pytorch/benchmarks/serialization/nested_annotation_str.py
Scott Wolchok 3b54592050 [PyTorch] Add annotation_str benchmark (#96496)
To be used to evaluate performance of following improvements. Baseline numbers:

https://gist.github.com/swolchok/c8bcb92be1dc6e67c4f7efad498becd5

Differential Revision: [D43919653](https://our.internmc.facebook.com/intern/diff/D43919653/)

**NOTE FOR REVIEWERS**: This PR has internal Meta-specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D43919653/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96496
Approved by: https://github.com/Skylion007
2023-03-23 04:18:07 +00:00

24 lines
843 B
Python

import torch
import torch.utils.benchmark as benchmark
MEMO = {}
def create_nested_dict_type(layers):
if layers == 0:
return torch._C.StringType.get()
if layers not in MEMO:
less_nested = create_nested_dict_type(layers - 1)
result = torch._C.DictType(torch._C.StringType.get(), torch._C.TupleType([less_nested, less_nested]))
MEMO[layers] = result
return MEMO[layers]
nesting_levels = (1, 3, 5, 10)
types = (reasonable, medium, big, huge) = [create_nested_dict_type(x) for x in nesting_levels]
timers = [benchmark.Timer(stmt='x.annotation_str', globals={'x': nested_type}) for nested_type in types]
for nesting_level, typ, timer in zip(nesting_levels, types, timers):
print("Nesting level:", nesting_level)
print("output:", typ.annotation_str[:70])
print(timer.blocked_autorange())