self.co_fields,
|
|
"op_count": tot,
|
|
"node_count": len(gm.graph.nodes),
|
|
"input_count": len(placeholders),
|
|
},
|
|
)
|
|
|
|
return compiled_fn
|
|
|
|
def example_inputs(self) -> List[torch.Tensor]:
|
|
result = []
|
|
for arg in self.graphargs:
|
|
result.append(arg.example)
|
|
return result
|
|
|
|
def remove_unused_graphargs(self) -> None:
|
|
# NB: It's always OK to drop GraphArg for symbols that ended up being
|
|
# specialized. You don't even have to make a guard for it, because
|
|
# ShapeEnv produce_guards operates on tracked_fakes, which never gets
|
|
# pruned. That being said, you'll get marginally better generated
|
|
# guard code if you promote the guard into a Dynamo guard (since that
|
|
# allows for the guard to be done using C++ guards.) If we get
|
|
# ShapeEnv guards to go into C++ guards, this will stop being a thing
|
|
# though!
|
|
|
|
assert self.should_exit
|
|
|
|
# Miniature DCE pass, but only for obviously trivial operations
|
|
def is_static_true(b_node: fx.node.Argument):
|
|
if b_node is True:
|
|
return True
|
|
if not isinstance(b_node, fx.Node):
|
|
return False
|
|
b = b_node.meta.get("example_value")
|
|
if b is None:
|
|
return False
|
|
if b is True:
|
|
return True
|
|
if (
|
|
isinstance(b, torch.SymBool)
|
|
and (r := b.node.maybe_as_bool()) is not None
|
|
):
|
|
return r
|
|
# TODO: We can also technically remove all cases when the input
|
|
# doesn't have unbacked inputs, since it's all in the ShapeEnv
|
|
return False
|
|
|
|
def is_symnode_arg(a: fx.node.Argument):
|
|
from torch.fx.experimental.sym_node import SymTypes
|
|
|
|
if isinstance(a, (int, float, bool)):
|
|
return True
|
|
if isinstance(a, fx.Node):
|
|
return isinstance(a.meta.get("example_value"), SymTypes)
|
|
return False
|
|
|
|
# NB: We assume that you cannot do mutations on int/float/bool,
|
|
# because they are immutable types, and therefore is always safe to
|
|
# DCE.
|
|
def is_symnode_compute_node(node):
|
|
from torch.fx.experimental.sym_node import SymTypes
|
|
|
|
if node.op != "call_function":
|
|
return False
|
|
# TODO: I don't think it's possible to have a bare int/float here?
|
|
if not isinstance(node.meta.get("example_value"), SymTypes):
|
|
return False
|
|
# TODO: This will bail here if you ever end up with a more complicated
|
|
# computation function, like sum(list_of_ints), even though it
|
|
# should be DCE'able
|
|
if not all(is_symnode_arg(a) for a in node.args):
|
|
return False
|
|
if not all(is_symnode_arg(a) for a in node.kwargs.values()):
|
|
return False
|
|
return True
|
|
|
|
from torch.fx.experimental.symbolic_shapes import is_accessor_node
|
|
|
|
for node in reversed(list(self.graph.nodes)):
|
|
if len(list(node.users)) == 0:
|
|
if (
|
|
node.op == "get_attr"
|
|
or (node.op == "call_function" and node.target is operator.getitem)
|
|
or (
|
|
node.op == "call_function"
|
|
and node.target is torch._check
|
|
and is_static_true(node.args[0])
|
|
)
|
|
or is_symnode_compute_node(node)
|
|
or is_accessor_node(node)
|
|
):
|
|
self.remove_node(node)
|
|
|
|
def placeholder_binds_symbol(node):
|
|
arg = node.meta["grapharg"]
|
|
example = arg.example
|
|
if isinstance(example, torch.SymInt) and isinstance(
|
|
example.node.expr, sympy.Symbol
|
|
):
|
|
return example.node.expr
|
|
return None
|
|
|
|
def remove_unused(node):
|
|
log.debug("REMOVE UNUSED GRAPHARG %s", node.meta["grapharg"].source.name())
|
|
# I'm not really sure why you need to delete these from the
|
|
# node since the node is going to get removed
|
|
del node.meta["grapharg"]
|
|
self.remove_node(node)
|
|
self.real_value_cache.pop(node, None)
|
|
|
|
used_symbols: Set[sympy.Symbol] = set()
|
|
|
|
def update_used_symbols(used_symbols, fake: Union[torch.SymInt, torch.Tensor]):
|
|
used_symbols |= free_symbols(fake)
|
|
|
|
recheck_placeholders = []
|
|
for node in self.placeholders:
|
|
binds_symbol = placeholder_binds_symbol(node) is not None
|
|
# Don't delete symbol bindings yet
|
|
if binds_symbol:
|
|
if not node.users:
|
|
recheck_placeholders.append(node)
|
|
else:
|
|
if not node.users and not isinstance(
|
|
node.meta["grapharg"], BackwardStateGraphArg
|
|
):
|
|
remove_unused(node)
|
|
else:
|
|
# Register the free symbols as uses
|
|
arg = node.meta["grapharg"]
|
|
if isinstance(arg, BackwardStateGraphArg):
|
|
continue
|
|
if isinstance(node.meta["grapharg"].example, torch.ScriptObject):
|
|
real_script_obj = node.meta["grapharg"].example
|
|
fake_script_obj = node.meta["grapharg"].example_strong_ref
|
|
if not torch._library.fake_class_registry.tracing_with_real(
|
|
real_script_obj
|
|
):
|
|
flat_dict = dict(real_script_obj.__obj_flatten__()) # type: ignore[attr-defined]
|
|
for attr in flat_dict.keys():
|
|
fake_attr_val = getattr(
|
|
fake_script_obj.wrapped_obj, attr
|
|
)
|
|
pytree.tree_map_only(
|
|
(torch.SymInt, torch.Tensor),
|
|
lambda t: update_used_symbols(used_symbols, t),
|
|
fake_attr_val,
|
|
)
|
|
continue
|
|
fake = (
|
|
arg.fake_tensor if arg.fake_tensor is not None else arg.example
|
|
)
|
|
update_used_symbols(used_symbols, fake)
|
|
|
|
# After removing unused graphargs, prune unused binds_symbol
|
|
for node in recheck_placeholders:
|
|
symbol = placeholder_binds_symbol(node)
|
|
if symbol is not None:
|
|
if symbol not in used_symbols:
|
|
remove_unused(node)
|
|
else:
|
|
# Make sure we delete later occurrences of the same symbol
|
|
used_symbols.remove(symbol)
|
|
|
|
def add_output_instructions(self, prefix: List[Instruction]) -> None:
|
|
"""
|
|
We call this on the creation of a new compiled subgraph that is inserted
|
|
before user code.
|
|
"""
|
|
self.output_instructions.extend(prefix)
|
|
self.should_exit = True
|
|
|
|
def install_global_unsafe(self, name, value) -> None:
|
|
"""
|
|
WARNING: prefer the safer `install_global_by_id/install_global`.
|
|
torch.compile instances should be independent of each other;
|
|
one footgun is to have one instance depend on the existence of
|
|
a global installed by another instance. This can happen if we mangle
|
|
a global the same way across both instances.
|
|
"""
|
|
assert name not in self.installed_globals
|
|
self.installed_globals.add(name)
|
|
self.cleanups.append(CleanupHook.create(self.global_scope, name, value))
|
|
|
|
def install_global_by_id(self, prefix, value) -> str:
|
|
"""
|
|
Installs a global if it hasn't been installed already.
|
|
This is determined by (prefix, id(value)) pair.
|
|
|
|
Returns the name of the newly installed global.
|
|
"""
|
|
# NB: need self.compile_id to distinguish this global
|
|
# from another global created in a different torch.compile instance
|
|
name = f"{prefix}_{id(value)}_c{self.compile_id}"
|
|
if name in self.installed_globals:
|
|
return name
|
|
self.install_global_unsafe(name, value)
|
|
return name
|
|
|
|
def install_global(self, prefix, value) -> str:
|
|
"""
|
|
Installs a global, generating a unique name for it.
|
|
|
|
Returns the name of the newly installed global.
|
|
"""
|
|
# NB: unique_id is unique, even across torch.compile instances
|
|
name = unique_id(prefix)
|
|
self.install_global_unsafe(name, value)
|
|
return name
|
|
|
|
def cleanup(self) -> None:
|
|
# There is a reference cycle between tracer and OutputGraph, causing
|
|
# some of the tensor objects to be held alive for longer than necessary.
|
|
self.root_tx = None
|
|
self.nn_modules.clear()
|
|
self.param_name_to_source = None
|
|
|
|
for node in self.graph.nodes:
|
|
if "grapharg" in node.meta:
|
|
del node.meta["grapharg"]
|
|
self.real_value_cache.clear()
|
|
self.input_name_to_proxy.clear()
|
|
self.side_effects.clear()
|
|
self.variable_tracker_cache.clear()
|
|
self.register_finalizer_fns.clear()
|
|
self.dynamo_flat_name_to_original_fqn.clear()
|
|
self.tracing_context.clear()
|
|
|
|
def set_torch_function_state(self, enabled: bool) -> None:
|
|
self.torch_function_enabled = enabled
|
|
|
|
def add_graph_finalizer(
|
|
self, register_finalizer: Callable[[fx.GraphModule], None]
|
|
) -> None:
|
|
self.register_finalizer_fns.append(register_finalizer)
|
|
|
|
def example_value_from_input_node(self, node: torch.fx.Node):
|
|
"""Extract the non-fake example tensor"""
|
|
if node.op == "placeholder":
|
|
return node.meta["grapharg"].example
|
|
assert node.op == "get_attr"
|
|
return self.nn_modules[node.target] # type: ignore[index]
|
|
|
|
|
|
err_epilogue = (
|
|
"With the current config, we will graph break "
|
|
"(and fall back to eager-mode PyTorch) on all ops "
|
|
"that have do not have the 'pt2_compliant_tag'. "
|
|
"Please see the following doc for how to mark this op as PT2 compliant "
|
|
"https://pytorch.org/tutorials/advanced/custom_ops_landing_page.html"
|
|
)
|
|
|
|
|
|
def check_pt2_compliant_op(output_graph, kind, target, args, kwargs):
|
|
if kind != "call_function":
|
|
return
|
|
|
|
def encountered_compliant_op(target):
|
|
if target.namespace in {"prim", "prims", "aten"}:
|
|
return
|
|
output_graph.compliant_custom_ops.add(target)
|
|
|
|
def encountered_non_compliant_op(target, msg):
|
|
output_graph.non_compliant_ops.add(target)
|
|
if config.only_allow_pt2_compliant_ops:
|
|
unimplemented(msg + " " + err_epilogue)
|
|
|
|
if isinstance(target, torch._ops.OpOverload):
|
|
if torch.Tag.pt2_compliant_tag in target.tags:
|
|
encountered_compliant_op(target)
|
|
return
|
|
encountered_non_compliant_op(
|
|
target,
|
|
f"Encountered the torch.ops.OpOverload {target} "
|
|
f"that is not PT2 compliant.",
|
|
)
|
|
return
|
|
|
|
if isinstance(target, torch._ops.OpOverloadPacket):
|
|
overloads = tuple(target.overloads())
|
|
# Optimization: Overload resolution is expensive.
|
|
# If there's only one overload, we know what it will resolve to.
|
|
if len(overloads) == 1:
|
|
op = getattr(target, overloads[0])
|
|
if torch.Tag.pt2_compliant_tag in op.tags:
|
|
encountered_compliant_op(op)
|
|
return
|
|
encountered_non_compliant_op(
|
|
op,
|
|
f"Encountered the non-overloaded "
|
|
f"torch.ops.OpOverloadPacket {target} "
|
|
f"that is not PT2 compliant. ",
|
|
)
|
|
return
|
|
|
|
args, kwargs = torch._dynamo.utils.get_fake_values_from_nodes(
|
|
output_graph.current_tx, (args, kwargs), False
|
|
)
|
|
try:
|
|
overload = torch._C._jit_resolve_packet(
|
|
target._qualified_op_name, *args, **kwargs
|
|
)
|
|
except RuntimeError as e:
|
|
unimplemented(str(e))
|
|
|
|
op = getattr(target, overload)
|
|
if torch.Tag.pt2_compliant_tag in op.tags:
|
|
encountered_compliant_op(op)
|
|
else:
|
|
encountered_non_compliant_op(
|
|
op,
|
|
f"Encountered the torch.ops.OpOverloadPacket {target} "
|
|
f"which resolves to the overload ({overload}) that is "
|
|
f"not PT2 compliant.",
|
|
)
|
|
|
|
|
|
_compile_id_counter = itertools.count()
|
|
|
|
|
|
class SubgraphTracer(fx.Tracer):
|
|
"""
|
|
Holds an FX graph that is being traced. OutputGraph owns a SubgraphTracer
|
|
and the separation of responsibilities is that SubgraphTracer is
|
|
responsible for building the graph while OutputGraph is responsible for
|
|
compiling and executing the graph.
|
|
"""
|
|
|
|
def __init__(
|
|
self, output_graph, parent=None, export_root=False, source_target=None
|
|
):
|
|
super().__init__()
|
|
self.output_graph = weakref.proxy(output_graph)
|
|
self.graph = torch.fx.Graph()
|
|
|
|
# The export is only ever set for the ROOT tracer. It controls
|
|
# whether or not certain inputs are allowed to be added or not.
|
|
# Look at call sites of create_graph_input to see how it is used.
|
|
if export_root:
|
|
assert parent is None
|
|
self.export_root = export_root
|
|
# Map from graph input name to its placeholder proxy object, where the
|
|
# map's keys give all current placeholder node names and can be used to
|
|
# create unique node names
|
|
self.input_name_to_proxy: Dict[str, fx.Proxy] = {}
|
|
# Node => computed real value (see utils.get_real_value)
|
|
self.real_value_cache: Dict[fx.Node, torch.Tensor] = {}
|
|
|
|
# SubgraphTracers can be nested. See NOTE [HigherOrderOperator tracing design]
|
|
self.parent = parent
|
|
# A dict mapping previously free variables (Proxy objects)
|
|
# to new Proxy objects that wrap inputs to this subgraph.
|
|
#
|
|
# This dict serves two purposes:
|
|
# - Proxies are associated with VariableTrackers. If we see
|
|
# the same VariableTracker twice (and it is a free variable),
|
|
# then we want to use the same Proxy in the current subgraph to
|
|
# record the tracing.
|
|
# - If we are tracing a HigherOrderOperator's body_fn, then we
|
|
# need to keep track of what free variables were lifted so we can
|
|
# rewrite the HigherOrderOperator call using the traced body_fn.
|
|
# Dicts maintain the order of args for the HigherOrderOperator call.
|
|
self.lifted_freevars = {}
|
|
self.prev_inst = None
|
|
# True if this tracer is currently tracing into torch.utils.checkpoint
|
|
# as part of speculate_subgraph.
|
|
self.under_activation_checkpoint = False
|
|
# True if we want to allow side-effects (doesn't throw error on their existence)
|
|
# during this tracer's tracing of torch.utils.checkpoint (via speculate_subgraph).
|
|
# Only safe if we know for sure that *NOT* replaying these side-effects during
|
|
# backward recomputation of the checkpoint region doesn't affect its correctness.
|
|
self.allow_side_effects_under_checkpoint = False
|
|
|
|
self._cur_code = None
|
|
self._orig_gm_meta = None
|
|
self._orig_gm_lineno_map = None
|
|
self._orig_gm_firstlineno = None
|
|
# Each SubgraphTracer is associated with a source target, which indicates
|
|
# which operator this subgraph is attached to. We compute a source_fn_stack
|
|
# based on the source target. For the root tracer, it's set to [].
|
|
# This is useful for debugging and transforming the exported graph.
|
|
if self.parent is None:
|
|
self.source_fn_stack = []
|
|
else:
|
|
self.source_fn_stack = self.parent.source_fn_stack + [
|
|
(self.graph._target_to_str(source_target), source_target)
|
|
]
|
|
|
|
# preserve original meta if it is available
|
|
def _maybe_preserve_original_meta(self, tx, node):
|
|
if (
|
|
self._orig_gm_meta
|
|
and self._orig_gm_lineno_map
|
|
and self._orig_gm_firstlineno
|
|
):
|
|
lineno = tx.current_instruction.starts_line
|
|
node_idx = None
|
|
if lineno is not None:
|
|
node_idx = self._orig_gm_lineno_map.get(
|
|
lineno - self._orig_gm_firstlineno, None
|
|
)
|
|
if node_idx is not None:
|
|
meta = self._orig_gm_meta[node_idx]
|
|
for field in fx.proxy._COPY_META_FIELDS:
|
|
if field in meta:
|
|
node.meta[field] = meta[field]
|
|
if "stack_trace" in meta:
|
|
node.meta["stack_trace"] = meta["stack_trace"]
|
|
|
|
def create_proxy(
|
|
self,
|
|
kind,
|
|
target,
|
|
args,
|
|
kwargs,
|
|
name=None,
|
|
type_expr=None,
|
|
proxy_factory_fn=None,
|
|
):
|
|
# NOTE: [Nested SubgraphTracer and free_variable handling]
|
|
# --------------------------------------------------------
|
|
# Read NOTE [HigherOrderOperator tracing design] first.
|
|
#
|
|
# Let's say we're in the middle of introspecting the body of a possibly
|
|
# nested HigherOrderOperator, and we see a free variable.
|
|
#
|
|
# There are two cases:
|
|
# 1. We see a free variable that is already tracked by Dynamo.
|
|
# 2. We see a free variable that has not been tracked by Dynamo
|
|
#
|
|
# In case 1, we call `maybe_lift_tracked_freevar_to_input` (below)
|
|
# which will lift the freevar to be an input of this subgraph
|
|
# and also recursively lift it to be an input on the parent(s).
|
|
#
|
|
# In case 2, before the call to `create_proxy`, the InstructionTranslator
|
|
# will see the freevar when it gets loaded by Python bytecode.
|
|
# E.g. for Python 3.11 the bytecodes that may do this are LOAD_DEREF or
|
|
# LOAD_GLOBAL.
|
|
# There, the InstructionTranslator asks Dynamo to begin tracking the
|
|
# freevar by building a new Variable.
|
|
# Building a new Variable automatically lifts the freevar to be an
|
|
# input of the root SubgraphTracer.
|
|
#
|
|
# The implications for the code below are:
|
|
# - We will always be in Case 1 when we get to this code.
|
|
# - Any "free variable" we encounter here is guaranteed to already be
|
|
# bound, that is, it is either a graph input of the root graph, or
|
|
# some local variable of the root graph or a subgraph.
|
|
# - The additional work we need to do here is *only* that we need to
|
|
# lift this free variable into inputs (recursively) of each nested
|
|
# higher-order-op subgraph until we hit the subgraph where the free
|
|
# variable is bound
|
|
if self.parent is not None:
|
|
flat_args, tree_spec = pytree.tree_flatten((args, kwargs))
|
|
new_flat_args = []
|
|
for arg in flat_args:
|
|
maybe_new_arg = self.maybe_lift_tracked_freevar_to_input(arg)
|
|
new_flat_args.append(maybe_new_arg)
|
|
|
|
args, kwargs = pytree.tree_unflatten(new_flat_args, tree_spec)
|
|
|
|
rv = super().create_proxy(
|
|
kind, target, args, kwargs, name, type_expr, proxy_factory_fn
|
|
)
|
|
|
|
# append stack trace to fx node
|
|
tx = self.output_graph.current_tx
|
|
|
|
# log detailed location of line of code in 3.11
|
|
if sys.version_info >= (3, 11) and kind in (
|
|
"call_function",
|
|
"call_method",
|
|
"call_module",
|
|
):
|
|
cur_inst = tx.current_instruction
|
|
if (
|
|
cur_inst is not self.prev_inst
|
|
and cur_inst.positions is not None
|
|
and cur_inst.positions.lineno is not None
|
|
):
|
|
tx_code = tx.f_code
|
|
header = tx.get_line_of_code_header(lineno=cur_inst.positions.lineno)
|
|
|
|
def get_trace_call_log_str():
|
|
line = get_instruction_source_311(tx_code, cur_inst).rstrip()
|
|
return f"TRACE FX call {rv.node.name} from {header}\n{line}"
|
|
|
|
trace_call_log.debug("%s", LazyString(get_trace_call_log_str))
|
|
self.prev_inst = cur_inst
|
|
|
|
# update reference to original meta if we're tracing a new code object
|
|
is_retracing = False
|
|
if tx.f_code is not self._cur_code:
|
|
orig_graphmodule_maybe = code_context.get_context(tx.f_code).get(
|
|
"orig_graphmodule", lambda: None
|
|
)()
|
|
if isinstance(orig_graphmodule_maybe, torch.fx.GraphModule):
|
|
is_retracing = True
|
|
self._orig_gm_meta = [
|
|
nd.meta for nd in orig_graphmodule_maybe.graph.nodes
|
|
]
|
|
self._orig_gm_lineno_map = orig_graphmodule_maybe._lineno_map
|
|
self._orig_gm_firstlineno = (
|
|
orig_graphmodule_maybe.forward.__code__.co_firstlineno
|
|
)
|
|
else:
|
|
self._orig_gm_meta = None
|
|
self._orig_gm_lineno_map = None
|
|
self._orig_gm_firstlineno = None
|
|
nn_module_stack = tx.nn_module_stack
|
|
if nn_module_stack:
|
|
rv.node.meta["nn_module_stack"] = nn_module_stack.copy()
|
|
|
|
if kind in {"call_function", "call_method"}:
|
|
rv.node.meta["source_fn_stack"] = self.source_fn_stack + [
|
|
(rv.node.name, target)
|
|
]
|
|
elif kind == "call_module":
|
|
if self.parent is not None:
|
|
unimplemented("Invoking an nn.Module inside HigherOrderOperator")
|
|
# For modules we store the class
|
|
rv.node.meta["source_fn_stack"] = self.source_fn_stack + [
|
|
(
|
|
rv.node.name,
|
|
rv.node.meta["nn_module_stack"][target][1],
|
|
)
|
|
]
|
|
|
|
self._maybe_preserve_original_meta(tx, rv.node)
|
|
|
|
if not is_retracing:
|
|
if "nn_module_stack" not in rv.node.meta:
|
|
nn_module_stack = tx.nn_module_stack
|
|
if nn_module_stack:
|
|
rv.node.meta["nn_module_stack"] = nn_module_stack.copy()
|
|
|
|
if "source_fn_stack" not in rv.node.meta:
|
|
if kind in {"call_function", "call_method"}:
|
|
rv.node.meta["source_fn_stack"] = self.source_fn_stack + [
|
|
(rv.node.name, target)
|
|
]
|
|
elif kind == "call_module":
|
|
if self.parent is not None:
|
|
unimplemented(
|
|
"Invoking an nn.Module inside HigherOrderOperator"
|
|
)
|
|
# For modules we store the class
|
|
rv.node.meta["source_fn_stack"] = self.source_fn_stack + [
|
|
(
|
|
rv.node.name,
|
|
rv.node.meta["nn_module_stack"][target][1],
|
|
)
|
|
]
|
|
|
|
if "stack_trace" not in rv.node.meta:
|
|
frame_summaries: List[traceback.FrameSummary] = []
|
|
while tx:
|
|
# Avoid frame summaries from inside the torch/nn/modules. This ensures that we keep the stack trace of
|
|
# the user code.
|
|
if not tx.is_co_filename_from_nn_modules():
|
|
frame_summaries.append(tx.frame_summary())
|
|
tx = getattr(tx, "parent", None)
|
|
# Reverse the frame_summaries, such that the innermost frame is at the last
|
|
frame_summaries.reverse()
|
|
|
|
# official from_list stub doesn't have new-style type
|
|
msgs = traceback.StackSummary.from_list(frame_summaries).format()
|
|
rv.node.stack_trace = "".join(msgs)
|
|
|
|
return rv
|
|
|
|
def create_node(
|
|
self, op, target, args=None, kwargs=None, name=None, type_expr=None
|
|
):
|
|
check_pt2_compliant_op(self.output_graph, op, target, args, kwargs)
|
|
if self.parent is not None:
|
|
flat_args = pytree.arg_tree_leaves(*args, **kwargs)
|
|
for arg in flat_args:
|
|
if not isinstance(arg, torch.fx.Node):
|
|
continue
|
|
assert (
|
|
arg.graph == self.graph
|
|
), "create_node using arg not from this SubgraphTracer"
|
|
|
|
node = super().create_node(op, target, args, kwargs, name, type_expr)
|
|
node.meta["creation_timestamp"] = self.output_graph.timestamp
|
|
return node
|
|
|
|
# Note: we did not override erase_node since
|
|
# we call self.graph.erase_node elsewhere
|
|
def remove_node(self, node):
|
|
if len(node.users) > 0:
|
|
user_graph_nodes: List[torch.fx.Node] = []
|
|
for user in node.users.keys():
|
|
# For the case where user.graph == self.graph, that is a real bug and will raise
|
|
# properly.
|
|
if user.graph != self.graph:
|
|
# This is a nested graph, which needs to be deleted.
|
|
# If we do not do this, we will raise on attempting to remove this.
|
|
# As we only get here during restoration cleanup, this is sound.
|
|
user_graph_nodes.extend(reversed(list(user.graph.nodes)))
|
|
for other_graph_node in user_graph_nodes:
|
|
other_graph_node.graph.erase_node(other_graph_node)
|
|
self.graph.erase_node(node)
|
|
self.input_name_to_proxy.pop(node.name, None)
|
|
|
|
# when before=True, we will insert this input before the most recent
|
|
# inserted proxy. This is a hack to get around an ordering problem,
|
|
# where we first insert a tensor argument, and then insert bindings
|
|
# for SymInts that may occur in the tensor argument.
|
|
# Remove this if https://github.com/pytorch/pytorch/issues/99007 gets
|
|
# fixed.
|
|
def create_graph_input(self, name, type_expr=None, before=False, source=None):
|
|
log.debug(
|
|
"create_graph_input %s %s",
|
|
name,
|
|
source.name() if source is not None else "(none)",
|
|
)
|
|
if source is None:
|
|
assert (
|
|
self.parent is not None
|
|
), "you are required to provide a source for inputs on the root tracer"
|
|
|
|
# In eager, we are generally OK with adding graph inputs whenever we
|
|
# want, because we take care of writing the bytecode that knows how
|
|
# to source all the inputs.
|
|
#
|
|
# In export, this is bad, because you want a self-contained export
|
|
# object which only depends on the inputs you explicitly passed to it.
|
|
# So we are a bit more strict about what sources can become inputs
|
|
# in export
|
|
if self.export_root:
|
|
if not is_from_local_source(source, allow_cell_or_freevar=False):
|
|
self.output_graph.source_to_user_stacks.setdefault(source, []).append(
|
|
TracingContext.extract_stack()
|
|
)
|
|
|
|
# unique
|
|
if name in self.input_name_to_proxy:
|
|
for i in itertools.count():
|
|
candidate_name = f"{name}_{i}"
|
|
if candidate_name not in self.input_name_to_proxy:
|
|
name = candidate_name
|
|
break
|
|
|
|
if self.input_name_to_proxy:
|
|
prev_name = next(reversed(self.input_name_to_proxy))
|
|
node = self.input_name_to_proxy[prev_name].node
|
|
if before:
|
|
ctx = self.graph.inserting_before(node)
|
|
else:
|
|
ctx = self.graph.inserting_after(node)
|
|
else:
|
|
ctx = self.graph.inserting_before(None)
|
|
with ctx:
|
|
proxy = self.create_proxy("placeholder", name, (), {}, type_expr=type_expr)
|
|
if self.input_name_to_proxy and before:
|
|
k, v = self.input_name_to_proxy.popitem()
|
|
self.input_name_to_proxy[name] = proxy
|
|
self.input_name_to_proxy[k] = v
|
|
else:
|
|
self.input_name_to_proxy[name] = proxy
|
|
return proxy
|
|
|
|
# See NOTE: [Nested SubgraphTracer and free_variable handling] for more details
|
|
def lift_tracked_freevar_to_input(self, proxy):
|
|
# You're doing something wrong if we are the root SubgraphTracer because
|
|
# Dynamo adds tensors to graph inputs before creating a proxy for them.
|
|
assert (
|
|
self.parent is not None
|
|
), "lift_tracked_freevar_to_input should not be called on root SubgraphTracer"
|
|
# Proxys are associated with VariableTracker.
|
|
# It is possible that we've already lifted the Proxy to be an input.
|
|
# If that is the case, just return the already lifted Proxy.
|
|
if proxy in self.lifted_freevars:
|
|
return self.lifted_freevars[proxy]
|
|
new_proxy = self.create_graph_input(proxy.node.name)
|
|
set_example_value(new_proxy.node, proxy.node.meta["example_value"])
|
|
self.lifted_freevars[proxy] = new_proxy
|
|
if self.parent is not None and proxy.tracer != self.parent:
|
|
self.parent.lift_tracked_freevar_to_input(proxy)
|
|
return new_proxy
|
|
|
|
def maybe_lift_tracked_freevar_to_input(self, arg):
|
|
"""
|
|
If arg is a free variable, then lift it to be an input.
|
|
Returns the new lifted arg (if arg was a freevar), else the
|
|
original arg.
|
|
"""
|
|
if not isinstance(arg, torch.fx.Proxy):
|
|
return arg
|
|
elif arg.tracer == self:
|
|
return arg
|
|
return self.lift_tracked_freevar_to_input(arg)
|
|
|
|
|
|
# NOTE: [HigherOrderOperator tracing design]
|
|
# Ignoring HigherOrderOperators for a moment,
|
|
# OutputGraph represents the graph being built by Dynamo that may be compiled
|
|
# and executed. It holds a root SubgraphTracer where the FX graph is built.
|
|
#
|
|
# HigherOrderOperators are operators that take functions as their arguments.
|
|
# When Dynamo encounters a HigherOrderOperator, then it attempts to introspect
|
|
# the function passed to it (call this the "body function"), capture it into a
|
|
# GraphModule, and rewrite the call to the HigherOrderOperator to use the
|
|
# GraphModule.
|
|
#
|
|
# The way we handle the capture of body functions is through having
|
|
# (possibly nested) SubgraphTracers, one per body function.
|
|
#
|
|
# Mechanically, we do the introspection by:
|
|
# - Creating a new SubgraphTracer via OutputGraph.subtracer
|
|
# - Executing the body function.
|
|
# This constructs the graph of the body function in the new SubgraphTracer
|
|
# while modifying the state of the OutputGraph. For example:
|
|
# - the OutputGraph can receive new GraphArgs (if we discover any new
|
|
# untracked Tensors)
|
|
# - side effects from the body function get accumulated into
|
|
# OutputGraph.side_effects
|
|
# - guards produced by the body function get accumulated into OutputGraph.guards
|
|
#
|
|
# The traced function has some special properties that make it easier for us
|
|
# to transform later down the line:
|
|
# - we lift all free variables to being inputs.
|
|
#
|
|
# If the introspection fails (due to the existence of graph breaks), then
|
|
# we roll back the current OutputGraph state and graph break on the
|
|
# HigherOrderOperator.
|