mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132352 Approved by: https://github.com/ezyang ghstack dependencies: #132335, #132351
200 lines
7.3 KiB
Python
200 lines
7.3 KiB
Python
# Owner(s): ["oncall: quantization"]
|
|
|
|
import torch
|
|
from torch.testing._internal.common_quantization import skipIfNoFBGEMM
|
|
from torch.testing._internal.jit_utils import JitTestCase
|
|
|
|
|
|
class TestDeprecatedJitQuantized(JitTestCase):
|
|
@skipIfNoFBGEMM
|
|
def test_rnn_cell_quantized(self):
|
|
d_in, d_hid = 2, 2
|
|
|
|
for cell in [
|
|
torch.nn.LSTMCell(d_in, d_hid).float(),
|
|
torch.nn.GRUCell(d_in, d_hid).float(),
|
|
torch.nn.RNNCell(d_in, d_hid).float(),
|
|
]:
|
|
if isinstance(cell, torch.nn.LSTMCell):
|
|
num_chunks = 4
|
|
elif isinstance(cell, torch.nn.GRUCell):
|
|
num_chunks = 3
|
|
elif isinstance(cell, torch.nn.RNNCell):
|
|
num_chunks = 1
|
|
|
|
# Replace parameter values s.t. the range of values is exactly
|
|
# 255, thus we will have 0 quantization error in the quantized
|
|
# GEMM call. This i s for testing purposes.
|
|
#
|
|
# Note that the current implementation does not support
|
|
# accumulation values outside of the range representable by a
|
|
# 16 bit integer, instead resulting in a saturated value. We
|
|
# must take care that in our test we do not end up with a dot
|
|
# product that overflows the int16 range, e.g.
|
|
# (255*127+255*127) = 64770. So, we hardcode the test values
|
|
# here and ensure a mix of signedness.
|
|
vals = [
|
|
[100, -155],
|
|
[100, -155],
|
|
[-155, 100],
|
|
[-155, 100],
|
|
[100, -155],
|
|
[-155, 100],
|
|
[-155, 100],
|
|
[100, -155],
|
|
]
|
|
vals = vals[: d_hid * num_chunks]
|
|
cell.weight_ih = torch.nn.Parameter(
|
|
torch.tensor(vals, dtype=torch.float), requires_grad=False
|
|
)
|
|
cell.weight_hh = torch.nn.Parameter(
|
|
torch.tensor(vals, dtype=torch.float), requires_grad=False
|
|
)
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"quantize_rnn_cell_modules function is no longer supported",
|
|
):
|
|
cell = torch.jit.quantized.quantize_rnn_cell_modules(cell)
|
|
|
|
@skipIfNoFBGEMM
|
|
def test_rnn_quantized(self):
|
|
d_in, d_hid = 2, 2
|
|
|
|
for cell in [
|
|
torch.nn.LSTM(d_in, d_hid).float(),
|
|
torch.nn.GRU(d_in, d_hid).float(),
|
|
]:
|
|
# Replace parameter values s.t. the range of values is exactly
|
|
# 255, thus we will have 0 quantization error in the quantized
|
|
# GEMM call. This i s for testing purposes.
|
|
#
|
|
# Note that the current implementation does not support
|
|
# accumulation values outside of the range representable by a
|
|
# 16 bit integer, instead resulting in a saturated value. We
|
|
# must take care that in our test we do not end up with a dot
|
|
# product that overflows the int16 range, e.g.
|
|
# (255*127+255*127) = 64770. So, we hardcode the test values
|
|
# here and ensure a mix of signedness.
|
|
vals = [
|
|
[100, -155],
|
|
[100, -155],
|
|
[-155, 100],
|
|
[-155, 100],
|
|
[100, -155],
|
|
[-155, 100],
|
|
[-155, 100],
|
|
[100, -155],
|
|
]
|
|
if isinstance(cell, torch.nn.LSTM):
|
|
num_chunks = 4
|
|
elif isinstance(cell, torch.nn.GRU):
|
|
num_chunks = 3
|
|
vals = vals[: d_hid * num_chunks]
|
|
cell.weight_ih_l0 = torch.nn.Parameter(
|
|
torch.tensor(vals, dtype=torch.float), requires_grad=False
|
|
)
|
|
cell.weight_hh_l0 = torch.nn.Parameter(
|
|
torch.tensor(vals, dtype=torch.float), requires_grad=False
|
|
)
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "quantize_rnn_modules function is no longer supported"
|
|
):
|
|
cell_int8 = torch.jit.quantized.quantize_rnn_modules(
|
|
cell, dtype=torch.int8
|
|
)
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "quantize_rnn_modules function is no longer supported"
|
|
):
|
|
cell_fp16 = torch.jit.quantized.quantize_rnn_modules(
|
|
cell, dtype=torch.float16
|
|
)
|
|
|
|
if "fbgemm" in torch.backends.quantized.supported_engines:
|
|
|
|
def test_quantization_modules(self):
|
|
K1, N1 = 2, 2
|
|
|
|
class FooBar(torch.nn.Module):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.linear1 = torch.nn.Linear(K1, N1).float()
|
|
|
|
def forward(self, x):
|
|
x = self.linear1(x)
|
|
return x
|
|
|
|
fb = FooBar()
|
|
fb.linear1.weight = torch.nn.Parameter(
|
|
torch.tensor([[-150, 100], [100, -150]], dtype=torch.float),
|
|
requires_grad=False,
|
|
)
|
|
fb.linear1.bias = torch.nn.Parameter(
|
|
torch.zeros_like(fb.linear1.bias), requires_grad=False
|
|
)
|
|
|
|
x = (torch.rand(1, K1).float() - 0.5) / 10.0
|
|
value = torch.tensor([[100, -150]], dtype=torch.float)
|
|
|
|
y_ref = fb(value)
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "quantize_linear_modules function is no longer supported"
|
|
):
|
|
fb_int8 = torch.jit.quantized.quantize_linear_modules(fb)
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "quantize_linear_modules function is no longer supported"
|
|
):
|
|
fb_fp16 = torch.jit.quantized.quantize_linear_modules(fb, torch.float16)
|
|
|
|
@skipIfNoFBGEMM
|
|
def test_erase_class_tensor_shapes(self):
|
|
class Linear(torch.nn.Module):
|
|
def __init__(self, in_features, out_features):
|
|
super().__init__()
|
|
qweight = torch._empty_affine_quantized(
|
|
[out_features, in_features],
|
|
scale=1,
|
|
zero_point=0,
|
|
dtype=torch.qint8,
|
|
)
|
|
self._packed_weight = torch.ops.quantized.linear_prepack(qweight)
|
|
|
|
@torch.jit.export
|
|
def __getstate__(self):
|
|
return (
|
|
torch.ops.quantized.linear_unpack(self._packed_weight)[0],
|
|
self.training,
|
|
)
|
|
|
|
def forward(self):
|
|
return self._packed_weight
|
|
|
|
@torch.jit.export
|
|
def __setstate__(self, state):
|
|
self._packed_weight = torch.ops.quantized.linear_prepack(state[0])
|
|
self.training = state[1]
|
|
|
|
@property
|
|
def weight(self):
|
|
return torch.ops.quantized.linear_unpack(self._packed_weight)[0]
|
|
|
|
@weight.setter
|
|
def weight(self, w):
|
|
self._packed_weight = torch.ops.quantized.linear_prepack(w)
|
|
|
|
with torch._jit_internal._disable_emit_hooks():
|
|
x = torch.jit.script(Linear(10, 10))
|
|
torch._C._jit_pass_erase_shape_information(x.graph)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
raise RuntimeError(
|
|
"This test file is not meant to be run directly, use:\n\n"
|
|
"\tpython test/test_quantization.py TESTNAME\n\n"
|
|
"instead."
|
|
)
|