pytorch/test/quantization/pt2e/test_numeric_debugger.py
Riley Dulin 3be150653c [torch][ao] Add customizable loss function to NodeAccuracySummary (#136282)
Summary:
Add a customizable loss function callback to NodeAccuracySummary to
allow users to pass in their own loss function.

Also, fix some type errors and propagate better exception messages when
unexpected tensor comparisons occur. Finally, enhance the robustness of
`generate_numeric_debug_handle` in the case where it is called multiple
times on the same model, by avoiding reuse of the same IDs.

Test Plan: Added a test for this case in `test_numeric_debugger`.

Reviewed By: jerryzh168

Differential Revision: D62898297

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136282
Approved by: https://github.com/jerryzh168
2024-09-24 03:28:12 +00:00

240 lines
9.6 KiB
Python

# Owner(s): ["oncall: quantization"]
import copy
import unittest
from collections import Counter
from typing import Dict
import torch
from torch._export import capture_pre_autograd_graph
from torch.ao.quantization import (
compare_results,
CUSTOM_KEY,
extract_results_from_loggers,
generate_numeric_debug_handle,
NUMERIC_DEBUG_HANDLE_KEY,
prepare_for_propagation_comparison,
)
from torch.ao.quantization.quantize_pt2e import convert_pt2e, prepare_pt2e
from torch.ao.quantization.quantizer.xnnpack_quantizer import (
get_symmetric_quantization_config,
XNNPACKQuantizer,
)
from torch.export import export_for_training
from torch.testing._internal.common_quantization import TestHelperModules
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfCrossRef, TestCase
def _extract_debug_handles(model) -> Dict[str, int]:
debug_handle_map: Dict[str, int] = {}
for node in model.graph.nodes:
if (
CUSTOM_KEY in node.meta
and NUMERIC_DEBUG_HANDLE_KEY in node.meta[CUSTOM_KEY]
):
debug_handle_map[str(node)] = node.meta[CUSTOM_KEY][
NUMERIC_DEBUG_HANDLE_KEY
]
return debug_handle_map
def is_fbcode():
return not hasattr(torch.version, "git_version")
@unittest.skipIf(IS_WINDOWS, "Windows not yet supported for torch.compile")
class TestNumericDebugger(TestCase):
def test_simple(self):
m = TestHelperModules.Conv2dThenConv1d()
example_inputs = m.example_inputs()
m = torch.export.export(m, example_inputs)
generate_numeric_debug_handle(m)
unique_ids = set()
count = 0
for n in m.graph.nodes:
if CUSTOM_KEY in n.meta and NUMERIC_DEBUG_HANDLE_KEY in n.meta[CUSTOM_KEY]:
unique_ids.add(n.meta[CUSTOM_KEY][NUMERIC_DEBUG_HANDLE_KEY])
count += 1
self.assertEqual(len(unique_ids), count)
@unittest.skipIf(
is_fbcode(),
"fbcode changes the code path for `capture_pre_autograd_graph` "
"we can enable the test in fbcode after we remove `capture_pre_autograd_graph`",
)
def test_quantize_pt2e_preserve_handle(self):
m = TestHelperModules.Conv2dThenConv1d()
example_inputs = m.example_inputs()
m = capture_pre_autograd_graph(m, example_inputs)
generate_numeric_debug_handle(m)
quantizer = XNNPACKQuantizer().set_global(
get_symmetric_quantization_config(is_per_channel=False)
)
m = prepare_pt2e(m, quantizer)
debug_handle_map = _extract_debug_handles(m)
res_counter = Counter(debug_handle_map.values())
repeated_debug_handle_ids = [2, 3, 6]
# 3 ids were repeated because we copy over the id from node to its output observer
# torch.ops.aten.conv2d.default, torch.ops.aten.squeeze.dim and torch.ops.aten.conv1d.default
for dh_id in repeated_debug_handle_ids:
self.assertEqual(res_counter[dh_id], 2)
m(*example_inputs)
m = convert_pt2e(m)
debug_handle_map = _extract_debug_handles(m)
res_counter = Counter(debug_handle_map.values())
# same set of ids where repeated, because we copy over the id from observer/fake_quant to
# dequantize node
repeated_debug_handle_ids = [2, 3, 6]
for dh_id in repeated_debug_handle_ids:
self.assertEqual(res_counter[dh_id], 2)
def test_copy_preserve_handle(self):
m = TestHelperModules.Conv2dThenConv1d()
example_inputs = m.example_inputs()
m = torch.export.export(m, example_inputs)
generate_numeric_debug_handle(m)
debug_handle_map_ref = _extract_debug_handles(m)
m_copy = copy.copy(m)
debug_handle_map = _extract_debug_handles(m_copy)
self.assertEqual(debug_handle_map, debug_handle_map_ref)
def test_deepcopy_preserve_handle(self):
m = TestHelperModules.Conv2dThenConv1d()
example_inputs = m.example_inputs()
m = torch.export.export(m, example_inputs)
generate_numeric_debug_handle(m)
debug_handle_map_ref = _extract_debug_handles(m)
m_copy = copy.deepcopy(m)
debug_handle_map = _extract_debug_handles(m_copy)
self.assertEqual(debug_handle_map, debug_handle_map_ref)
@skipIfCrossRef # mlazos: retracing FX graph with torch function mode doesn't propagate metadata, because the stack
# trace of the mode torch function impl doesn't match the traced graph stored lineno.
def test_re_export_preserve_handle(self):
m = TestHelperModules.Conv2dThenConv1d()
example_inputs = m.example_inputs()
m = export_for_training(m, example_inputs).module()
generate_numeric_debug_handle(m)
debug_handle_map_ref = _extract_debug_handles(m)
m_export = export_for_training(m, example_inputs).module()
debug_handle_map = _extract_debug_handles(m_export)
self.assertEqual(debug_handle_map, debug_handle_map_ref)
def test_run_decompositions_preserve_handle(self):
m = TestHelperModules.Conv2dThenConv1d()
example_inputs = m.example_inputs()
m = torch.export.export(m, example_inputs)
generate_numeric_debug_handle(m)
debug_handle_map_ref = _extract_debug_handles(m)
m_copy = copy.copy(m)
m_copy = m_copy.run_decompositions()
debug_handle_map = _extract_debug_handles(m_copy)
# checking the map still has the same ids, the node may change
self.assertEqual(
set(debug_handle_map.values()), set(debug_handle_map_ref.values())
)
def test_prepare_for_propagation_comparison(self):
m = TestHelperModules.Conv2dThenConv1d()
example_inputs = m.example_inputs()
m = capture_pre_autograd_graph(m, example_inputs)
generate_numeric_debug_handle(m)
m_logger = prepare_for_propagation_comparison(m)
ref = m(*example_inputs)
res = m_logger(*example_inputs)
from torch.ao.quantization.pt2e._numeric_debugger import OutputLogger
loggers = [m for m in m_logger.modules() if isinstance(m, OutputLogger)]
self.assertEqual(len(loggers), 7)
self.assertTrue("conv2d" in [logger.node_name for logger in loggers])
self.assertEqual(res, ref)
def test_extract_results_from_loggers(self):
m = TestHelperModules.Conv2dThenConv1d()
example_inputs = m.example_inputs()
m = capture_pre_autograd_graph(m, example_inputs)
generate_numeric_debug_handle(m)
m_ref_logger = prepare_for_propagation_comparison(m)
quantizer = XNNPACKQuantizer().set_global(
get_symmetric_quantization_config(is_per_channel=False)
)
m = prepare_pt2e(m, quantizer)
m(*example_inputs)
m = convert_pt2e(m)
m_quant_logger = prepare_for_propagation_comparison(m)
m_ref_logger(*example_inputs)
m_quant_logger(*example_inputs)
ref_results = extract_results_from_loggers(m_ref_logger)
quant_results = extract_results_from_loggers(m_quant_logger)
comparison_results = compare_results(ref_results, quant_results)
for node_summary in comparison_results.values():
if len(node_summary.results) > 0:
self.assertGreaterEqual(node_summary.results[0].sqnr, 35)
def test_added_node_gets_unique_id(self) -> None:
m = TestHelperModules.Conv2dThenConv1d()
example_inputs = m.example_inputs()
m = capture_pre_autograd_graph(m, example_inputs)
assert isinstance(m, torch.fx.GraphModule)
generate_numeric_debug_handle(m)
ref_handles = _extract_debug_handles(m)
ref_counter = Counter(ref_handles.values())
for k, v in ref_counter.items():
self.assertEqual(
v,
1,
msg=f"For handle {k}, there were {v} nodes with that handle, but expected only 1",
)
# Now that we have unique ids, add a new node into the graph and re-generate
# to make sure that the new node gets a unique id.
last_node = next(iter(reversed(m.graph.nodes)))
with m.graph.inserting_before(last_node):
arg = last_node.args[0]
self.assertIsInstance(arg, (list, tuple))
arg = arg[0]
# Add a function that only requires a single tensor input.
n = m.graph.call_function(torch.ops.aten.relu.default, args=(arg,))
arg.replace_all_uses_with(n, lambda x: x != n)
m.recompile()
# Regenerate handles, make sure only the new relu node has a new id, and
# it doesn't clash with any of the existing ids.
generate_numeric_debug_handle(m)
handles_after_modification = _extract_debug_handles(m)
handles_counter = Counter(handles_after_modification.values())
for name, handle in ref_handles.items():
self.assertIn(name, handles_after_modification)
# Check that handle was unchanged.
self.assertEqual(handles_after_modification[name], handle)
# Check that total count was unchanged.
ref_count = ref_counter[handle]
after_count = handles_counter[handle]
self.assertEqual(
after_count,
ref_count,
msg=f"For handle {handle}, there were {after_count} nodes with that handle, but expected only {ref_count}",
)
# Check for relu specifically. Avoid hardcoding the handle id since it
# may change with future node ordering changes.
self.assertNotEqual(handles_after_modification["relu_default"], 0)
self.assertEqual(handles_counter[handles_after_modification["relu_default"]], 1)