mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Add a customizable loss function callback to NodeAccuracySummary to allow users to pass in their own loss function. Also, fix some type errors and propagate better exception messages when unexpected tensor comparisons occur. Finally, enhance the robustness of `generate_numeric_debug_handle` in the case where it is called multiple times on the same model, by avoiding reuse of the same IDs. Test Plan: Added a test for this case in `test_numeric_debugger`. Reviewed By: jerryzh168 Differential Revision: D62898297 Pull Request resolved: https://github.com/pytorch/pytorch/pull/136282 Approved by: https://github.com/jerryzh168
240 lines
9.6 KiB
Python
240 lines
9.6 KiB
Python
# Owner(s): ["oncall: quantization"]
|
|
|
|
import copy
|
|
import unittest
|
|
from collections import Counter
|
|
from typing import Dict
|
|
|
|
import torch
|
|
from torch._export import capture_pre_autograd_graph
|
|
from torch.ao.quantization import (
|
|
compare_results,
|
|
CUSTOM_KEY,
|
|
extract_results_from_loggers,
|
|
generate_numeric_debug_handle,
|
|
NUMERIC_DEBUG_HANDLE_KEY,
|
|
prepare_for_propagation_comparison,
|
|
)
|
|
from torch.ao.quantization.quantize_pt2e import convert_pt2e, prepare_pt2e
|
|
from torch.ao.quantization.quantizer.xnnpack_quantizer import (
|
|
get_symmetric_quantization_config,
|
|
XNNPACKQuantizer,
|
|
)
|
|
from torch.export import export_for_training
|
|
from torch.testing._internal.common_quantization import TestHelperModules
|
|
from torch.testing._internal.common_utils import IS_WINDOWS, skipIfCrossRef, TestCase
|
|
|
|
|
|
def _extract_debug_handles(model) -> Dict[str, int]:
|
|
debug_handle_map: Dict[str, int] = {}
|
|
|
|
for node in model.graph.nodes:
|
|
if (
|
|
CUSTOM_KEY in node.meta
|
|
and NUMERIC_DEBUG_HANDLE_KEY in node.meta[CUSTOM_KEY]
|
|
):
|
|
debug_handle_map[str(node)] = node.meta[CUSTOM_KEY][
|
|
NUMERIC_DEBUG_HANDLE_KEY
|
|
]
|
|
|
|
return debug_handle_map
|
|
|
|
|
|
def is_fbcode():
|
|
return not hasattr(torch.version, "git_version")
|
|
|
|
|
|
@unittest.skipIf(IS_WINDOWS, "Windows not yet supported for torch.compile")
|
|
class TestNumericDebugger(TestCase):
|
|
def test_simple(self):
|
|
m = TestHelperModules.Conv2dThenConv1d()
|
|
example_inputs = m.example_inputs()
|
|
m = torch.export.export(m, example_inputs)
|
|
generate_numeric_debug_handle(m)
|
|
unique_ids = set()
|
|
count = 0
|
|
for n in m.graph.nodes:
|
|
if CUSTOM_KEY in n.meta and NUMERIC_DEBUG_HANDLE_KEY in n.meta[CUSTOM_KEY]:
|
|
unique_ids.add(n.meta[CUSTOM_KEY][NUMERIC_DEBUG_HANDLE_KEY])
|
|
count += 1
|
|
self.assertEqual(len(unique_ids), count)
|
|
|
|
@unittest.skipIf(
|
|
is_fbcode(),
|
|
"fbcode changes the code path for `capture_pre_autograd_graph` "
|
|
"we can enable the test in fbcode after we remove `capture_pre_autograd_graph`",
|
|
)
|
|
def test_quantize_pt2e_preserve_handle(self):
|
|
m = TestHelperModules.Conv2dThenConv1d()
|
|
example_inputs = m.example_inputs()
|
|
m = capture_pre_autograd_graph(m, example_inputs)
|
|
generate_numeric_debug_handle(m)
|
|
|
|
quantizer = XNNPACKQuantizer().set_global(
|
|
get_symmetric_quantization_config(is_per_channel=False)
|
|
)
|
|
m = prepare_pt2e(m, quantizer)
|
|
debug_handle_map = _extract_debug_handles(m)
|
|
res_counter = Counter(debug_handle_map.values())
|
|
repeated_debug_handle_ids = [2, 3, 6]
|
|
# 3 ids were repeated because we copy over the id from node to its output observer
|
|
# torch.ops.aten.conv2d.default, torch.ops.aten.squeeze.dim and torch.ops.aten.conv1d.default
|
|
for dh_id in repeated_debug_handle_ids:
|
|
self.assertEqual(res_counter[dh_id], 2)
|
|
|
|
m(*example_inputs)
|
|
m = convert_pt2e(m)
|
|
debug_handle_map = _extract_debug_handles(m)
|
|
res_counter = Counter(debug_handle_map.values())
|
|
# same set of ids where repeated, because we copy over the id from observer/fake_quant to
|
|
# dequantize node
|
|
repeated_debug_handle_ids = [2, 3, 6]
|
|
for dh_id in repeated_debug_handle_ids:
|
|
self.assertEqual(res_counter[dh_id], 2)
|
|
|
|
def test_copy_preserve_handle(self):
|
|
m = TestHelperModules.Conv2dThenConv1d()
|
|
example_inputs = m.example_inputs()
|
|
m = torch.export.export(m, example_inputs)
|
|
generate_numeric_debug_handle(m)
|
|
|
|
debug_handle_map_ref = _extract_debug_handles(m)
|
|
|
|
m_copy = copy.copy(m)
|
|
debug_handle_map = _extract_debug_handles(m_copy)
|
|
|
|
self.assertEqual(debug_handle_map, debug_handle_map_ref)
|
|
|
|
def test_deepcopy_preserve_handle(self):
|
|
m = TestHelperModules.Conv2dThenConv1d()
|
|
example_inputs = m.example_inputs()
|
|
m = torch.export.export(m, example_inputs)
|
|
generate_numeric_debug_handle(m)
|
|
|
|
debug_handle_map_ref = _extract_debug_handles(m)
|
|
m_copy = copy.deepcopy(m)
|
|
debug_handle_map = _extract_debug_handles(m_copy)
|
|
|
|
self.assertEqual(debug_handle_map, debug_handle_map_ref)
|
|
|
|
@skipIfCrossRef # mlazos: retracing FX graph with torch function mode doesn't propagate metadata, because the stack
|
|
# trace of the mode torch function impl doesn't match the traced graph stored lineno.
|
|
def test_re_export_preserve_handle(self):
|
|
m = TestHelperModules.Conv2dThenConv1d()
|
|
example_inputs = m.example_inputs()
|
|
m = export_for_training(m, example_inputs).module()
|
|
generate_numeric_debug_handle(m)
|
|
|
|
debug_handle_map_ref = _extract_debug_handles(m)
|
|
m_export = export_for_training(m, example_inputs).module()
|
|
debug_handle_map = _extract_debug_handles(m_export)
|
|
|
|
self.assertEqual(debug_handle_map, debug_handle_map_ref)
|
|
|
|
def test_run_decompositions_preserve_handle(self):
|
|
m = TestHelperModules.Conv2dThenConv1d()
|
|
example_inputs = m.example_inputs()
|
|
m = torch.export.export(m, example_inputs)
|
|
generate_numeric_debug_handle(m)
|
|
|
|
debug_handle_map_ref = _extract_debug_handles(m)
|
|
|
|
m_copy = copy.copy(m)
|
|
m_copy = m_copy.run_decompositions()
|
|
debug_handle_map = _extract_debug_handles(m_copy)
|
|
|
|
# checking the map still has the same ids, the node may change
|
|
self.assertEqual(
|
|
set(debug_handle_map.values()), set(debug_handle_map_ref.values())
|
|
)
|
|
|
|
def test_prepare_for_propagation_comparison(self):
|
|
m = TestHelperModules.Conv2dThenConv1d()
|
|
example_inputs = m.example_inputs()
|
|
m = capture_pre_autograd_graph(m, example_inputs)
|
|
generate_numeric_debug_handle(m)
|
|
m_logger = prepare_for_propagation_comparison(m)
|
|
ref = m(*example_inputs)
|
|
res = m_logger(*example_inputs)
|
|
|
|
from torch.ao.quantization.pt2e._numeric_debugger import OutputLogger
|
|
|
|
loggers = [m for m in m_logger.modules() if isinstance(m, OutputLogger)]
|
|
self.assertEqual(len(loggers), 7)
|
|
self.assertTrue("conv2d" in [logger.node_name for logger in loggers])
|
|
self.assertEqual(res, ref)
|
|
|
|
def test_extract_results_from_loggers(self):
|
|
m = TestHelperModules.Conv2dThenConv1d()
|
|
example_inputs = m.example_inputs()
|
|
m = capture_pre_autograd_graph(m, example_inputs)
|
|
generate_numeric_debug_handle(m)
|
|
m_ref_logger = prepare_for_propagation_comparison(m)
|
|
|
|
quantizer = XNNPACKQuantizer().set_global(
|
|
get_symmetric_quantization_config(is_per_channel=False)
|
|
)
|
|
m = prepare_pt2e(m, quantizer)
|
|
m(*example_inputs)
|
|
m = convert_pt2e(m)
|
|
m_quant_logger = prepare_for_propagation_comparison(m)
|
|
|
|
m_ref_logger(*example_inputs)
|
|
m_quant_logger(*example_inputs)
|
|
ref_results = extract_results_from_loggers(m_ref_logger)
|
|
quant_results = extract_results_from_loggers(m_quant_logger)
|
|
comparison_results = compare_results(ref_results, quant_results)
|
|
for node_summary in comparison_results.values():
|
|
if len(node_summary.results) > 0:
|
|
self.assertGreaterEqual(node_summary.results[0].sqnr, 35)
|
|
|
|
def test_added_node_gets_unique_id(self) -> None:
|
|
m = TestHelperModules.Conv2dThenConv1d()
|
|
example_inputs = m.example_inputs()
|
|
m = capture_pre_autograd_graph(m, example_inputs)
|
|
assert isinstance(m, torch.fx.GraphModule)
|
|
generate_numeric_debug_handle(m)
|
|
ref_handles = _extract_debug_handles(m)
|
|
ref_counter = Counter(ref_handles.values())
|
|
for k, v in ref_counter.items():
|
|
self.assertEqual(
|
|
v,
|
|
1,
|
|
msg=f"For handle {k}, there were {v} nodes with that handle, but expected only 1",
|
|
)
|
|
|
|
# Now that we have unique ids, add a new node into the graph and re-generate
|
|
# to make sure that the new node gets a unique id.
|
|
last_node = next(iter(reversed(m.graph.nodes)))
|
|
with m.graph.inserting_before(last_node):
|
|
arg = last_node.args[0]
|
|
self.assertIsInstance(arg, (list, tuple))
|
|
arg = arg[0]
|
|
# Add a function that only requires a single tensor input.
|
|
n = m.graph.call_function(torch.ops.aten.relu.default, args=(arg,))
|
|
arg.replace_all_uses_with(n, lambda x: x != n)
|
|
m.recompile()
|
|
|
|
# Regenerate handles, make sure only the new relu node has a new id, and
|
|
# it doesn't clash with any of the existing ids.
|
|
generate_numeric_debug_handle(m)
|
|
handles_after_modification = _extract_debug_handles(m)
|
|
handles_counter = Counter(handles_after_modification.values())
|
|
for name, handle in ref_handles.items():
|
|
self.assertIn(name, handles_after_modification)
|
|
# Check that handle was unchanged.
|
|
self.assertEqual(handles_after_modification[name], handle)
|
|
# Check that total count was unchanged.
|
|
ref_count = ref_counter[handle]
|
|
after_count = handles_counter[handle]
|
|
self.assertEqual(
|
|
after_count,
|
|
ref_count,
|
|
msg=f"For handle {handle}, there were {after_count} nodes with that handle, but expected only {ref_count}",
|
|
)
|
|
|
|
# Check for relu specifically. Avoid hardcoding the handle id since it
|
|
# may change with future node ordering changes.
|
|
self.assertNotEqual(handles_after_modification["relu_default"], 0)
|
|
self.assertEqual(handles_counter[handles_after_modification["relu_default"]], 1)
|